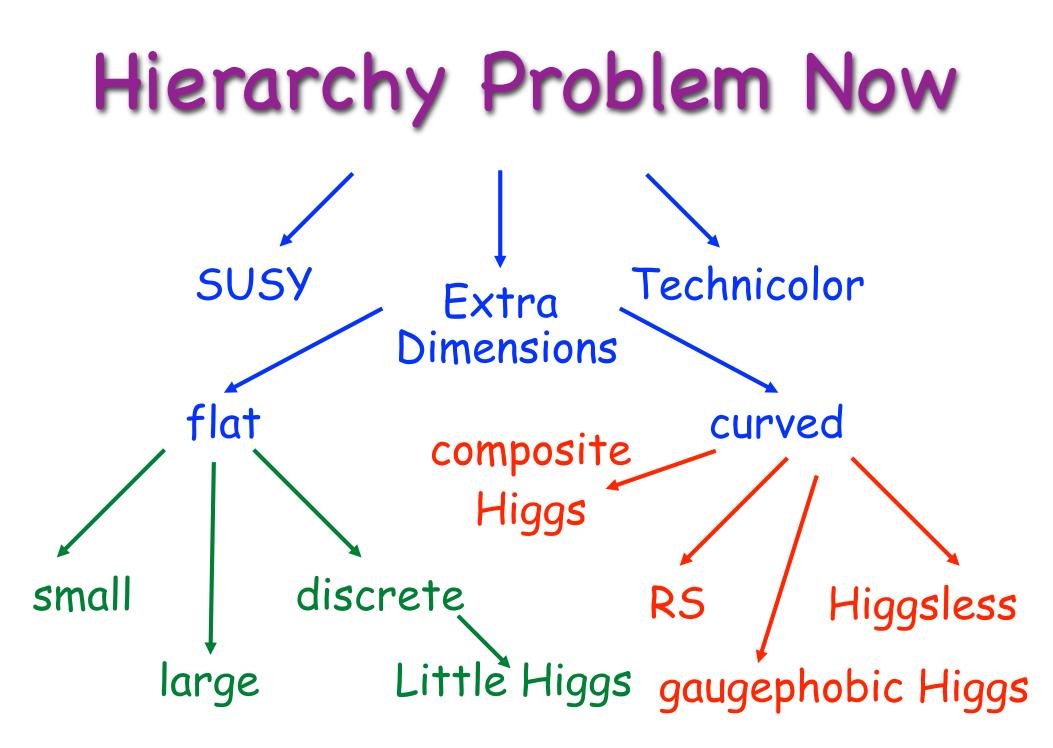
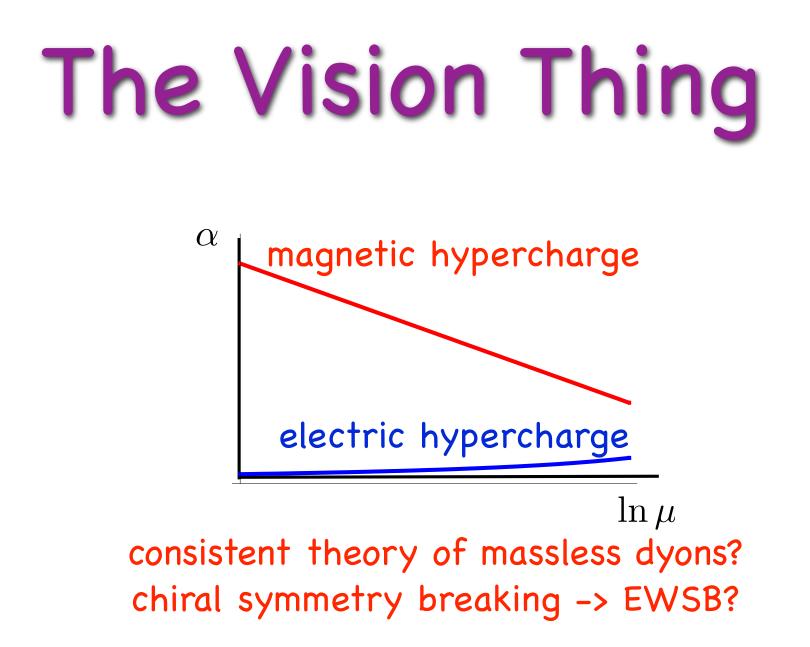
Monopoles, Anomalies, and Electroweak Symmetry Breaking

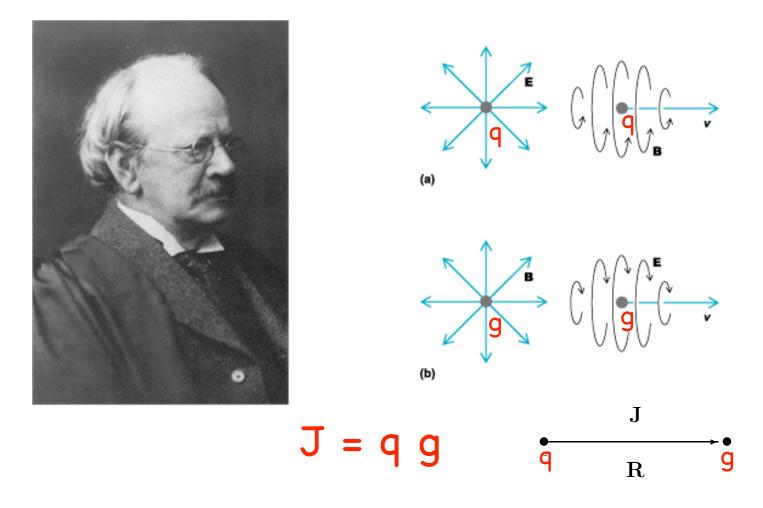
John Terning with Csaba Csaki, Yuri Shirman hep-ph/1003.1718

Outline

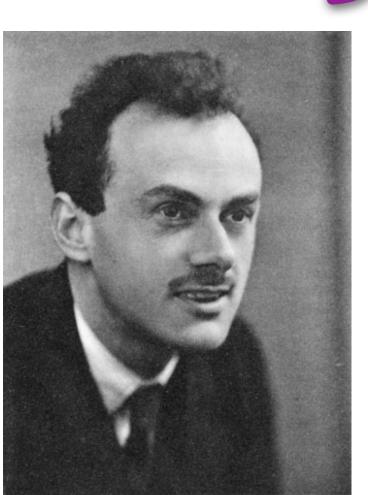


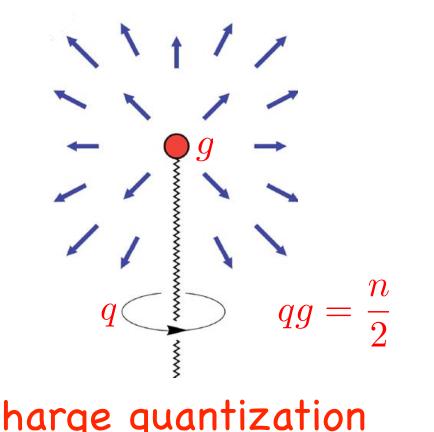


J.J. Thomson



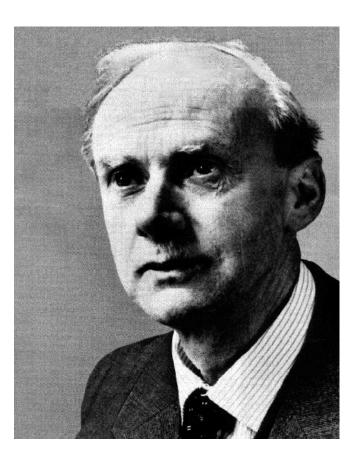
Philos. Mag. 8 (1904) 331





charge quantization

Proc. Roy. Soc. Lond. A133 (1931) 60



Dirac

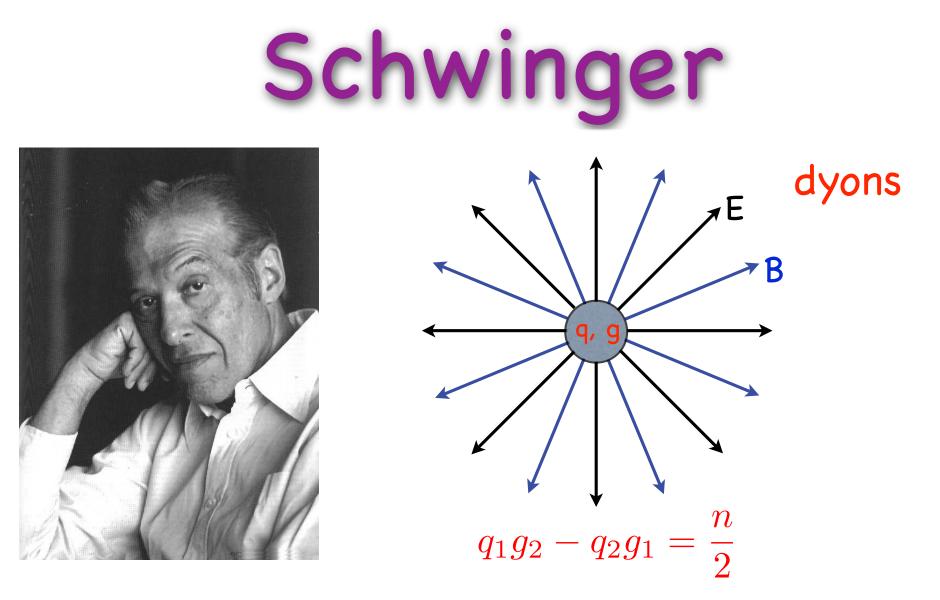
non-local action?

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + {}^{*}G_{\mu\nu}$$

$$G_{\mu\nu}(x) = 4\pi (n \cdot \partial)^{-1} [n_{\mu} k_{\nu}(x) - n_{\nu} k_{\mu}(x)]$$

=
$$\int (dy) [f_{\mu}(x - y) k_{\nu}(y) - f_{\nu}(x - y) k_{\mu}(y)]$$
$$\partial_{\mu} f^{\mu}(x) = 4\pi \delta(x)$$
$$f^{\mu}(x) = 4\pi n^{\mu} (n \cdot \partial)^{-1} \delta(x)$$

Phys. Rev. 74 (1948) 817



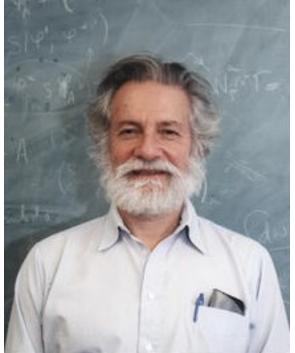
Science 165 (1969) 757

Zwanziger

non-Lorentz invariant, local action?

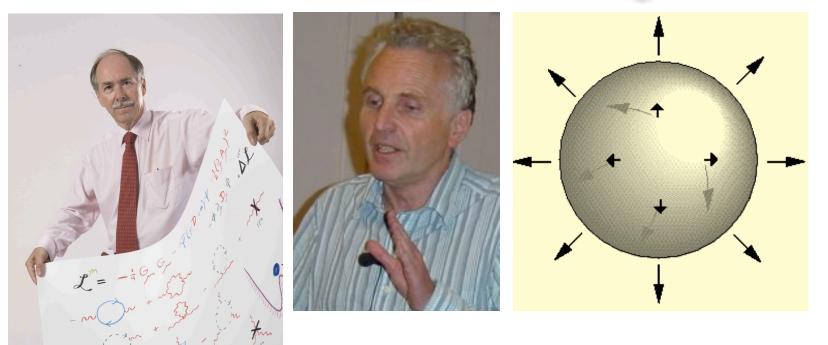
 $\mathcal{L} = -\frac{1}{2n^{2}e^{2}} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^{*} (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^{*} (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^{2} + \left[n \cdot (\partial \wedge B) \right]^{2} \right\} - J \cdot A - \frac{4\pi}{e^{2}} K \cdot B. \\ \mathbf{electric} \quad \mathbf{magnetic}$

$$F = \frac{1}{n^2} \left(\left\{ n \land [n \cdot (\partial \land A)] \right\} - * \left\{ n \land [n \cdot (\partial \land B)] \right\} \right)$$



Phys. Rev. D3 (1971) 880

't Hooft-Polyakov



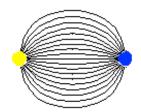
topological monopoles

Nucl. Phys., B79 1974, 276 JETP Lett., 20 1974, 194

't Hooft-Mandelstam

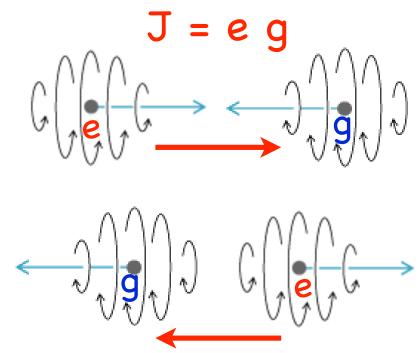


magnetic condensate confines electric charge



High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Rubakov-Callan



new unsuppressed contact interactions! JETP Lett. 33 (1981) 644 Phys. Rev. D25 (1982) 2141

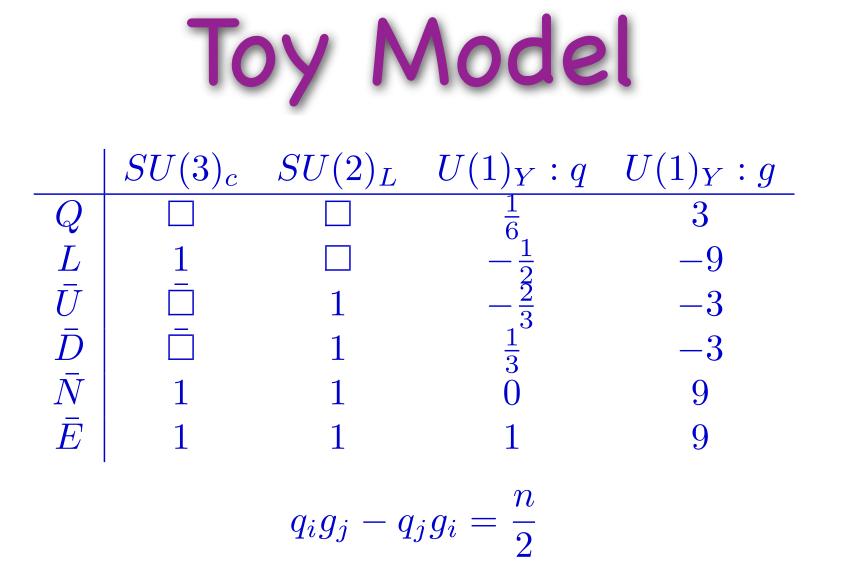
Seiberg-Witten

 $\mathcal{N}=2$

hep-th/9407087

Argyres-Douglas

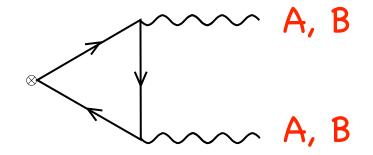
CFT with massless electric and magnetic charges hep-th/9505062



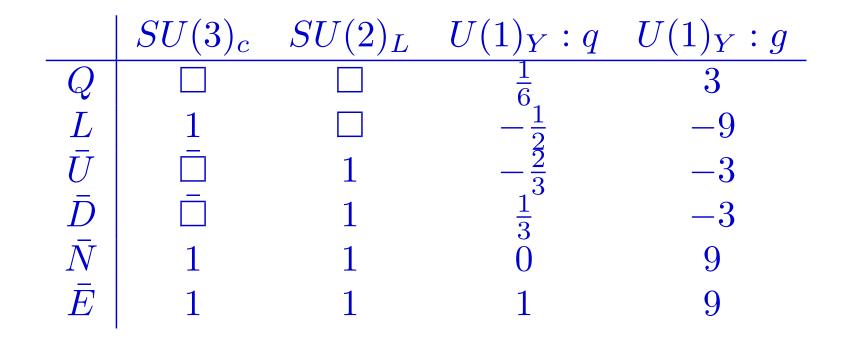
is this anomaly free?

Anomalies

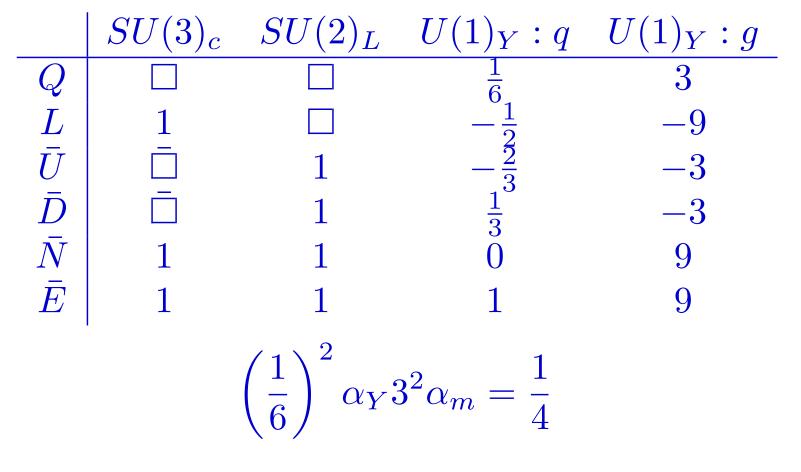
$$\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$$



Toy Model

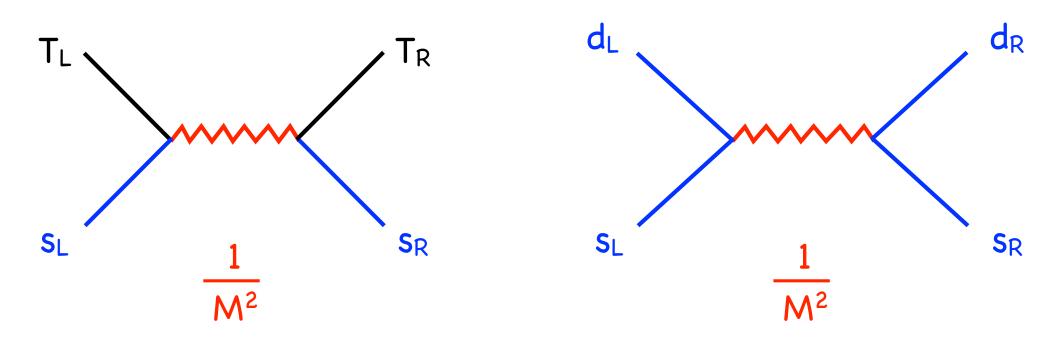


$$\sum_{j} q_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{2} q_{j} = 0 , \qquad \sum_{j} q_{j}^{2} g_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b} T_{r_{j}}^{b} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b$$

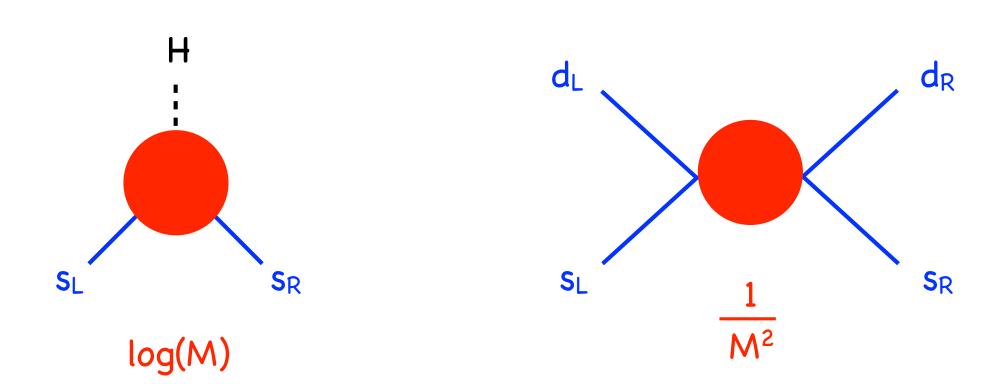


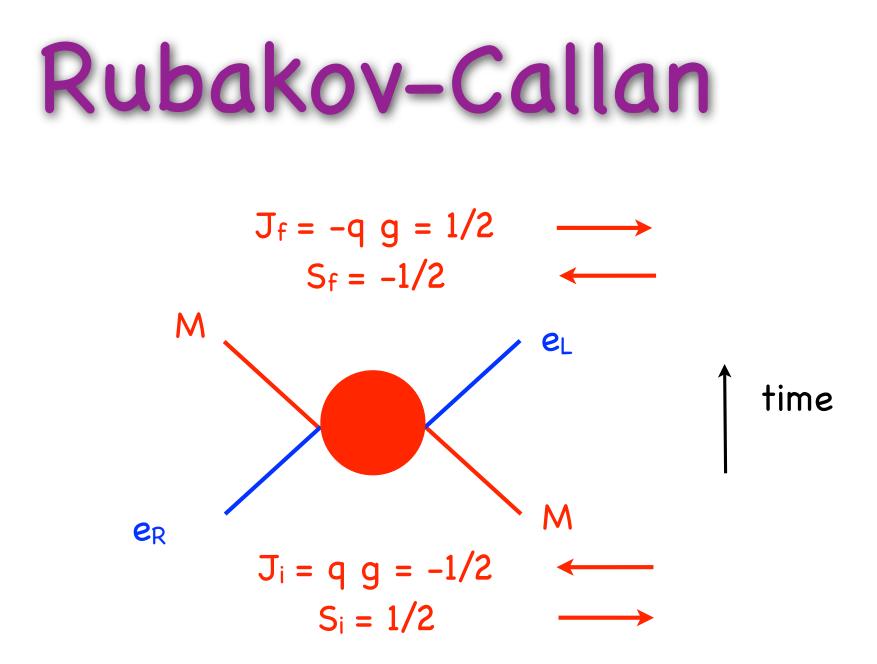
 $\alpha_m \sim 98$

technicolor: fail



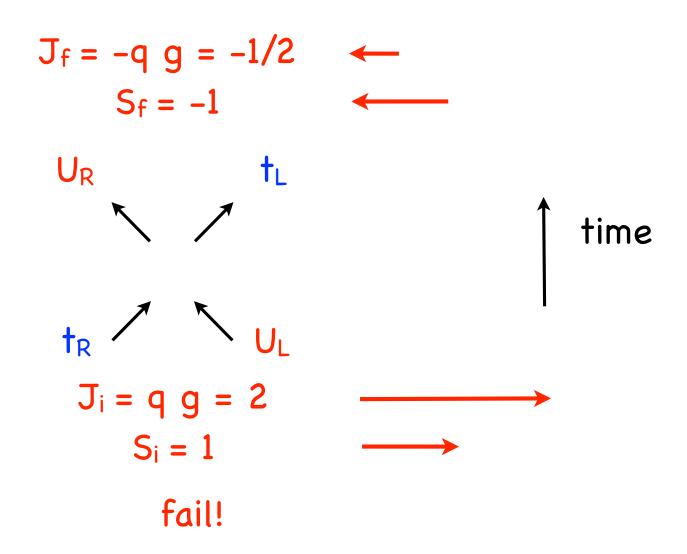
Standard Model



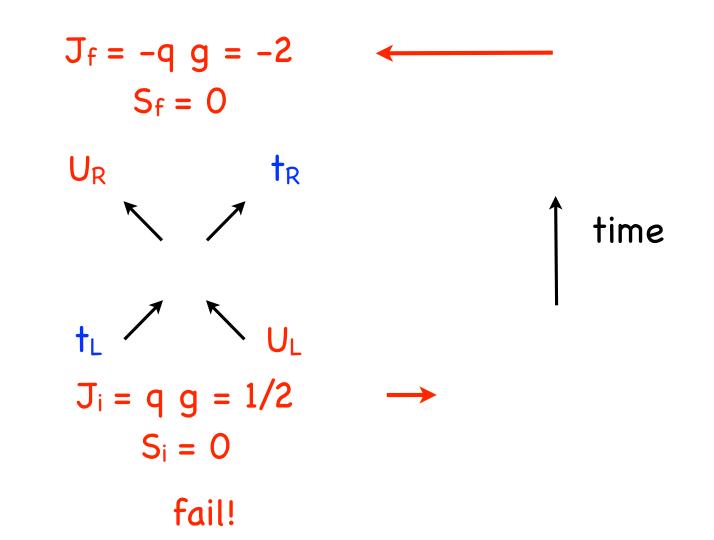


New dimension 4, four particle operator

Four Fermion Ops



Four Fermion Ops



non-Abelian magnetic charge

 $Q = T^3 + Y$

$$Q_m = T_m^3 + Y_m$$

explicit examples known in GUT models

EWSB is forced to align with the monopole charge

non-Abelian magnetic charge $ec{B}^a_Y = rac{g}{g_Y}rac{\hat{r}}{r^2}$ $\vec{B}_L^a = \delta_L^{a3} \frac{g \beta_L}{g_L} \frac{\hat{r}}{r^2}$ $ec{B}^a_c = \delta^{a8}_c \, rac{g\,eta_c}{q_c} \, rac{\hat{r}}{r^2}$

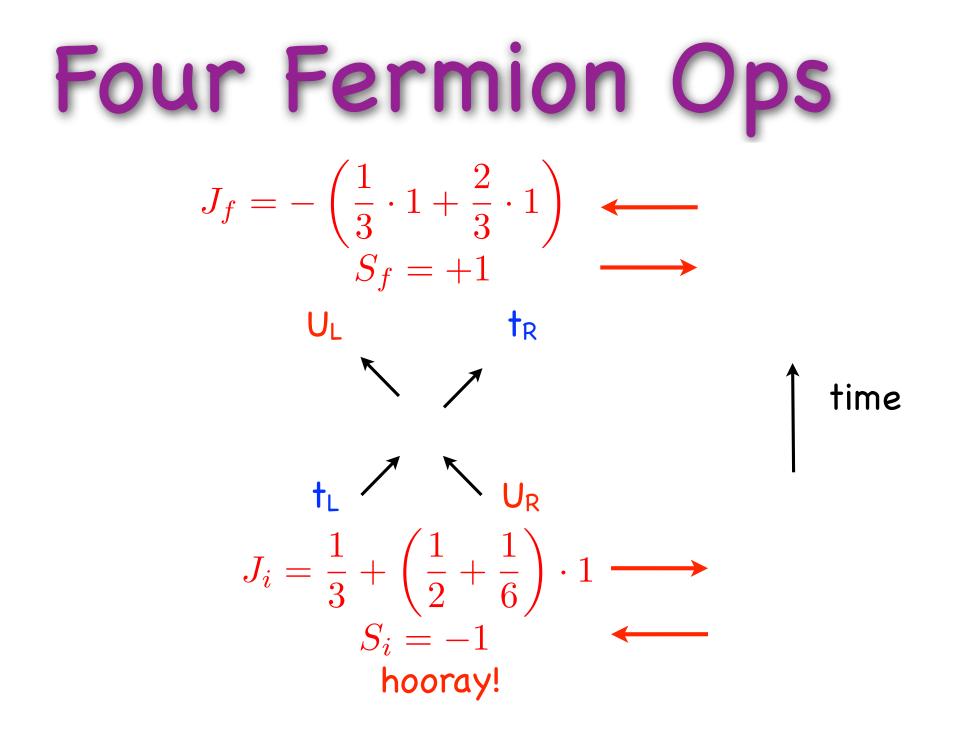
 $4\pi \left(T_c^8 g \beta_c + T_L^3 g \beta_L + Yg\right) = 2\pi n$

non-Abelian magnetic charge $4\pi \left(T_c^8 g \beta_c + T_L^3 g \beta_L + Yg\right) = 2\pi n$ $eA^{\mu} = g_L A_L^{3\mu} + g_Y A_V^{\mu}$ $\beta_L = 1$

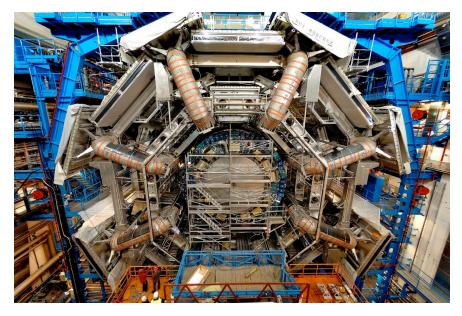
 $T_c^8 g \beta_c + q g = \frac{n}{2}$

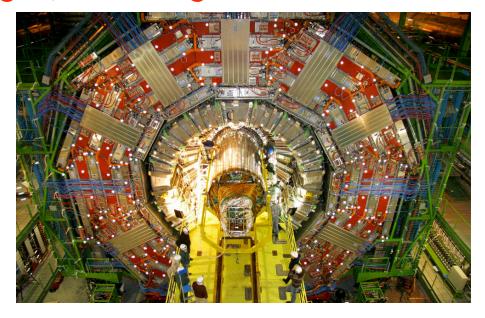
The Model				
$(SU(3)_c \times SU(2)_L \times U(1)_Y)/Z_6$				
	$SU(3)_c$	$SU(2)_L$	$U(1)_Y^{el}$	$U(1)_Y^{mag}$
Q_L	\Box^m	\Box^m	$\frac{1}{6}$	$\frac{1}{2}$
L_L	1	\Box^m	$-\frac{1}{2}$	$-\frac{3}{2}$
U_R	\Box^m	1^m	$\frac{2}{3}$	$\frac{1}{2}$
D_R	\Box^m	1^m	$-\frac{1}{3}$	$\frac{1}{2}$
N_R	1	1^m	0	$-\frac{3}{2}$
E_R	1	1^m	-1	$-\frac{3}{2}$

$$\alpha_m = \frac{1}{4\alpha} \approx 32$$



naively expect pair production, unconfined, highly ionizing

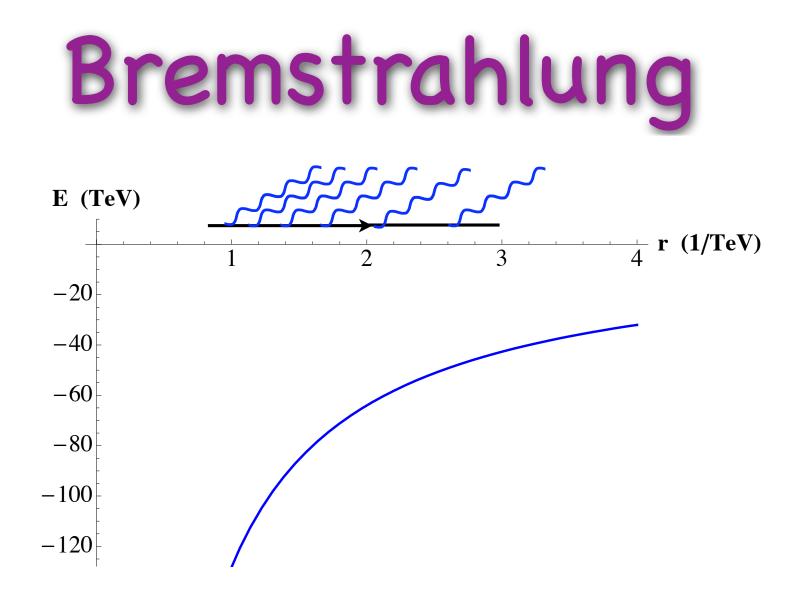




ATLAS has a trigger for monopoles

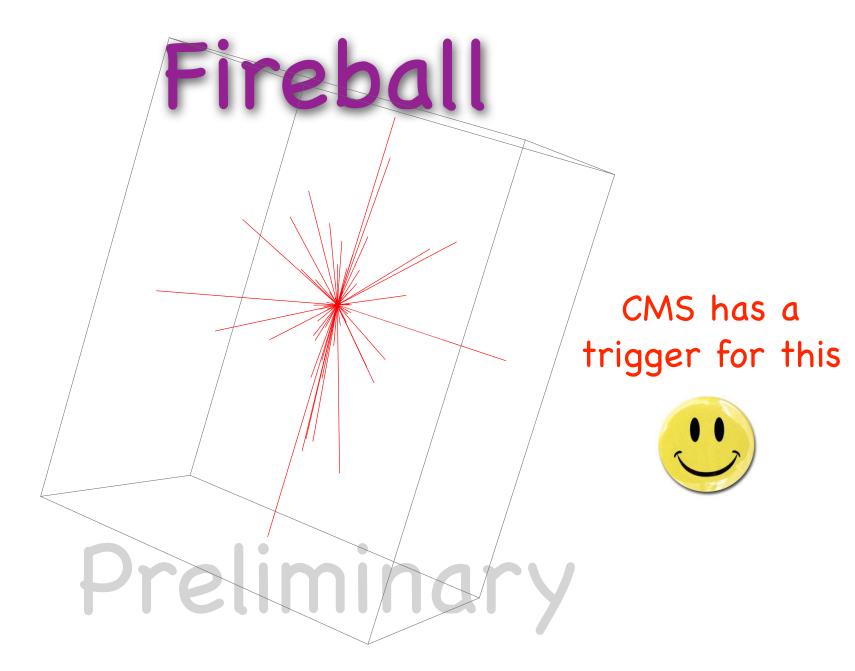
but it won't work

CMS does not



Andersen, Grojean, Weiler, JT

Annihilation Heisenberg and Euler, Z. Phys. 98, 714 (1936) arXiv:physics/0605038



Andersen, Grojean, Weiler, JT

Conclusions

Monopoles are still fascinating after all these years

monopoles can break EWS and give the top quark a large mass

monopole phenomenolgy is pushing at the boundaries of MC4BSM

$$e_{lpha}
ightarrow \sigma_{lpha\dot{lpha}}^2 e^{\dagger\dot{lpha}}$$
 $(q,g)
ightarrow (-q,g)$
 $(q,-g)
ightarrow (-q,-g)$

 $\mathcal{L}_{\rm int} = -\chi^{\dagger} \left(q A_{\mu} + \tilde{g} B_{\mu} \right) \bar{\sigma}^{\mu} \chi - \psi^{\dagger} \left(q A_{\mu} - \tilde{g} B_{\mu} \right) \bar{\sigma}^{\mu} \psi$

Witten

effective charge shifted

$$\mathcal{L}_{\rm free} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$$

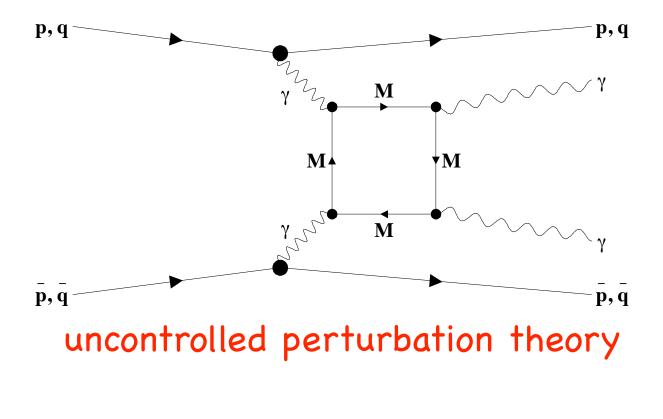
$$q_{\text{eff},j} = q_j + g_j \frac{\theta}{2\pi}$$

Phys. Lett. B86 (1979) 283

non-Abelian magnetic charge $(SU(2)_L \times U(1)_Y)/Z_2$

 $Q = T^{3} + Y$ Y integer $e^{2\pi i Q} = e^{2\pi i T^{3}} e^{2\pi i Y}$ $= \operatorname{diag}(e^{i\frac{1}{2}2\pi}, e^{-i\frac{1}{2}2\pi})$ = Z

Z element of center of SU(2)



Ginzburg, Schiller hep-th/9802310