Understanding the Physics of Heavy Ion Collisions

Carlos A. Salgado Universidade de Santiago de Compostela

Rencontres de Blois 2011 [Including news from Quark Matter 2011 - Last week]

<u>carlos.salgado@cern.ch</u> <u>http://cern.ch/csalgado</u>

QCD:An apparently simple lagrangian hides a plethora of **emerging phenomena**

Asymptotic freedom; confinement; chiral symmetry breaking; mass generation; new phases of matter; a rich hadronic spectrum; etc

Some of these properties appear at high-temperatures or densities

Data recorded: 2010-Nov-08 10:22:07:828203 GMT(11:22:07 CES Run / Event: 150431 / 541464

> High-energy heavyion collisions are the experimental tools to access (some of) these properties

Rencontres de Blois 2011

QCD at high-temperatures

Two broken symmetries in the QCD vacuum confinement

chiral symmetry is broken

 \Rightarrow Restored at high-temperatures \leftarrow asymptotic freedom

Rencontres de Blois 2011

Towards the highest energies

SPS@CERN - Fixed target

pA, SU, PbPb - 90's

 $\sqrt{s} \simeq 20 \mathrm{AGeV}$

Rencontres de Blois 2011

Towards the highest energies

Rencontres de Blois 2011

Towards the highest energies

Rencontres de Blois 2011

Experimental access to different medium densities and geometries
 Normally computed in a (probabilistic) geometrical model by Glauber

Experimental access to different medium densities and geometries
 Normally computed in a (probabilistic) geometrical model by Glauber

Experimental access to different medium densities and geometries
 Normally computed in a (probabilistic) geometrical model by Glauber

Experimental access to different medium densities and geometries
 Normally computed in a (probabilistic) geometrical model by Glauber

What do we expect to learn?

What is the structure of the hadrons at high energy? \rightarrow color coherence effects in particle production. Is the created medium thermalized? How? \rightarrow presence of a hydrodynamical behavior. What are the properties of the produced medium? \rightarrow identify signals of the presence of a medium in wellcontrolled observables.

Understanding heavy-ion collisions 7

Initial state: Saturation of partonic densities

(Color Glass Condensate)

Understanding heavy-ion collisions 8

Initial state: Saturation of partonic densities

(Color Glass Condensate)

Rencontres de Blois 2011

Checks of hydrodynamics (thermalization)

Rencontres de Blois 2011

The essential measurement for hydro

Rencontres de Blois 2011

The essential measurement for hydro

Initial conditions at thermalization time need to be given (ex. CGC)

Ideal fluid behavior

Rencontres de Blois 2011

Higher harmonics

With high precision data, higher terms in the expansion identified
 For a symmetric medium odd terms are 0
 [More in the talk
 by C. Loizides]

$$\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\phi - \phi_n\right)\right]$$

 \Rightarrow Will allow precise tests of hydro

Higher harmonics

With high precision data, higher terms in the expansion identified
 For a symmetric medium odd terms are 0
 [More in the talk
 by C. Loizides]

Rencontres de Blois 2011

Hard Probes

Long distance terms modified by the presence of medium

- Nuclear PDFs and new (non-linear) evolution equations
- Probes of hot matter created in the interaction
- EW processes (no hadronization) used as benchmark

$$\sigma^{AB \to h} = \underbrace{f_A^i(x_1, Q^2) \otimes f_B^j(x_2, Q^2)}_{\text{Nuclear PDFs}} \otimes \sigma(ij \to k) \bigotimes D_{k \to h}(z, Q^2) \xrightarrow{\text{Hadronization}}_{J/\Psi \text{ paradigmatic example}}$$

If you know two ingredients you can extract the other

[Tom LeCompte yesteday's talk]

Rencontres de Blois 2011

Nuclear PDFs

 \Rightarrow Initial conditions and error analysis for different NLO sets

- \Rightarrow Large uncertainties especially for gluons smaller at large virtuality
- \Rightarrow Notice that parametrization bias effects are present
 - Bands to be considered as lower bounds

Quarkonia suppression

- Simple intuitive picture [Matsui & Satz 1986]
 - Potential screened at high-T
 - Bound states not possible
 - Suppression of J/Psi in nuclear collisions

However, interpretation of the data is not clear

- J/Psi suppressed also in pA (on top of nPDFs)
- Not good theoretical control over the suppression
- (Already J/Psi suppression not well understood in pp)
- Could LHC improve the situation?

Quarkonia at the LHC

Different quarkonia states have different suppression

Lattice QCD suggest that IS quarkonia states melt at $T \sim 2T_c$ Excited states melt at $T \sim T_c$

[Nigel Glover yesterday's talk]

ELPHI Interactive Analysis

Experimental definition involves jet finding algorithms

22222

Rencontres de Blois 2011

ELPHI Interactive Analysis

Interactive Analysi

Jet quenching at RHIC

Photons don't interact (no effect) quarks and gluons do (suppression)

Very large energy loss - large jet quenching parameter

 Image dense partonic system

Jet quenching at RHIC

Photons don't interact (no effect) quarks and gluons do (suppression)

Inclusive jets are suppressed

In central collisions, only 1/2 of the jets are observed for two radius R [ATLAS 2010 - B. Cole QM2011]

Need to understand proton-proton reference

Observed jets are biased - is an unbiased measurement possible in HI?

Di-jet asymmetry at the LHC

 $\Rightarrow \text{ Energy imbalance between two most energetic jets: } A_j = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$ [ATLAS 2010 - B. Cole QM2011; CMS similar results]

Strong energy loss - points to a very dense partonic system

Di-jet asymmetry at the LHC

Azimuthal distribution of two most energetic jets [CMS 2011 - C. Roland QM2011; ATLAS similar results]

No strong change with respect to the vacuum jets

Di-jet asymmetry at the LHC

Rencontres de Blois 2011

A theory of jets in the medium

(Joon) 0000000

In-medium parton shower **not known** from QCD

Until recently only medium modification off single emitter computed

But coherence among different emitters is essential in the vacuum case:

ordering variables

Rencontres de Blois 2011

Antenna emission in vacuum (QCD or QED)

Building block of parton showers in vacuum. Taking quark as reference:

Rencontres de Blois 2011

Antenna radiation in medium

Very striking result found in the medium [Mehtar-Tani, Salgado, Tywoniuk 2010]
 Strict large angle emission - anti-angular ordering in soft limit

For an opaque medium, two vacuum-like de-coherent spectra
 Soft emission at large angle. Promising tool for in-medium shower
 Memory loss effect: radiation independent on initial color config.

Collisions at the TeV scale imply completely new opportunities

Rencontres de Blois 2011

First Z's measured in nuclear collisions

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

Rencontres de Blois 2011

Summary

Build with LHC nuclear collisions at the TeV for the first time

- Access to the small-x region of the wave function
- Large virtualities: jets, EW bosons, etc...
- Created medium (RHIC+LHC) very dense
 - Ideal fluid behavior

- Higher statistics and new tools
 - Will allow to characterize the medium properties with unprecedented precision
 - Is it a liquid? Strongly coupled? Are quasiparticles the relevant degrees of freedom?..

Rencontres de Blois 2011