Via Lactea 2 (2008) http://www.ucolick.org/~diemand/vl

Dark Matter - Direct Searches

Rencontres de Blois 2011 02-May-2011

Uwe Oberlack

80 kpc

Outline

JGU

- Dark Matter Evidence & Models
- Direct Detection Technique
- Status of DM Direct Detection
 and discussion of selected experiments
- Future
- Summary

Dark Matter Detection Methods

- Astrophysics / Cosmology: Measurement of Gravitational Effects.
 - Rotation curves of spiral galaxies
 - Orbital velocities of galaxies in clusters (Zwicky 1933)
 - Colliding clusters (Bullet cluster)
 - Large scale structure, lensing
- Direct Detection:
 - WIMP scattering
 - Axion searches, ...
- Indirect Detection: from annihilation or decay
 - Cosmic rays PAMELA positrons?
 Fermi, ATIC, HESS electrons? Anti-deuterons?
 - Neutrinos
 - ► Gamma-rays
- Accelerator-based Creation and Measurement:
 - Missing energy / momentum (+ jets + lepton(s))
 - Search for (possibly) DM-related particles (SUSY, extra dimensions, dark photon)

Evidence for Dark Matter at Different Astrophysics Scales

Spiral Galaxies

Scale: ~10²¹ m

Rotation Velocity km per sec

2003

decelerating

1.0ESA

Riess et al.

2004

Rotation curves remain flat far beyond the edge of the visible disk.

Galaxy Clusters

Scale: ~10²² m

1.4

1.0

0.8

0.6

0.4

0.2

0.2

0.6

 Ω_{Λ}

- Orbital velocities of galaxies (Zwicky's discovery in 1933)
- X-ray gas
- Gravitational lensing

The Dark Universe - Scale: ~10²⁶ m¹²

- CMB: Ω_{tot}=1.0
- CMB, BBN: Ω_b=0.045
- Galaxy clusters: $\Omega_m = 0.27$
- Supernovae Ia: $\Omega_m \Omega_{\Lambda}$
- Structure formation: cold DM

Uwe Oberlack

What do we know about Dark Matter?

- Gravitationally interacting
 - How we know about Dark Matter
- Stable or long-lived
 - Ω_{DM} = 0.23
- Cold or warm not hot (relativistic)
 - Structure formation, CMB
- Non-baryonic
 - CMB, Big Bang nucleosynthesis
- Electrically neutral
 - ► <u>Dark</u> Matter

The Standard Model

Three Generations of Matter

Dark Matter requires physics beyond the Standard Model.

What do we know about Dark Matter?

- Gravitationally interacting
 - How we know about Dark Matter
- Stable or long-lived
 - Ω_{DM} = 0.23
- Cold or warm not relativistic
 - Structure formation, CMB
- Non-baryonic
 - CMB, Big bang nucleosynthesis
- Electrically neutral
 - <u>Dark</u> Matter
- Additional constraints from accelerator searches, direct and indirect searches.

This still leaves many options.

~ 50 orders of magnitude

Where to start? Look for "well motivated" candidates.

The Appeal of Weakly Interacting Massive Particles (WIMPs): A Thermal Relic at just the Right Density

Blois - June 2, 2011

Outline

JG

- Dark Matter Evidence & Models
- Direct Detection Technique
- Status of DM Direct Detection:
 - with discussion of selected experiments
- Future
- Summary

WIMP Dark Matter Direct Detection

- Scattering of WIMPs χ off of nuclei A.
 - elastic or inelastic?
 - ▶ spin-independent (~A²) or spin-dependent?
- Energy spectrum:

$$\frac{dR}{dE} = \frac{\rho_{\chi} \sigma_s}{2 m_{\chi} \mu^2} |\mathbf{F} (E)^2| \int_{v_{min}}^{v_{esc}} f \frac{(\mathbf{v}, t)}{v} d^3 v$$
$$f (\mathbf{v}, t) \propto \exp\left(\frac{-(\mathbf{v} + \mathbf{v}_E(t))^2}{2 \sigma_v^2}\right)$$

$$m_{\chi} \sim 10 - 10^4 \text{ GeV/c}^2, \ \mu = (m_{\chi} m_n)/(m_{\chi} + m_n)$$

- ▶ v_x ~ 230 km/s
- "Standard" spherical halo: Featureless recoil spectrum <E> ~ O(10 keV)
- ► ρ_x/m_x : local number density of WIMPs
- \blacktriangleright σ_{s} cross section per nucleus.

Typical rate $< 10^{-2}$ events / kg / day

Blois - June 2, 2011

Backgrounds in Direct DM Search

Cross-sections are *very* small: $<10^{-43}$ cm² or 10^{-7} pb (spin-independent) Without background, sensitivity \propto (mass × exposure time)⁻¹

With background subtraction \propto (M t)^{-1/2} until limited by systematics.

Backgrounds:

Gamma-rays & beta decays:

~100 events/kg/day Need very good β and γ background discrimination. Shielding: low-activity lead, water, noble liquids (active), liquid N₂, ...

Neutrons from (α, n) and spontaneous fission (concrete, rock, etc.):

~ 1 event/kg/day (LNGS) Neutron moderator (polyethylene, paraffin, ...)

Neutrons from CR muons:

Rate depending on depth. μ -veto, n-veto, shielding

α decays from Rn daughters, ...

DM Detector Overview Detection Principles

JG

Outline

- Dark Matter Evidence & Models
- Direct Detection Technique
- Status of DM Direct Detection:
 - with discussion of selected experiments
- Future
- Summary

Part 1: Signals ?

DAMA/LIBRA Annual Modulation

R. Bernabei et al. arxiv:0804.2741, arxiv:1002.1028

- ~250 kg of Nal counters
- 1.17 ton-year exposure (2010)
- Modulation in 2-6 keV single hits: 8.9 σ
- Mostly in 2-4 keV, ~0.02 cts/d/kg/keV
- December Total single rate ~1 cts/d/kg/keV
 - Standard DM distribution: ~5% modulation
 - Period & phase about right for DM.
 - No annual modulation in 6-14 keV.
 - No annual modulation in multiple hits. (statistics?)
 - DM detection?
 - Conflict with other experiments in standard scenarios that test the larger steady state effect!

Uwe Oberlack

Freese et al. PRD 88

60° Kmis 30 km/s June

Drukier, Freese, Spergel PRD 86

Low Mass WIMPs? Inelastic Dark Matter? Luminous DM?

... or some yet to be understood detector or background effect?

CoGeNT: What are these excess events?

- Single P-type point contact (PPC) Germanium detector:
 - ► 440 g mass, 330 g fiducial (CDMS: 250 g per detector)
 - Low electronic noise, hence low threshold (0.4 keVee)
- Located in Soudan mine (2100 mwe)
- Passive shield + Muon veto

CoGeNT: What are these excess events?

- Single P-type point contact (PPC) Germanium detector:
 - ► 440 g mass, 330 g fiducial (CDMS: 250 g per detector)
 - Low electronic noise, hence low threshold (0.4 keVee)
- Located in Soudan mine (2100 mwe)
- Passive shield + Muon veto
- Exposure: 18.5 kg d

56 days

0.33 kg

counts / 0.125 keV

 Data meanwhile available: 145 kg d (evidence for annual modulation?)

Low Mass WIMPs?

... or some yet to be understood detector or background effect?

CRESST II: Phonons + Scintillation

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

light + phonons (scintillating crystals)

Max-Planck-Institut München, TU München Universität Tübingen, Oxford University, Gran Sasso

<text>

CRESST II: What are these excess counts?

- Data from 9 CaWO₄ detectors
- Exposure: 730 kg d
- 57 events observed in O-band (in allen Detektoren)
- Acceptance region (detector specific): O-band in ~10-40 keV
- Background estimated from sidebands:
 - α-events: 9.3
 - neutrons (generate mostly O-recoils): 17.3
 e/γ leakage: 9.0
- Excess events not explained by modeled background: 4.6 σ (?)
- Hint of low-mass WIMPs?

best fit:
$$M_{\chi} \sim 13 \text{ GeV/c}^2$$
,
 $\sigma \sim 3 \times 10^{-5} \text{ pb} = 3 \times 10^{-41} \text{ cm}$

- confidence region?
- Systematic background uncertainty?
- Further background reduction planned.

Part 2: Limits

CDMS-II: Phonons + Charge (Cryogenic Germanium)

- Located at Soudan mine (Minnesota)
- Ge crystals operated at ~40 mK
- Fast phonon read-out with Tungsten Transition-edge sensors (TES)
 - direct measurement of nuclear recoil energy
 - SQUID Readout
- Low-voltage drift for charge read-out
 - e.m. background suppression with charge / phonon ratio
- Suppression of surface events with phonon timing signal Phonon-

CDMS-II Spin-Independent Limit

- 2 events observed after all cuts.
- Pre-opening background estimate: 0.6 events
- Revised estimate: 0.8 +/- 0.1 events
- 23% chance for background.
- CDMS-II completed.
- Next phase: Super-CDMS (15 kg) at Soudan mine construction and first operation in parallel

Recoil Energy (keV)

Blois - June 2, 2011

Recoil energy (keVee)

CDMS Low Threshold Limit

Edelweiss-2

(Phonons + Charge: Cryogenic Ge)

- Simultaneous measurement
 - Heat @ 18 mK with Ge/NTD (neutron transmutation doped) thermometer
 - Ionization @ few V/cm with AI electrodes
- Event by event identification of recoil type by ratio Ionization / E_{recoil}

EDELWEISS

Experience pour DEtecter Les Wimps En Site Souterrain CEA, CNRS, Oxford, Dubna, Sheffield, Karlsruhe

Edelweiss-2 – Interleaved Electrodes

PLB 681 (2009) 305-309 [arXiv:0905.0753]

- Modification of E field near the surfaces with interleaved electrodes
- Use 'b' and 'd' signals as vetos against surface events
- Separation of surface and volume events.
- Beta rejection ~ 10⁻⁵
- Substantial improvement over discrimination based on phonon timing (CDMS)

Edelweiss-2 WIMP Search Result 2009-2010 data

- 5 events observed
 - ► 4 with E<22.5keV
 - ► 1 with E=172keV
- Expected background: ~ 3 events

 $\sigma_{_{\rm SI}}$ < 4.4 x 10⁻⁸ pb (90% CL) for M_y = 85 GeV/c²

The XENON Program

Collaboration: US (3)+ Switzerland (1) + Italy (2) + Portugal (1)

+ Germany (3) + France (1) + Netherlands (1) + Israel (1) + China (1)

GOAL: Explore WIMP Dark Matter with a sensitivity of $\sigma_{s_1} \sim 10^{-47}$ cm².

Requires ton-scale fiducial volume with extremely low background.

CONCEPT:

- Target LXe: excellent for DM WIMPs scattering.
 - Sensitive to both axial and scalar coupling.
- Detector: two-phase XeTPC: 3D position sensitive, self-shielding.
- Background discrimination: simultaneous charge & light detection (>99.5%).
- PMT readout with >3 pe/keV. Low energy threshold for nuclear recoils (~5 keV).

PHASES:

R&D	XENON10	XENON100	XENON1T
Start: 2002	2005-2007	2008-2011+	2011-2015
- - - (Proof of concept. Total mass: 14 kg 15 cm drift. Best limit in '07: o _{si} ~10 ⁻⁴³ cm ²	Dark Matter run ongoing. Total mass: 170 kg 30 cm drift. 2011: $\sigma_{sl} \sim 7 \times 10^{-45} \text{ cm}^2$ Goal: $\sigma_{sl} \sim 2 \times 10^{-45} \text{ cm}^2$	Technical design studies. Total mass: ~2.5 t 90 cm drift. Goal: $\sigma_{sl} \sim 3 \times 10^{-47} \text{ cm}^2$

Uwe Oberlack

XENON100 (2008-2011+)

- 100 times lower background than XENON10
 - Material screening
 - Active LXe Veto
 - Upgrade of XENON10 shield (Cu, water)
 - Cryocooler/Feedthroughs outside shield
 - Low activity stainless steel
 - LXe self-shielding
- ~7 times larger target mass
 - ► 62 kg in target volume, 165 kg total LXe
- New PMTs with lower activity and high QE
- Improved electronics, grids, ...
- Gamma & neutron calibrations.
- DM search Jan June 2010.
 Next run started ~2 months ago.

Uwe Oberlack

Blois - June 2, 2011

XENON100: The Lowest Background Dark Matter Detector

Rate [events/keV/kg/day]

The Liquid Xenon Dual Phase TPC Ionization + Scintillation

- Wimp recoil on Xe nucleus in dense liquid (2.9 g/cm³)
 → Ionization + UV Scintillation
- Detection of primary scintillation light (S1) with PMTs.
- Charge drift towards liquid/gas interface.
- Charge extraction liquid/gas at high field between ground mesh (liquid) and anode (gas)
- Charge produces proportional scintillation signal (S2) in the gas phase (10 kV/cm)

- 3D position measurement:
 - X/Y from S2 signal. Resolution few mm.
 - Z from electron drift time (~1 mm).

Background Discrimination in Dual Phase Liquid Xenon TPC's

Ionization/Scintillation Ratio S2/S1

3D Position Resolution: fiducial cut, singles/multiples

XENON100 – 2010 Run

arXiv:1104.2549

- 100.9 live days, exposure: 1471 kg×d
- Energy window: 4 30 PE S1 / 8.4 44.6 keVnr
- Observed after all cuts: 3 events. Expected background: (1.8 ± 0.6) events (25% probability)
- Profile Likelihood limit based on side-bands from calibration

XENON100 – 2010 Run

arXiv:1104.2549

- 100.9 live days, exposure: 1471 kg×d
- Energy window: 4 30 PE S1 / 8.4 44.6 keVnr
- Observed after all cuts: 3 events. Expected background: (1.8 ± 0.6) events (25% probability)
- Profile Likelihood limit based on side-bands from calibration
- Best SI limit. Minimum $\sigma_s = 7.0 \times 10^{-45} \text{ cm}^2$ @ 50 GeV/c²
- SUSY (CMSSM) parameter space further constrained in updated models incl. LHC limits.
- Strong tension with low mass WIMP interpretation for DAMA, CoGeNT, CRESST
- Inelastic DM as explanation for DAMA annual modulation ~ ruled out.

- compatible with SI limits at energy splitting ~90 – 140 keV and WIMP masses $50 - 140 \text{ GeV/c}^2$.
- XENON100 rules this scenario out (for Na, I).
- Caveat: WIMP scattering off heavy TI (A=204) 10⁻³ abundance in Nal(TI) – fine-tuned parameters survive for Xe target. Use W in CRESST?

Energy [keVnr]

Mass (GeV)

130

140

150

 $m_{\gamma}/GeV/c^2$

Outline

JG

- Dark Matter Evidence & Models
- Direct Detection Technique
- Status of DM Direct Detection:
 - with discussion of selected experiments
- Future
- Summary

Future Developments

Noble Liquids

- LXe:
 - XENON100 (taking data)
 - XMASS (LXe scint., construction completed)
 - LUX (LXe, under construction)
 - XENON1T (start construction 2011)

- WARP (commissioning phase)
- ArDM (moving underground)
- Mini-Clean (scint., under construction)
- DEAP-3600 (under construction)

Cryogenic Germanium

- USA:
 - Super-CDMS (under construction)
 - ► GeoDM (R&D)
- Europe:
 - Edelweiss-3 (under construction)
 - ► EURECA (R&D) possible combination of cryogenic crystals and Ge

Superheated liquids

- COUPP (60 kg under construction)
- ▶ PICASSO

The Future of Direct Dark Matter Searches (next ~5 years)

Spin-independent sensitivity

measured: solid expectations: dashed

COUPP may enter the picture if acoustic background suppression works very well

Summary & Outlook

- Progress in Dark Matter direct searches:
 - Sensitivity advanced by 2-3 orders of magnitude in the last decade, increasing pace.
 - Noble liquid detectors are starting to set the pace in sensitivity.

• Exciting new results in the last year:

 CoGeNT, CRESST excess events & DAMA/LIBRA annual modulation: Low mass WIMPs with σ_S ~ 10⁻⁴⁰ cm² @ ~7 GeV/c²? Or poorly understood backgrounds?

New XENON100 result April 2011:

- Upper limit on (spin-independent) WIMP-nucleon cross-section $\sigma_s = 7.0 \times 10^{-45} \text{ cm}^2$ @ 50 GeV/c²
 - ~ Factor 5 improvement over previous limits.
- XENON100 challenges the low mass WIMP interpretation. (+ low threshold CDMS)
- Inelastic DM (nearly) ruled out as explanation for annual modulation in DAMA/LIBRA.

The future looks exciting:

- Rapid progress at the LHC: Limits on new physics improving fast. Will we see SUSY soon?
- New results in indirect searches: but fundamental problems of background subtraction remain (so far).
- Direct + indirect searches + LHC:

We will know much more about DM within the next 5 years. If DM consists of WIMPs we will likely have found signs of them.