MINOS Results

Rashid Mehdiyev For the MINOS collaboration

University of Texas, Austin, TX, USA

23rd Rencontres de Blois May, 31, 2011

Neutrino phenomenology

Neutrino propagation and mixing

3

Neutrino born as one weak state flavor, turns into a mixture of weak states as

How we obtain oscillations results?

• Look for v_{μ} disappearance as a function of neutrino energy.

4

- Use Near Detector to predict un-oscillated spectrum at Far Detector.
- Compare predictions with measured spectrum to extract oscillation parameters.

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267\Delta m^2 L/E)$$

Example: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$

MINOS

- Uses intense beam facility at NuMi, Fermilab
- Two detectors (to mitigate systematics effects)
- Two parabolic magnetic horns, Movable target (→Energy spectrum)
- Long baseline neutrino oscillation experiment

Near Detector at Fermilab

- measure beam composition
- energy spectrum

Far Detector in Soudan, MN

 search for and study neutrino oscillations

MINOS Detectors

Tracking sampling calorimeters

- steel absorber 2.54 cm thick (1.4 X₀)
- scintillator strips 1 cm thick, 4.1 cm wide (1.1 Moliere radius)
- 1 GeV muons penetrate 28 layers

Magnetized

6

- distinguish μ⁺ from μ⁻
- muon energy from range/curvature

(1.3 T)

Functionally equivalent

- same segmentation
- same materials
- same mean B field
- massive
 ND: 1 kT
 FD: 5.4 kT

Neutrino mode

Anti-neutrino mode

8

By reversing the current in the v_{μ} Spectrum 45 Flux × σ_{cc} (Arbitrary Units) horns we can focus π 's and K's, \overline{v}_{μ} Spectrum 40 **Monte Carlo** creating an anti-neutrino beam. 35 Horns focus π , *K*-30 However, due to a smaller cross-• 25 $\bar{v}_{\mu} = 39.9\%$ section for anti- v_{μ} and less π 's 20 $v_{\mu} = 58.1\%$ 15 off the target, the rate of anti- v_{μ} $v_e + \overline{v}_e = 2.0\%$ 10E events is smaller. There are lots of high energy v_{μ} 's. 25 30 E_{true} (GeV) 10 15 20 30 **Decay Pipe Focusing Horns** Target 2 m π^+ $\boldsymbol{\nu}$ 120 GeV π^{-} protons 15 m 675 m 30 m Rashid Mehdiyev

MINOS event topologies

MINOS Results

Beam content

 v_{μ} disappearance in v_{μ} beam $v_{\mu} = 91.7\%$ Anti- v_{μ} disappearance in v_{μ} beam $v_{e} + \bar{v}_{e} = 1.3\%$ Anti- v_{μ} disappearance in anti- v_{μ} beam $\bar{v}_{\mu} = 39.9\%$ v_{μ} disappearance in anti- v_{μ} beam $\bar{v}_{\mu} = 58.1\%$ v_{μ} disappearance in anti- v_{μ} beam $v_{e} + \bar{v}_{e} = 2.0\%$

v_{μ} disappearance in MINOS: Far Detector spectra

Disfavored decay (at 7σ) and decoherence (at 9σ)

Phys Rev Lett.106.181801

11

v_{μ} disappearance in MINOS: Fit results

MINOS Results

Beam content

 $\bar{v}_{\mu} = 39.9\%$

 $v_{\mu} = 58.1\%$

 ν_{μ} disappearance in ν_{μ} beam

Anti- v_{μ} disappearance in v_{μ} beam

Anti- v_{μ} disappearance in anti- v_{μ} beam

 v_{μ} disappearance in anti- v_{μ} beam $v_{e} + \overline{v}_{e} = 2.0\%$

What are we trying to answer?

Are survival probability of those are the same or not?

Are atmospheric neutrino oscillation parameters the same or, indeed, they are different ?

14

Anti- v_{μ} results in anti- v_{μ} beam

Rashid Mehdiyev

arXiv:1104.0344

Comparison to v_{μ} results

Head to head

Which way would that go ?

With increase of statistics of anti- v_{μ} running (in analysis now!)

MINOS Results

Beam content

 v_{μ} disappearance in v_{μ} beam Anti- v_{μ} disappearance in v_{μ} beam Anti- v_{μ} disappearance in anti- v_{μ} beam $v_{\mu} = 39.9\%$ $v_{\mu} = 58.1\%$ $v_{\mu} = 39.9\%$ $v_{\mu} = 58.1\%$

Anti- v_{μ} disappearance in MINOS:

Far Detector spectra

MINOS 90% C.L. on v_{μ} oscillations, from analysis of the anti-neutrino component In MINOS neutrino beam

Summary

MINOS continues providing the important neutrino oscillations parameters:

• most precise neutrino oscillations data (based on 7.25x10²⁰ POT).

$$\left|\Delta m^2\right| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2,$$

 $\sin^2(2\theta) > 0.90$

 first direct anti-neutrino oscillation parameters (based on 1.7x10²⁰ POT) in dedicated anti-neutrino running mode.

(90% CL)

 $\left|\overline{\Delta m^2}\right| = 3.36^{+0.46}_{-0.40}(stat) \pm 0.06(syst) \times 10^{-3} \text{eV}^2,$

 $\sin^2(2\overline{\theta}) = 0.86^{+0.11}_{-0.12}(stat) \pm 0.01(syst)$

(90% CL)

obtained new anti-neutrino results in a neutrino running mode.
 These results are consistent with the other MINOS anti-neutrino results.

MINOS observes some tension between neutrino and anti-neutrino oscillation parameters.

- MINOS is increasing statistics in the anti-neutrino dedicated beam
- Persistence of the difference may be intriguing.

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab Goias • Harvard • Holy Cross • IIT • Indiana • Iowa State • Minnesota-Twin Cities Minnesota-Duluth • Otterbein • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

Back up slides

MINOS Detectors

- Near Detector
 - 1 kton

24

- 95 m depth
- 1 km from source

Far Detector
5.4 ktons
713 m depth
735 km from source

NuMi beam performance

2010 ν_{μ} analysis improvements

- 2x statistics increase
- new event selection to increase efficiency
- Improved shower energy resolution
- Separate fits in the energy resolution bins
- Inclusion of events which have origin outside of FD fiducial volume.

Event requirements

- •

28

Anti-neutrinos in the v_{μ} beam

- Charge cut to select positively charged µ tracks,
- **3** other variables to improve (efficiency x purity) of the selection.

Minos+?

Would allow to reduce statistical uncertainty from 25% to 5% within 3 years of more running (2012-2015). **Physics Goals:**

- Measure of $\sin^2(2\Theta)$ and Δm^2 with higher precision.
- The same for sin²($2\overline{\Theta}$) and $\Delta \overline{m}^2$
- Study high energy neutrinos
- Search for sterile neutrinos
- Non-standard interactions

Oscillation parameters reach

After one year of MINOS+:

- MINOS continues to dominate Δm^2 measurement
- NOvA is 50% complete

After three years of MINOS+ running:

- NOvA complete after first 18 months
- Significant improvements to parameters' accuracy over 3 years period due to MINOS+ running.

30

MINOS+ would be very supplementary to NOvA and provides unique opportunity to study medium energy neutrinos.

Beam energy change achieved by sliding the target in/out of Horn 1

Predictions from ν_{μ} in ν_{μ} beam mode

Predictions from ν_{μ} in $\bar{\nu}_{\mu}$ beam mode

Anti- v_{μ} event requirements in v_{μ} optimized beam

Besides a charge cut, three additional selections used.

Anti- v_{μ} selections in anti- v_{μ} optimized beam

High efficiency and purity

What MINOS does

- High precision measurement of Δm^2_{23} in Charged Current analysis
 - Implying that muon neutrino in MINOS disappear into tau neutrino, MINOS precisely measure flavor oscillation parameters $(\nu_{\mu} \leftrightarrow \nu_{\tau})$
 - $\circ~$ This provides a solid discrimination against alternative models such as ν decay, decoherence etc
- Directly compare v vs anti-v oscillation parameters.
- Favor or disfavor 4 flavor neutrino theory (with sterile $\boldsymbol{\nu}$) in Neutral Current (NC) analysis.
- Study subdominant $\nu_{\mu} \leftrightarrow \nu_{e}$ oscillations \circ Attempt to set limits on θ_{13}
- Study ν interactions and cross sections using the very high statistics accumulated in Near Detector for number of years.

 $\circ~$ Coherent Neutral Current $\pi^{0}~$ production.

- Cosmic Ray Physics with both detectors
- Atmospheric Neutrino interactions
- Seasonal variation of neutrino fluxes.

Neutrino production cross-sections

Phys. Rev. D 81, 072002 (2010)

39

Non-standard interactions?

Do we see neutrino non-standard interactions in matter already?

The amplitude and position of survival probability is different for neutrino and anti-neutrino?

Modified survival probability (with maximal mixing):

$$\begin{split} P(\nu_{\mu} & \rightarrow \quad \nu_{\mu}) \simeq 1 - \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E} \pm \epsilon_{\mu\tau} V L \right) \\ & = \quad 1 - \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \pm \epsilon_{\mu\tau} V L \right) \end{split}$$

J.Kopp, P.Machado, S.Parke, arXiv:1009.0014 [hep-ph]

