Cecilia Lunardini Arizona State University RIKEN BNL Research Center

SUPERNOVA NEUTRINOS AT FUTURE DETECTORS

Recontres de Blois, June 2011

20+ years back: the impact of SN1987A

What did we learn?

The only SN neutrino data

February 23, 1987: SN1987A

Plot from: http://astro.berkeley.edu/~bmetzger/sn1987a.html

~ 1 Kt water/scintillator detectors

- Inverse beta decay: anti- $v_e + p \rightarrow n + e^+$

Bionta et al., PRL 58,1987, Hirata et al., PRL 58,1987, Alekseev et al. JETP Lett. 45 (1987)

First confirmation of theory

- Luminosity ≈ total energy budget
 - Energy emitted is of *gravitational* nature:

 $L_v \approx G M_f^2 / R_f - G M_i^2 / R_i \approx 3 \ 10^{53} \text{ ergs } \checkmark$ (R_f ~ 10 Km)

- Energy spectrum: ~ *Fermi Dirac (thermal)* E ≈ 3.15 T ~ 15-20 MeV ✓
- Duration of neutrino burst ~ diffusion time
 Time ≈ (size²)/(mean free path) ~ 10 s ✓

Open questions

- Precision?
 - Time structure (accretion, cooling,)
 - Oscillations (MSW, neutrino-neutrino,..)
 - Model discrimination (Eq. of state, neutrino transport,...)
 - New physics
- Total energy?
 - All neutrino species
- What is typical?

The situation now: opening a new phase

New focus on supernovae

- Solar, atmospheric fluxes down to precision phase (~10-40%)
 - Time to approach more distant, more complex sources: supernovae, GRBs, Dark Matter, ...
 - Solar/atmospheric become backgrounds!
- New phase of detectors coming
 Larger (0.1 1 Mt) & more sensitive

The next generation

Liquid scintillator, 10-50 kt LENA, Hano Hano

LENA

Low-Energy Neutrino Astrophysics

LANNDD

DUSEL

Water Cherenkov, 0.3 -1 Mt HyperK , UNO, MEMPHYS, DeepTITAND

Liquid Argon, 10-100 kt LANNDD, GLACIER • Complementary designs:

- For neutrino channel: He + Pb (HALO)

http://www.snolab.ca/halo/detailedPhysics.html

– For all-flavor: noble gas TPC (NOSTOS)

Giomataris & Vergados, Phys.Lett.B634,2006

- For luminosity: Km³ ice/water (IceCUBE)

IceCUBE coll. , arXiv:0908.0441

Looking farther...

- 1 -5 Mt mass
 - ~ few Mpc reach → ~ 1 SN every decade!

Ando, Beacom & Yuksel, PRL95, 2005

... and in more detail

Events for Galactic SN	(K. Scholberg,	talk at Neutrino	2006, Sante Fe	, NM)
------------------------	----------------	------------------	----------------	-------

Detector	Type	Mass (kton)	Location	Events at $8.5 \ \rm kpc$	Status
Super-K[22]	H_2O	32	Japan	7000	Running
SNO[41]	D_2O	$1 (D_2O)$	Canada	400	Running until
		$1.4 (H_2O)$		450	end 2006
LVD[17]	$C_n H_{2n}$	1	Italy	200	Running
KamLAND[18]	C_nH_{2n}	1	Japan	300	Running
Borexino[20]	C_nH_{2n}	0.3	Italy	100	200x
Baksan[15]	C_nH_{2n}	0.33	Russia	50	Running
Mini-BooNE[12]	C_nH_{2n}	0.7	USA	200	Running
AMANDA/	Long string	0.4/PMT	South Pole	N/A	Running
IceCube[28]					Running
SAGE[42]	Ga	Russia	0.06	few	Running
Icarus[31]	LAr	2.4	Italy	200	200x
Daya Bay[43]	C_nH_{2n}	0.3	China	100	Proposed
SNO+[44]	C_nH_{2n}	1	Canada	300	Proposed
CLEAN[40]	Ne,Ar	0.01	Canada/USA?	30	Proposed
HALO[37]	Pb	0.1	Canada	40	Proposed
MOON[45]	¹⁰⁰ Mo	0.03	?	20	Proposed
$NO\nu A[46]$	C_nH_{2n}	20	USA	4000	Proposed
OMNIS[29]	Pb	2-3	USA?	>1000	Proposed
LANNDD[32]	LAr	70	USA?	6000	Proposed
MEMPHYS[49]	H_2O	440	Europe	>100,000	Proposed
UNO[48]	H_2O	500	USA	>100,000	Proposed
Hyper-K[47]	H_2O	500	Japan	>100,000	Proposed
LENA[50]	C_nH_{2n}	60	Europe	18,000	Proposed
HSD[51]	C_nH_{2n}	100	USA	30,000	Proposed

Themes for the future: what will we learn?

Timing

Pons et al., Phys.Rev.Lett.86,2001

- < 1 s: SASI (Standing Accretion Shock Instability)
 - Oscillations of shock front modulates
 neutrino luminosity
 - Probes large scale convection

Blondin, Mezzacappa & DeMarino, ApJ 584 Marek, Janka & Mueller, Astron. Astrophys. 496, 475 (2009) T. Lund, A. Marek. C.L., H.T. Janka & G. Raffelt, arXiv:1006.1889

v_e sensitivity

Detector type	process	Expected mass	Number of events (galactic SN)
Water Cherenkov	v _e (¹⁶ O, ¹⁶ F)e⁻	~1 Mt	<i>O</i> (10 ³)
Liquid Argon	v _e (⁴⁰ Ar <i>,</i> ⁴⁰ K)e⁻	<100 Kt	< O(10 ³)
Scintillator	v _e (¹² C, ¹² B)e⁻	< 50 kt	< O(10 ²)

Why are v_e important?

- Total energy of SN
 Eq. of state
- Neutronization/ deleptonization
 – e⁻ (p,n) v_e
- Oscillation effects
 - Neutrino mass spectrum
 - flavor mixings
 - progenitor type

Survival of neutronization burst in ONeMg Sne!

Duan et al., PRL. 100, 2008 C.L., B. Mueller, H.T. Janka PRD, 2008

Oscillations: spectral distortions

p = survival probability

Neutrino oscillations

- refraction frequency ≈ vacuum frequency
- Neutrino-neutrino, neutrino-electron scattering

High MSW: θ_{13} resonant dependence

- Unique resonance: $\sin^2 \theta_{13} \sim 1$ in matter if: $\Delta m_{31}^2/2E \sim 2^{1/2} G_F \rho/m_N$
- Realized for $\rho \sim 10^3 g \ cm^{-3}$

Dighe and Smirnov, Phys. Rev. D62, 2000 C.L. & A. Y. Smirnov, JCAP 0306, 2003 Sensitivity down to sin² θ₁₃~ 10⁻⁵ !

Plot from Nakazato et al., Phys.Rev.D7, 2008

Neutrino-neutrino: spectral swaps

- Step-like probability as function of energy
- Work in progress

Groups: Munich, San Diego, LANL, North Carolina S., Trieste, Bari, Orsay, Tata Inst., New Mexico U., Minnesota U., ...

Plot from Dasgupta et al., arXiv:1002.2943

• Still, a galactic SN might take a while...

Diffuse flux: everything and now

• Sum over all SNe in the universe

- Now: alternative to a galactic supernova!
 - Continuous flux, no waiting time
 - might be everyday physics in future!
 - ~20 events/year at Mt water Cherenkov

- **Everything**: probes the whole supernova population of the universe
 - What's typical?
 - Cosmological SNe
 - Diversity: Fe-core, ONeMg core, black hole core, ...

Cosmological rate of SNe

- *increases* with z
 - ~ 40% of flux from z>0.5

Example: failed SNe

- M > 25-40 M_{sun} , 9-22% of collapses
 - Too rare to expect a galactic one!
- Collapse *directly* into black hole, no explosion
- Neutrinos hotter and more luminous
 - <E> ≈ 20 MeV for all flavors

Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), t_{pb} [s T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008)

failed SNe may dominate!

- *10-100% effect* on diffuse flux
 - Spectral distortion

C.L., Phys. Rev. Lett., 2009, J. Keehn & C.L., arXiv:1012.1274

Wrap up

The post-solar phase: supernovae, etc..

- **~2020 : Discovery** *diffuse SN neutrino flux*
 - SN neutrinos become everyday physics
 - Complement SN1987A
 - Cosmological supernovae
 - Averaged over whole
 SN population

• No precision!

The post-solar phase: supernovae, etc..

- ~... 2100: Precision
 Galactic supernova
 - All flavor-detection
 - Model discrimination
 - Timing
 - Oscillation effects
 - New physics

Precision!

Data (sparse) vs theory..

• ~ 1 Kt water detectors

Bionta et al., PRL 58,1987, Hirata et al., PRL 58,1987, PRD 38,1988

 $sin^2\theta_{13} = 10^{-4}$

- Garching/ORNL
- Lawrence Livermore
- Arizona

5 parameters fit, with oscillations, marginalized (C.L., Astropart.Phys., 2006.)

High MSW: θ_{13} resonant dependence

• test tan² θ_{13} down to 10⁻⁵!

C. L. and A. Y. Smirnov, Nucl. Phys. B 616, 307 (2001), JCAP 0306, 009(2003);

A two population model: diffuse flux

C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009

$$\Phi(E) = \frac{c}{H_0} \int_0^{z_{max}} R_{cc}(z) \left[f_{NS} F_{\bar{e}}^{NS}(E(1+z)) + (1-f_{NS}) F_{\bar{e}}^{BH}(E(1+z)) \right]$$

$$\times \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$$

$$f_{NS} = 0.78 - 0.91,$$

$$\Omega_m = 0.3$$
 and $\Omega_\Lambda = 0.7$

 $\bar{p} = 0 - \cos^2 \theta_{12} \simeq 0 - 0.68$

anti- v_e survival probability (time averaged, constant in energy)

Upper limits and backgrounds

SuperKamiokande (Malek et al., PRL, 2003):

 $\Phi_{\bar{\nu}_e}(E > 19.3 \text{ MeV}) < 1.4 - 1.9 \text{ cm}^{-2} \text{s}^{-1}$ at 90%C.L.

Red dashed: Homestake Solid, grey: Kamioka

Progenitor: M=40 M_{sun}, from Woosley & Weaver, 1995

K. Nakazato et al., PRD78, 083014 (2008)

Larger energy window

Red dashed: Homestake Solid, grey: Kamioka

- NS only:
 - 12-29 MeV @Kamioka
 - 10–27 MeV @Homestake
- NS+BH:
 - 12-36 MeV @Kamioka
 - 10-32 MeV @Homestake

Stronger cosmological (z>1) contribution

Black hole forming: 58% (32%) above 10 MeV (20 MeV)

Neutron-star forming:

<30% (<15%) above 10 MeV (20 MeV)

failed SNe may dominate!

• Best case: "stiff" EoS, 22% failed SNe, maximum \bar{p}

• Best: ~ 100% enhancement

What about nearby failed SNe?

Extragalactic failed SNe at Mt detectors L. Yang & C.L., arXiv:1103.4628

- 2-3 events from ~4-5
 Mpc
 - S EoS, 20% failed SNe
- up to 1 per decade expected!
 - Comparable to normal SNe

Local rate from S. Ando, J. F. Beacom, and H. Yuksel (2005).

- Up to ~ 0.1 yr⁻¹ bursts (N≥2) can be detected
- Comparable to rate of normal SNe!

Background: $N \ge 2$ ok

- Invisible muons, atmospheric neutrinos
 λ=1855 yr⁻¹ (failed), λ=680 yr⁻¹ (normal)
- Accidental coincidence in Δt - $\omega_2 = \lambda^2 \Delta t$, $\omega_3 = \lambda^3 \Delta t^2$ ($\Delta t = 1 s$, 10s for failed, normal)

	DBHFC yr^{-1}	NSFC yr^{-1}
ω2	$0.10 \ yr^{-1}$	0.15
ω ₃	$6.4 \cdot 10^{-6}$	$3.1 \cdot 10^{-5}$

Concept	energy window (MeV)	detection processes	experiment (location)	fiducial mass (kt)
H_2O	19.3 - 30	$\bar{\nu}_{\mathbf{e}} (\mathbf{p}, \mathbf{n}) \mathbf{e}^+$	SK (Japan)	22.5
	[17.3 - 30]	$\nu_{e} ({}^{16}O, X)e^{-}$	DUSEL WC (USA)	300
		$\bar{\nu}_{e} ({}^{16}O, X)e^{+}$	MEMPHYS (Europe)	440
		$\nu_w(e^-, e^-)\nu_w$	Hyper-K (Japan)	500
		$ u_w(p,p) u_w$	Deep-TITAND (Japan)	$5 \ 10^3$
		$\nu_w({}^{16}O, X)\nu_w$		
$H_2O + Gd$	11.3 - 30	same as H_2O	GADZOOKS (Japan)	22.5
			DUSEL WC+Gd	300
			MEMPHYS+Gd	440
			Hyper-K+Gd	500
Scintillator	$\sim 8 - 30$	$\bar{\nu}_{\mathbf{e}} \; (\mathbf{p}, \mathbf{n}) \mathbf{e}^+$	LENA (Europe)	50
		$\nu_{e} ({}^{12}C, X)e^{-}$	Hano Hano (USA)	10
		$\bar{\nu}_e ({}^{12}C, X)e^+$		
		$\nu_w(e^-, e^-)\nu_w$		
		$ u_w(p,p)\nu_w$		
		$\nu_w({}^{12}C, X)\nu_w$		
Argon	$\sim 18 - 30$	$\nu_{\mathbf{e}} \; (^{40}\mathbf{Ar}, \mathbf{X})\mathbf{e}^{-}$	DUSEL LAr (USA)	< 100
		$\bar{\nu}_e ({}^{40}Ar, X)e^+$	GLACIER (Europe)	100
		$\nu_w(e^-,e^-)\nu_w$		
		$\nu_w({}^{40}Ar, X)\nu_w$		