

Observational Cosmology - a unique laboratory for fundamental physics

Marek Kowalski Physikalisches Institut Universität Bonn

Outline

- Introduction
- Cosmological probes
- Cosmological constraints

The standard model of cosmology: ACDM

Ingredients of ACDM:

- Cosmological constant
- Cold Dark Matter
- Baryons
- 3 light neutrino flavors
- Ampl. of primord. fluctuations
- Index of power spectrum

The standard model of cosmology: ACDM

Beyond the standard model:

- Non-Λ dark energy
- Hot dark matter,
 e.g. massive neutrinos
- Additional relativistic species,
 e.g extra neutrino species
- Tensor perturbations
 & running spectral index
 ⇒ physics of Inflation

Cosmological Probes: Selected new results

Cosmic Microwave Background

New ground based data from: **WMAP** South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT) 10m South Pole Telescope http://spt.uchicago.edu 6000 WMAP 7yr 3 ACBAR F 5000 *l*(*l*+1)C_{*l*}^{TT}/(2π) [μK²] QUaD 4000 Y_=0.01 Y_p=0.24 3000 2000 Planck: 2009 - 2011 ACT – 6 m telescope 100 500 1000 15 Multipole Moment (1)

Observational cosmology - Kowalski

Cosmic Microwave Background

Galaxy Clusters

Picture credit: ESA

Counting Galaxy Clusters

Vikhlini et al. ApJ, 2009

Upcoming surveys: eROSITA, DES, ...

Supernova Hubble Diagram

Efficient HST survey for z>1 SNe

Supernova Cosmology Project Suzuki et al., 2011

Survey of z>0.9 galaxy clusters

- ⇒ SNe from cluster & field
- ⇒ about 2 x more efficient
- \Rightarrow enhencement of early hosts
- ⇒ 20 new HST SNe

⇒ 10 high quality z>1 SNe!

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Promising technique & much activity: BOSS, HETDEX,...

Cosmological Constraints: Selected new results

ΛCDM

SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010)

> $\Omega_m = 0.729 \pm 0.014$ and allowing for curvature:

 $\Omega_{\rm k}$ =0.002 ± 0.005

Dark Energy

Supernova Cosmology Project Suzuki et al., 2011 0.0-0.2BAO -0.4-0.6CMB SNe а -0.8cosmological -1.0constant -1.2-1.40.1 0.2 0.3 0.4 0.5 0.0 Ω_m

Equation of state: *p=wp*

Constant w: *w*=-0.995±0.078

Dark Energy

Supernova Cosmology Project Suzuki et al., 2011

Equation of state: *p=wp*

Constant w: *w*=-0.995±0.078

Redshift dependent w: $w(a)=w_0+(1-a) \ge w_a$

No deviation from w=-1 (i.e. Λ)

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

 $V(\phi) = \lambda \phi^p$

Power spectrum of curvature perturbations

$$\Delta_R^2(k) \propto \left(\frac{k}{k_0}\right)^{n_s - 1}$$

Scalar spectral index* Tensor-to-scalar ratio* Spectral tilt* $n_s = 0.966 \pm 0.011$ r < 0.21 $dn_s/d\ln k = -0.024 \pm 0.013$ *SPT+ WMAP7 (Keisler et al. 2011), constraints are model dependent Number of relativistic species (neutrinos!)

CMB (& Baryon Nucleosynthesis) sensitive to number of neutrino species N_{eff}

Neutrino mass from CMB & large scale structure

Damping of correlation power due to free streaming at epoch of radiation-matter equality:

$$\left(\frac{\Delta P}{P}\right) \approx -0.8 \left(\frac{\sum m_v}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_{\text{m}}h^2}\right)$$

Combination of CMB+BAO+H₀:

$$\sum m_v < 0.5 \text{ eV} (95\% \text{CL})$$

e.g. Komatsu et al (2010)

Similar mass bounds also for LSND-like sterile neutrinos Hamann et al (2010)

Summary

- Cosmology today is about precision
- Multiple probes for highest sensitivity
- ACDM looks strong, however, physics beyond the standard model might just be around the corner
- Many new surveys commited, hence tremendous progress expected!

Redshift dependent EOS

Assuming step-wise constant w:

