Constraints on Dark Energy from the Supernova Legacy Survey three year data set

Julien GUY julien.guy@lpnhe.in2p3.fr

LPNHE - IN2P3 - CNRS - Universités Paris 6 et Paris 7

23rd Rencontres de Blois, June 2011

1 Cosmology with Type Ia Supernovae

2 Recent SN Ia surveys and compilations

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Usage of standard candles for cosmology 1/2

The metric for a homogeneous and isotropic universe + general relativity \rightarrow Friedman-Lemaitre-Robertson-Walker equations

$$H \equiv \left(rac{dR/dt}{R}
ight)^2 = rac{8\pi G}{3}
ho_M + \Lambda/3 - rac{k}{R^2}$$

which links the expansion rate of the universe to its content and spatial curvature. With light as a messenger, we have four observables connected to the expansion history.

- the redshift $z = R_0/R_{emission} 1$
- fluxes of objects of known luminosity \rightarrow luminosity distance $d_L(z) = (1+z)r(z)$
- angular size of objects of known physical size ightarrow angular distance $d_a(z)=r(z)/(1+z)$
- $\bullet\,$ counts of objects of known number density $\rightarrow\,$ volume element

where
$$r(z) = \frac{c}{\sqrt{\Omega_k}} S_k \left(\sqrt{\Omega_k} \int \frac{dz}{H} \right)$$
, $\Omega_k = -\frac{k}{(R_0 H_0)^2}$

Usage of standard candles for cosmology 2/2

$$flux = L/4\pi d_L^2$$

- Both low z and distant candles needed to distinguish models
- Parameters degeneracy: standard candles at 0 < z < 1 measure with precision a singe parameter.

Type la Supernova (SN la)

- very bright : 10¹⁰ sun luminosity
- rare : about one per galaxy per millennium
- light curve duration : $\simeq 1$ month
- peak brightness dispersion $\simeq 40\%$
- $\bullet\,$ precision on distance modulus $\simeq 0.15$
- identified by spectroscopy (broad absorption features give ejecta velocity and chemical composition)

200

SN la simulations

Thermonuclear explosion of C+O white dwarf fed by companion star State of the art: Kasen (2009)

- reproduces brighter-slower and brighter-bluer relations
- good qualitative description of the observations
- but not precise enough for usage as fitter to estimate distances

Measuring Luminosity Distances with SNe Ia

Distance modulus $\mu = 5 \log_{10} D_L$ estimated using apparent magnitude in a rest-frame (or redshifted) filter + correction factors based on the shape of the SN light curve and its color

$$\mu_B = m_B^{\star} - \mathcal{M}_B + \alpha \times shape - \beta \times color$$

 \mathcal{M}_B , α and β fitted at the same time as cosmology.

Measuring Luminosity Distances with SNe Ia

- *m*^{*}_B, *shape* and *color* determined from observed SNe light curves in a limited set of filters
- Requires a model of the SN spectral evolution to correct for redshift effect (*k-corrections*)

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

Hubble diagram and cosmological constraints

(ロト (間) (言) (言) (言) つくの

Dark Energy?

- $p = w\rho$ w < -1/3 $\rho(z) \propto exp\left(\int 3\frac{w(z)+1}{1+z}dz\right)$
- $w = -1 \rightarrow \text{cosmological constant}$

- $w > -1 \rightarrow$ scalar fields
- $w < -1 \rightarrow$ exotic fields

 $SNe+BAO(+CMB) \rightarrow w \simeq -1 \pm 0.1$ (sys.)

Cosmology with Type la Supernovae

2 Recent SN Ia surveys and compilations

SNLS 3 year analysis

4 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Increasing SN samples

Recent SN photometric high-z samples:

- Carnegie sample (I-band diagram) (≃50, Freedman 2009, Folatelli 2010)
- SDSS-II (~100, Kessler 2009)
- ESSENCE (~60,Wood-Vasey 2007)
- HST (~30,Riess 2007, ~20, Suzuki 2011)
- SNLS, SNLS-3 (≃230, G. 2010) SNLS-1: (≃70, Astier 2006),

Recent compilations:

- Union2 sample (inc. 6 new SNe) (Amanullah 2010, updated in Suzuki 2011)
- Constitution sample (CfA3) (Hicken, 2009)
- Union sample (Kowalski, 2008)

Union 2.1 Hubble diagram ^{Suzuki 2011}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SNLS-3 Hubble diagram Conley 2011

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

The SNLS Collaboration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

SNLS: A Large Photometric Survey ...

\sim 300h / year on a 3.6-m

• CFHT @ Hawaii

MegaCam: Wide Field Camera

- 1 deg², 36 2k \times 4k CCDs
- Good PSF sampling 1 pix = 0.2"
- Excellent image quality: 0.7" (FWHM)

Rolling search mode

- Part of CFHTLS, 40 nights/year for 5 years
- Four 1-deg² fields
- repeated obs. (3-4 nights) in griz bands

SNLS: ... and a Large Spectroscopic Survey

Goals

- spectral identification of SNe Ia (z < 1)
- redshift determination (host galaxy lines)
- complementary programs
 - detailed studies of SNe Ia

Telescopes

- VLT large program (120h / year)
- Gemini (120h / year)
- Keck (30h / year)

(Howell et al, 2005 - ApJ 634, 1190)

SNLS: Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

May 2008							
Telescope	SNIa (/?)	SNII (/?)	Total SN (/?)	Other	Total		
Gemini	161	16	235	0	235		
Keck	106	26	197	7	204		
VLT	182	28	309	12	321		
Total	449	70	741	19	760		

\sim 450 Identified Type Ia Supernovae now on disk \sim similar number with photometric identification

Survey ended in June 2008

SNLS: Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

SNLS 1st \rightarrow 3 Year Analysis

1st Year analysis (Astier 2006): $w = -1.023 \pm 0.090 \text{ (stat)} \pm 0.054 \text{ (sys)}$ for a flat cosmology. Syst. uncertainty on w dominated by calibration.

3 Year analysis :

- Statistics: 71 \rightarrow \sim 250
- Independant analyses (Fr, Ca), being carefully cross-checked
- Improved photometric calibration
- Improved SN fitters trained on the SNLS data (two fitters SALT2 & SiFTO)
- Detailed studies of the SN properties w.r.t. host galaxy type
- Systematics included in the cosmological fits

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SNLS3: Photometric Calibration Uncertainty Budget, Regnault et al. (2009)

	g	r	i	Ζ
Zero Points (stat)	± 0.002	± 0.002	± 0.002	± 0.005
Aperture corr.	< 0.001	< 0.001	< 0.001	< 0.001
Background sub	< 0.001	< 0.001	± 0.005	< 0.001
Shutter	± 0.002	± 0.002	± 0.002	± 0.002
Linearity	< 0.001	< 0.001	< 0.001	< 0.001
2nd order airmass corr.	< 0.001	< 0.001	< 0.001	< 0.001
Grid reference colors	< 0.001	< 0.001	< 0.001	< 0.001
Grid color corrs	< 0.001	< 0.001	± 0.002	< 0.001
Landolt catalogs	± 0.001	± 0.001	± 0.001	± 0.002
Magnitudes of BD $+17$	± 0.002	± 0.004	± 0.003	± 0.018
Transfer to SNe	± 0.002	± 0.002	± 0.002	± 0.002
Total	± 0.005	± 0.006	± 0.007	± 0.019

SNLS3: SALT2 & SiFTO (Guy et al, 2007), (Conley et al, 2008)

Two methods are used.

Differences provide an estimate of systematics.

SALT2

- Empirical model of the Spectral Sequence \simeq PCA
 - $F = x_0$
 - $\times [M_0(p,\lambda) + x_1 M_1(p,\lambda)]$
 - $\times \exp(c CL(\lambda))$

SiFTO

- SN la spectral sequence from (Hsiao, 2007)
- Pure stretching with time : $M(p, \lambda, s) = M(p/(s-1), \lambda)$

- $s \rightarrow s(\lambda)$
- Color relations
- Both fitters trained using nearby and SNLS lightcurves (lightcurve fit separate from distance estimate).

Cosmology with Type Ia Supernovae

Recent SN Ia surveys and compilations

SNLS 3 year analysis

Conclusions

SNLS3: SALT2 vs. SiFTO (G. 2010)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Cosmology with Type Ia Supernovae

Recent SN Ia surveys and compilations

SNLS 3 year analysis

Conclusions

SNLS3: SALT2 vs. SiFTO (Conley 2011)

◆□> ◆□> ◆三> ◆三> ・三 のへの

SNLS3: Uncertainties on SNe distances

Uncertainties on $\langle \mu \rangle_{\Delta z=0.2}$

- statistical uncertainty
- calibration
- finite training sample
- residual scatter model
- Light curve fitter $\simeq 0.02$

SNLS3: External data sample (Conley 2011)

Sample	Redshift range	N _{SNe}	Ref.
Low-z	0.01 - 0.10	123	Hamuy (1996), Riess (1999), Jha (2006), Hicken (2009)
SDSS	0.06 - 0.4	93	Holzman (2009)
SNLS3	0.08 - 1.05	242	
HST	0.7 - 1.4	14	Riess 2007

More systematic uncertainties for each survey:

- calibration
- survey incompleteness (Malmquist bias)

SNLS3: Hubble diagram

ロト 《聞 》 《臣 》 《臣 》 《臣 》 のへの

SNLS3: Other systematics (other than light curve fitter, calibration, selection)

- Peculiar velocities for low-z SNe
- Contamination by Core collapse SNe for high-z SNe
- Evolution of color-luminosity relation with redshift
- Evolution of SNe with z : age of stellar population or metallicity
- Gravitational magnification
- about 200 different systematics (S_k) identified.

- Conversion of those systematics into a covariance matrix of SNe distance moduli $(\mu_i) C_{sys,ij} = \sum_k \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} (\Delta S_k)^2$

Cosmological constraints SNLS-3 + SDSS-DR7 BAO + WMAP-7, Sullivan 2011

Cosmological constraints SNLS-3 + SDSS-DR7 BAO + WMAP-7

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Cosmological constraints SNLS-3 + SDSS-DR7 BAO + WMAP-7

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$

э

Cosmological constraints SNLS-3 + SDSS-DR7 BAO + WMAP-7 + H₀ prior

Not much constraints on a varying $w : w(a) = w_0 + w_a(1-a)$

(with a = 1/(1 + z) the scale factor).

No H_o No H₀ -0.25With H_0 With H_0 1 -0.50 0 -0.75 n_0^0 w_a -1 -1.00-2 -1.25-3 -1.500.20 0.25 0.30 0.35 -1.5 -1.0-0.5 w_0 Ω_m $w_{a}=-0.535^{+1.109}_{-1.111}~{ m (stat+sys)}~{ m (without}~H_{0}~{ m constraints)}$

SNLS3+WMAP7+SDSS DR7 LRGs

Conclusions 1/3 SNLS 3 year analysis

- 242 high-z SNe Ia in the Hubble diagram
- Dark Energy equation of state $w = -1.068^{+0.080}_{-0.082}$ (stat+sys) when combined with most recent BAO and CMB results
- SNe Ia are still the most precise probe for Dark Energy
- Uncertainty on *w* dominated by calibration uncertainties (±0.058 without calib. sys.)
- Evidence for some evolution of SNe with redshift : observed correlation of SNe brightness with host galaxy properties

(corrected for in cosmology fit)

- Reduction of SNLS final data set (about 450 SNe Ia) with improved techniques (for instance accounting for proper motion of stars in calibration)
- New observations for calibration
 - Intercalibration of SNLS and SDSS
 - Direct observation with CFHT of HST standard stars
 - R&D of instrumental calibration (SNDICE project)
- Improved light curve fitting with joined SNLS+SDSS effort
- Environmental studies, spectroscopic studies for SNe physics, photometric identification, SNe rates ...

Conclusions 3/3 What is the future of SNe cosmology ?

- Short/mid-term: Pan-Starrs and DES are similar to SNLS, so the same difficulties (systematics) are expected.
- Long-term: LSST will find and monitor several 10000 SNe Ia. New methods are needed for identification and systematics.
- A bright possible future : a space-based SNe survey with IR observations (Astier 2011).
 - EUCLID + a filter wheel (in the visible channel) for 18 month
 - 13000 SNe la upto z = 1.5 (without selection bias)
 - much lower impact of systematics lead to a precision of 0.03 on *w*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Backup slides : Tests of SNe evolution

Evolution Tests

We know what SNe Ia are: we are able to simulate explosions in qualitative agreement with observations. However, we don't know exactly what are the companions that feed the white dwarf.

Potential sources of evolution:

- Different progenitors types with different lifetimes
- One single progenitor type with correlation between lifetime and luminosity
- Luminosity vs Metallicity
- Change of dust amount and properties

Two kinds of evolution tests:

- Compare low- and high-redshift events (Bronder et al. 2007)
- More sensitive: compare events at similar redshifts as a function of their host galaxy properties (star formation rate, metallicity).

Evolution test: Comparison of low- and high-redshift events

brighter-slower relation

brighter-bluer relation 🛛 🖘 🚊 🔊 🤜

Evolution of the color-luminosity relation

$$\mu_B = m_B^{\star} - \mathcal{M}_B + \alpha \times shape - \beta \times color$$

Kessler (2009) finds an evolution of β with redshift. With an improved modeling and a better treatment of uncertainties: no clear evidence.

Evolution test: Spectra vs z Balland (2009)

SNLS VLT spectra compared in two redshift bins.

Conclusions

Evolution test: Standardization Parameters vs. Host Galaxy Type Sullivan (2010)

SNe in massive hosts (mostly passive ellipticals) have smaller stretch factors. They appear brighter (after correction for stretch and color relations) at \simeq 4 σ .

- \rightarrow similar result found on low-z sample (Kelly 2010)
- ightarrow and by SDSS (Lampeitl 2010)
- \rightarrow we account for this in SNLS3 cosmology fits
- ightarrow future surveys will need to do the same (if signal is confirmed)

Evolution test: Standardization Parameters vs. Host Galaxy Type Comparison with models

Galaxy mass \simeq correlates with metallicity (bigger=older).

- observations: brighter SNe Ia in metal-rich galaxies after lightcurve shape correction
- theory: brigher SNe Ia in metal-poor galaxies
- Kasen 2009: both brightness and lightcurve width decrease with metallicity

Effect modifies zeropoint of width luminosity relation.

