Search for Neutrinoless Double Beta Decay : NEMO3 Results and Plans for SuperNEMO

23^{rd.} Rencontres de Blois, May 31, 2011

Xavier Garrido (LAL, Orsay) on behalf of

Super NEMO

collaboration

Neutrinos and Double Beta Decay

NEMO3 Results

Status and Plans for SuperNEMO

Double Beta Decays

$0\nu 2\beta$ Non-Standard Process

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$

Experimental Principle

Ideally one $0\nu 2\beta$ experiment should:

- measure the energy of the 2 electrons with very good energy resolution
- identify individually the 2 electrons emitted $(E_{e_1}, E_{e_2} \& \cos \theta)$

NEMO's Technique : Calorimetry + Tracking

- Reconstruction of final state topology:
 - e[±] individual energy
 - charged particle trajectory
 - time of flight
 - magnetic field curvature
 - angular distribution
 - vertex
- Background rejection and measurement through particle identification: e⁻, e⁺, γ, α
- Source is separated from the detector: can measure several ββ isotopes
- ► "tracko-calo" ≠ "pure calorimeter" technique (HM, IGEX, Cuoricino...).

NEMO3 Experiment (2003 - 2011)

NEMO3 Experiment

- Measurement of kinematics parameters $(E_{e_1}, E_{e_2}, \Delta t \& \cos \theta)$
- ▶ Particle identification e^- , e^+ , γ , α using event topology

Typical $2\nu 2\beta$ candidate event

NEMO3 Experiment

- Measurement of kinematics parameters ($E_{e_1}, E_{e_2}, \Delta t \& \cos \theta$)
- ▶ Particle identification e^- , e^+ , γ , α using event topology
- Measurement of all background components in independent channels [NIM A606 (2009) 449-465]
 - External backgrounds: $e\gamma_{\text{external}}$, e_{crossing}
 - ▶ Internal backgrounds in foils: $e\gamma(\gamma\gamma)$, 1 electron topology
 - ► Radon daughters deposited on wires and source foils: ea channel

NEMO3 results: $2\nu 2\beta$ of ¹⁰⁰Mo

¹⁰⁰Mo (6.9 kg): ~ 3.5 yr, S/B = 76

 ${\cal T}^{2
u}_{1/2}=7.17\pm0.01~{
m (stat)}\pm0.54~{
m (syst)}~10^{18}~{
m yr}$ ${\cal M}^{2
u}=0.126\pm0.006$

NEMO3 results: Search for $0\nu 2\beta$

 $\begin{array}{l} \mbox{More results available: excited states, $0 $\nu 2 β for others isotopes, processes $V+A: $$\mathcal{T}_{1/2}^{0 ν}(100 Mo$) $> $5.4 10^{23} yr @ 90 % C.L.$$ Majoron: $$\mathcal{T}_{1/2}^{0 ν}(100 Mo$) $> $2.1 10^{22} yr @ 90 % C.L.$$ } \end{array}$

SuperNEMO Experiment

From NEMO3 to SuperNEMO

SuperNEMO is the next generation of NEMOs experiment $\mathcal{T}_{1/2}^{0\nu}\gtrsim 10^{26}$ yr @ 90 % C.L. for $\langle m_{\beta\beta}\rangle<$ 40 - 100 meV

	NEMO3	SuperNEMO
Mass	7 kg	100 kg
lsotope	¹⁰⁰ Mo	⁸² Se
Foil density	60 mg/cm^2	40 mg/cm^2
Energy resolution (FWHM)		
@ 1 MeV	15 %	7 %
@ 3 MeV	8 %	4 %
Sources contaminations		
$\mathcal{A}(^{208}TI)$	$<$ 20 $\mu { m Bq/kg}$	$<$ 2 μ Bq/kg
$\mathcal{A}(^{214}Bi)$	$<$ 300 μ Bq/kg	$< 10 \; \mu { m Bq/kg}$
Radon (²²² Rn)	\sim 5.0 mBq/m 3	\sim 0.1 mBq/m 3

SuperNEMO Modules

- ▶ 20 modules based on NEMO3 principle (about $4.0 \times 5.5 \text{ m}^2/\text{module}$)
 - $\blacktriangleright~\sim$ 5 kg of 2 β sources
 - \blacktriangleright ~ 2000 drift cells in geiger mode + B field
 - $\blacktriangleright~\sim$ 700 scintillators with low radioactivity 8" PMTs

SuperNEMO: 4 years of R&D

 Calorimeter Required resolution demonstrated with cubic PVT block coupled to 8" PMT

 $\mathsf{FWHM} = 7\% @ Q_{\beta\beta} = 1 \,\mathsf{MeV}$

Tracker
 Pasis cell

Basic cell design developed and performances demonstrated using cosmic muon data

 $\sigma_{\rm T} \simeq 0.7 \, {\rm mm} ~ \sigma_{\rm L} \simeq 1 \, {\rm cm} ~ \epsilon > 98\%$

SuperNEMO: 4 years of R&D

• $\beta\beta$ source

Enrichement: centrifugation of 100 kg of 82 Se is feasible, studies to produce large amount of 150 Nd and 48 Ca

Radiopurity: Chemical and physical purification at a level of $^{208}\text{TI} \leq 2\,\mu\text{Bq/kg}$, $^{214}\text{Bi} \leq 10\,\mu\text{Bq/kg}$ and will be measured with BiPo3 detector

BiPo3 detector

SuperNEMO demonstrator

- Building of one module to:
 - confirm R&D on large scale mass production
 - measure backgrounds especially from Radon
 - produce competitive physics measurement

0.3 expected bkg events in [2.8 - 3.2] MeV with 7 kg of ⁸²Se in 2 years Sensitivity by 2015 : 6.5 10^{24} year (90% C.L.) $\langle m_{\beta\beta} \rangle < 200$ - 400 meV

Summary

NEMO experiments use tracking-calorimeter technique

- full event reconstruction
- clear $\beta\beta$ event signature
- excellent background rejection using event topology
- NEMO3 (2003 2011) has run $2\nu 2\beta$ factory
 - ▶ $\mathcal{T}_{1/2}^{2\nu}(^{100}\text{Mo}) = 7.17 \pm 0.01 \text{ (stat)} \pm 0.54 \text{ (syst)} 10^{18} \text{ yr}$
 - \blacktriangleright 7 isotopes studied \rightarrow constraints for nuclear matrix elements
- NEMO3 provides competitive $0\nu 2\beta$ limits
 - ▶ $\mathcal{T}_{1/2}^{0
 u}(^{100}\mathsf{Mo}) \ge 1.0\,10^{24}$ yr @ 90% C.L. ($\langle m_{\beta\beta} \rangle$ <0.47 0.96 eV)

Summary

- SuperNEMO is the next generation experiment
 - R&D objectives have been reached
- Demonstrator module
 - tracker already funded by U.K and scientific council of IN2P3 recently approved calorimeter construction
 - sensitive to Klapdor claim by 2015
- SuperNEMO full detector
 - installed inside the new LSM laboratory ?
 - ho $\mathcal{T}_{1/2}^{0
 u}\gtrsim 10^{26}$ yr @ 90 % C.L., $\langle m_{etaeta}
 angle <$ 40 100 meV
 - possibility to probe $0\nu 2\beta$ mechanism by 2019

BACKUP Slides

Choice of 2β isotopes

$$(\mathcal{T}_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 |m_{\beta\beta}|^2 \quad \mathcal{T}_{1/2}^{0\nu} > \frac{\ln 2N_A \mathcal{E}_{0\nu}}{1.64 A} \sqrt{\frac{m t}{N_{\text{bkg}} r}}$$

- ▶ high $Q_{\beta\beta}$
 - $E_{\gamma}(^{208}\text{TI}) = 2.6 \text{ MeV}$
 - $Q_{\beta}(^{214}\text{Bi}) = 3.3 \,\text{MeV}$
- ▶ high $G_{0\nu}$ (low $\mathcal{T}_{1/2}^{0\nu}$)
- ▶ high $\mathcal{M}_{0\nu}$ (low $\mathcal{T}_{1/2}^{0\nu}$)
- high $\mathcal{T}_{1/2}^{2\nu}$ (low $2\nu 2\beta$)
- high mass:
 - natural abundance
 - Iow atomic mass A
 - enrichment purification

	2β	Q_{etaeta} MeV	$G_{0\nu}$ $10^{-25} \mathrm{y}^{-1}$	$\mathcal{T}^{2 u}_{1/2}$ y	NA %
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 ⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd 	4.272 2.039 2.995 3.350 3.034 2.805 2.529 2.479 3.368	2.44 0.24 1.08 2.24 1.75 1.89 1.70 1.81 8.00	$\begin{array}{c} 4.3 \ 10^{19} \\ 1.3 \ 10^{21} \\ 9.2 \ 10^{19} \\ 2.0 \ 10^{19} \\ 7.0 \ 10^{18} \\ 3.0 \ 10^{19} \\ 6.1 \ 10^{20} \\ \geq 8.5 \ 10^{21} \\ 7.9 \ 10^{18} \end{array}$	0.19 7.61 8.73 2.8 9.63 7.49 33.8 8.9 5.6

The NEMO-3 detector: $\beta\beta$ sources

lsotope	Mass (g)	${\it Q}_{etaeta}$ (keV)
0 u 2eta	search $+ 2$	u 2eta meas.
¹⁰⁰ Mo	6914	3034
⁸² Se	932	2995
2	u 2eta measu	rement
^{116}Cd	405	2805
⁹⁶ Zr	9.4	3350
¹⁵⁰ Nd	37.0	3367
⁴⁸ Ca	7.0	4272
¹³⁰ Te	454	2529
External	background	measurement
^{nat} Te	491	see ¹³⁰ Te
Cu	621	-

Enriched isotopes produced by centrifugation in Russia

NEMO3 Experiment

NEMO3 Calibrations

- Relative energy calibration done by laser survey
- ► Absolute energy calibration was performed using ²⁰⁷Bi (482 and 976 keV CE) and ⁹⁰Sr (Q_β(⁹⁰Y) = 2.283 MeV) sources put inside calibration tubes in source frame
- Time calibration done with ⁶⁰Co source (2 coincident γ at 1332 keV and 1173 keV respectively)

NEMO3 Results: $2\nu 2\beta$ other isotopes

NEMO3 Results: $2\nu 2\beta$ other isotopes

BiPo Detector

► Measure ²⁰⁸TI and ²¹⁴Bi contamination of source foils

Experimental principle: detection of "BiPo" coincidences *i.e.* β decay followed by a delayed α particle

Natural Radioactivity Background

			2	³⁸ U						232 /	Th			2	³⁵ U		
U	U-238 4.47 10 ⁹ yr		U-234 2.455 10 ⁶ 9 ⁷										U-235 7.04 10 ⁸ 3 ⁴				
Pa	Ļ	Pa-234n 1.17 m	+		β	,							ł	Pa-231 3.27 10 9 yr			
Th	Th-234 24.10 d		Th-230 7.538 1ð ут		α			Th-232 14 10 ⁹ yr		Th-228 1.912 yr			Th-231 25.52 h		Th-227 18.72 d		
Ac			ļ					Ļ	Ac-228 6.15 h	ļ				Ac-227 21.773 yr	ţ		
Ra			Ra-226 1600 yr					Ra-228 5.75 yr		Ra-224 3.66 d					Ra-223 11.435 d		
Fr			+							ļ					ł		
Rn			Rn-222 3.8235 d							Rn-220 55.6 s					Rn-219 3.96 s		
At			+							Ļ					Ļ		
Po			Po=218 3.10 m		Po-214 164.3µ s		Po-210 138.376 c			Po-216 145 ms		Po-212 299 ns			Po-215 1.781 ms		
Bi			ł	Bi-214 19.9 m	ł	Bi-210 5.013 d	ł			ļ	Bi-212 60.55 m	ļ			ļ	Bi-211 2.14 m	
Pb			Pb-214 26.8 m	0.021%	Pb=210 22.3 yr	ļ	Pb-206 stable			Pb-212 10.64 h	36%	Pb-208 stable			Pb-211 36.1 m	ļ	Pb-207 stable
TI				TI-210 1.3 m		TI-206 4.199 m					TI-208 3.053 m					T1-207 4.77 m	

Neutrino Current Limits

Isotone	Experiment	Technique	Mass	$\mathcal{T}_{1/2}^{0 u}$ [year]	<i>m_{ββ}</i> [eV]		
isotope	Experiment	reeninque	111035	90% C.L.	QRPA	Shell Model	
⁴⁸ Ca	NEMO3	Tracko-calo	7 g	$\geq 1.3 \; 10^{22}$	-	21 – 29	
⁷⁶ Ge	Heidel Mosc.	Semi cond. Germanium	11 kg	$\geq 1.5 \ 10^{25}$	0.26 - 0.65	0.53 - 0.64	
⁸² Se	NEMO3	Tracko-calo	1 kg	\geq 3.6 10^{23}	1.01 - 2.28	1.94 - 2.36	
¹⁰⁰ Mo	NEMO3	Tracko-calo	7 kg	$\geq 1.1 \ 10^{24}$	0.51 - 1.04	-	
¹¹⁶ Cd	Solotvina	Scintillator crystals CdWO ₄	80 g	$\geq 1.7 \ 10^{23}$	1.45 - 3.13	2.06	
¹³⁰ Te	CUORICINO	Bolometers	10 kg	\geq 3.0 10^{24}	0.34 - 0.64	0.54 - 0.68	
¹³⁶ Xe	TPC Gothard	TPC Gaz Xe	3.4 kg	\geq 4.4 10 ²³	1.31 - 3.15	1.67 - 2.10	
¹⁵⁰ Nd	NEMO3	Tracko-calo	37 g	\geq 1.8 10 ²²	IBM : 2	2.9 – 5.1	

NME & Effective Neutrino Mass

Actual calculation of Nuclear Matrix Elements and limit on effective neutrino mass $m_{\beta\beta}$

SuperNEMO & Neutrino Hierarchy

Overview of DBD Experiments

Experiment	lsotope	Mass [kg]	FWHM © <i>Q_{β β}</i>	Bkg cts [keV.kg.yr]	Bkg cts [FWHM.year]	$\begin{array}{c} \mathcal{T}_{1/2}^{0\nu} \\ \text{limit} \end{array}$	$ m_{etaeta} $ [meV]	Timescale Start - Results
Construction /	Commissio	ning						
GERDA I GERDA II GERDA III	⁷⁶ Ge	18 40 100	4 keV	10 ⁻² 10 ⁻³ 10 ⁻³	0.7 0.2 0.4	3 10 ²⁵ 2 10 ²⁶ 2 10 ²⁷	200 - 500 80 - 200 25 - 65	2010 - 2011 2011 - 2013 ?
CUORE	¹³⁰ Te	200	5 keV	10 ⁻²	37	2 10 ⁻²⁶	40 - 85	2012 - 2017
EXO-200	¹³⁶ Xe	200	40 keV	2.5 10 ⁻³	20	6 10 ²⁵	110 - 260	2010 - 2012
SNO+	¹⁵⁰ Nd	56	$\sim 200{\rm keV}$	-	\sim 80	-	\sim 100	2011 - 2013
R&D Funding /	Prototype							
CANDLE 3	⁴⁸ Ca	0.35	210 keV	-	-	-	-	2010 - ?
SuperNEMO	⁸² Se	100	210 keV	10 ⁻⁴	~ 2	10 ²⁶	60 - 140	2013 - 2020
NEXT-100	¹³⁶ Xe	100	25 keV	-	-	6 10 ²⁵	110 - 260	2014 - 2019
R&D								
Scintillating bolometers	⁸² Se ¹¹⁶ Cd ¹⁰⁰ Mo	19 15 12	10 keV	$\leq 10^{-3}$	≤ 0.3	10^{26} 6 10^{25} 6 10^{25}	60 - 140 75 - 165 65 - 130	?