

Search for New Physics through rare heavy flavour decays at LHCb

Olivier Deschamps Laboratoire de Physique Corpusculaire de Clermont-Ferrand Université Blaise Pascal & IN2P3/CNRS

On behalf of the LHCb collaboration

Heavy flavour rare decays

The LHCb detector

Probing rare decay dynamics

THCP CKM metrology State of the

Loop-mediated decays are sensitive indirect probe to the NP heavy particles that may propagate within the loop

LHCb has a very good potential in resolving several those rare decays

... this talk will mainly focus on :

- Search for $B_s \rightarrow \mu^+ \mu^-$: SM-expected BR= $(3.073^{+0.070}_{-0.190}) \times 10^{-9}$ [CKMFitter ICHEP2010]
- Dynamics of $B_d \rightarrow K^* \mu^+ \mu^- \text{decay}$: BR= $(1.15 \pm 0.15) \times 10^{-6}$ [HFAG 2010]
- Photon polarization from $B_s \rightarrow \varphi \gamma$: BR= $(5.7^{+2.1}_{-1.8}) \times 10^{-5}$ [Belle, PRL100 121801, 2008]

- Large multiplicity : ~30 particles for hard pp collisions
- Background from high inelastic X-section of 80 mb
- Small Branching Ratio for B meson decay

... but ...

- 100 kHz bb rate
- Access to all b species $: B_d, B_u, B_s, B_c, \Lambda_b, \Xi_{b...}$

LHC delivers $\int s=7$ TeV pp collisions since spring 2010

The machine performance improves daily : 912 colliding bunches reached last week >1000 Instantaneous luminosity at LHCb is now close to design : $\frac{2.10^{32}}{2.10^{32}}$ cm²s⁻¹ 3.10³² cm²s⁻¹ with an average visible pp interaction per bunch crossing of O(2)

LHCb collected 37.5 pb⁻¹ in 2010 with an efficiency of O(90%) Integrated luminosity was doubled in the first month of 2011 data taking

-> today 2011 recorded luminosity ~130 pb⁻¹ 163 pb⁻¹

Aim at collecting ~ 1 fb⁻¹ by the end of 2011

- Branching Ratio of very rare decay
- Decay dynamics through angular analysis
- Time-dependent decay rate

: NP in B_{s,d}→µµ

NP in
$$B_s \rightarrow K^* \mu \mu$$

: photon polarization in $B_{s}{\rightarrow}\phi\gamma$

- Z-penguin suppressed diagram
 - SM-expected Branching Ratio :

 $\begin{array}{l} \mathsf{B}_{\mathsf{SM}}(\mathsf{B}_{\mathsf{s}} \rightarrow \mu^{\mathsf{t}} \mu^{\mathsf{t}}) = (3.073^{+0.070}_{-0.190}) \times 10^{-9} \quad \text{[CKMFitter ICHEP2010]} \\ \mathsf{B}_{\mathsf{SM}}(\mathsf{B}_{\mathsf{d}} \rightarrow \mu^{\mathsf{t}} \mu^{\mathsf{t}}) = (10.8^{+0.4}_{-0.9}) \times 10^{-11} \end{array}$

Current limits (@ 95% CL):

 $\begin{array}{l} \mathsf{B}(\mathsf{B}_{\mathsf{s}} \to \mu^{\mathsf{t}} \mu^{\mathsf{r}}) < 51 \times 10^{-9} \ (\mathsf{D0}) \end{array}^{[\textit{PLB 693 539 (2010) }]} \\ \mathsf{B}(\mathsf{B}_{\mathsf{s}} \to \mu^{\mathsf{t}} \mu^{\mathsf{r}}) < 43 \times 10^{-9} \ (\textit{CDF})_{\textit{[CDF note 9892 (2009)]}} \\ \mathsf{B}(\mathsf{B}_{\mathsf{d}} \to \mu^{\mathsf{t}} \mu^{\mathsf{r}}) < 7.6 \times 10^{-9} \ (\textit{CDF}) \end{array}$

Very sensitive to NP

e.g. probe two Higgs doublet models MSSM BR ~ $\tan^6\beta/m^4_{\ H}$

LHCD Search for Bs.d pr

- LHCb analysis strategy :
 - Event selection based on 2D Likelihood :
 - Geometrical & kinematical Likelihood (GL) : Impact Parameter, B vertex, Isolation
 - Invariant mass Likelihood modelled with a Crystal Ball
 - Data driven calibration
 - Geometrical likelihood
 - trained on MC ($B_{s,d} \rightarrow \mu^{+}\mu^{-} vs bb \rightarrow \mu^{+}\mu^{-}X$) -calibrated on data using $B_{s,d} \rightarrow hh$ for signal and mass side-bands for background
 - Invariant mass Likelihood

-average from $B_{s,d} \rightarrow K^+\pi^-$ (K⁺K⁻) - resolution from interpolation of the di-muon resonances (J/ ψ , ψ (2S), Υ 's) and inclusive b \rightarrow hh'

$$\sigma = (26.71 \pm 0.95) MeV/c^2$$

- LHCb analysis strategy (con't):
 - Normalisation
 - Use know normalisation channels to derive BR from the event yield

 $\begin{array}{l} B_{u} \rightarrow J/\psi(\mu + \mu^{-})K^{+} \\ B_{s} \rightarrow J/\psi(\mu + \mu^{-})\Phi(K^{+}K^{-}) \\ B_{d} \rightarrow K^{+}\pi^{-} \end{array}$

-> complementary in term of trigger, PID, final state reconstruction, B species

$$B(B_{s,d} \to \mu^+ \mu^-) = \left(\frac{B_{norm}}{N_{norm}} \cdot \frac{\varepsilon_{sig}^{rec,sel,trig}}{\varepsilon_{norm}^{rec,sel,trig}} \cdot \frac{f_{q_{norm}}}{f_{s,d}}\right) \cdot N_{B_{s,d} \to \mu\mu} = \alpha_{s,d} \cdot N_{B_{s,d} \to \mu\mu}$$

Using 37 pb⁻¹ (2010) data :

All three reference channels give consistent value

Weighted average :

$$\alpha_s = (8.6 \pm 1.1) \times 10^{-9},$$

 $\alpha_d = (2.24 \pm 0.16) \times 10^{-9}.$

(blind) analysis result on 2010 data :

Observed distribution of events

B _s →μμ		GL bin					
		$[0, 0.25] \mid [0.25, 0.5] \mid$		[0.5,0.75]	[0.75,1]		
(c^2)	[-60,-40]	39	2	1	0		
Mass bin ($MeV/$	[-40,-20]	55	2	0	0		
	[-20,0]	73	0	0	0		
	[0,+20]	60	0	0	0		
	[+20, +40]	53	2	0	0		
	[+40, +60]	55	1	0	0		
	sum	335	7	1	0		
	bkg exp.	329	7.36	1.51	0.081		

95% CL limits :

$$B(B_s \to \mu^+ \mu^-) < 56 \times 10^{-9} \quad (\text{exp. limit} : 65 \times 10^{-9})$$
$$B(B_d \to \mu^+ \mu^-) < 15 \times 10^{-9} \quad (\text{exp. limit} : 18 \times 10^{-9})$$

« Search for the rare decays Bs $\rightarrow \mu\mu$ and BO $\rightarrow \mu\mu$ » Physics Letter B 699 (2011) 330–340, The LHCb collaboration

LHCb perspective :

Extrapolation from the 37 pb⁻¹ analyzed so far :

[[]Buchmueller et al., EJP C64, 391 (2009)]

LHCb will explore an interesting region in the 2011-2012 long run

 A_{FB}

0

-0.4

-0.6^C0

2

- Suppressed FCNC in $b \rightarrow s$ EW-penguin transition
 - [Babar, Belle, CDF HFAG 2010] ■ BR = (1.09 ± 0.12) 10⁻⁶
- Lepton angular distribution affected by NP

- Several observable to test the dynamics • q^2 = $m_{\mu+\mu}^2$ distribution • $A_{FB}(q^2)$: forward-backward asymmetry in Θ_u
- Zero-crossing point $A_{FB}(s_0) = 0$ prediction depends on Wilson Coefficient $C_7 \& C_9$

$$q_0^2 = (4.36^{+0.33}_{-0.31}) \ GeV^2 / c^4$$
 [Beneke et al. EPJC41:173-188;2005]-0.2

 $q^2 [GeV^2/c^4]$

10

8

12

14

80% of data

75% of data 100 $K^*\mu^+\mu^-$

100 K*l+l-

4.4 fb[·]

16

18

20

LHCb prospects :

Clean observation of 36±9 events in 36 pb⁻¹ (2010 data) close to expectation

With 300 pb⁻¹ (summer conference) LHCb expects to be competitive with existing measurements

Main experimental difficulty will be to control the bias introduced by the detector acceptance, trigger & selection

good MC/data agreement so far for the same final state control channel $B_s \rightarrow J/\psi(\mu + \mu)K^*$

$B^+ \rightarrow K^+ \mu^+ \mu^-$ observed

Cross-check to $K^*\mu\mu$: no forward-backward asymmetry expected

THCP Photon polarization in b->s

• Radiative $b \rightarrow q\gamma$ FCNC penguin (q=d,s):

BR & asymmetry of exclusive mode provides a direct constraint on UT

Right-handed photon is suppressed by (m_q/m_b) within SM

 $\tan \Psi = \left| \frac{A(B_q \to f^{CP} \gamma_R)}{A(B_q \to f^{CP} \gamma_L)} \right| \text{ is a sensitive parameter for NP search}$

 ${\sc {\tt Time-dependent}}$ decay rate for $b{\rightarrow} q\gamma$ is sensitive to Ψ

$$\Gamma(\overset{(-)}{B_q} \to f^{CP}\gamma) = |A|^2 e^{-\Gamma_q \tau} \Big[\cosh(\Delta\Gamma_q \tau/2) + A^{\Delta}_q \sinh(\Delta\Gamma_q \tau/2) \pm C_q \cos(\Delta m_q \tau) \mp S_q \sin(\Delta m_q \tau) \Big]$$
$$A^{\Delta}_s \approx \sin(2\psi) \approx 0.1 \text{ within SM}$$

- ${\ \ }$ No sensitivity to ${\ \ } A^{\Delta}$ in ${\ \ } B_d$ due to very small $\Delta\Gamma/\Gamma$
- $B_s \rightarrow \Phi \gamma$ is a promising channel for the extraction of $A^{\Delta} \sim \sin(2\Psi)$
- Reliable theoretical prediction at NNLO \rightarrow probe for NP in loop 17

LHCb prospect with radiative decays

• $B^0 \rightarrow K^*(K\pi)\gamma$ is observed

 $B(B^0 \rightarrow K^* \gamma) = (43.3 \pm 1.5) \times 10^{-6}$ [Babar, Belle, Cleo - HFAG 2010]

reference channel for other radiative decays (calorimeter energy, photon trigger)

```
Production rate in LHCb :
```

```
(6.1±0.7) B^0 \rightarrow K^*(K\pi)\gamma / pb^{-1}
```

-> expect O(6k) the end of 2011

Mass resolution dominated by calorimeter energy resolution

-> measurement of the direct CP asymmetry by the end of year

 $A_{CP}(K^*\gamma)$ predicted less than 1% in SM $A_{CP}(K^*\gamma)$ =(-1.6 ± 2.3)% [Babar, PRL 103, 211802, 2009]

- LHCb prospect with radiative decays (con't)
 - Evidence for $B_s \rightarrow \Phi(KK)\gamma$ in LHCb

first observed by Belle at $\Upsilon(5s)$ (35% accuracy on BR)

 $B(B_s \rightarrow \Phi \gamma) = (57^{+21}_{-18}) \times 10^{-6}$ [Belle, PRL100, 121801, 2008]

LHCb production rate :

(0.68±0.14) $B_s \rightarrow \Phi(KK)\gamma / pb^{-1}$

-> $O(700) \text{ } \text{B}_{\text{s}} \rightarrow \Phi \gamma \text{ by the end of } 2011$

 \rightarrow measurement of the Branching Fraction ratio $B(B_s \rightarrow \Phi \gamma)/B(B^0 \rightarrow K^* \gamma)$ by this summer

With the limited statistics of 37 pb⁻¹ collected in 2010, LHCb already has shown its very good potential to search NP manifestation in rare decays

Competitive limit from the very rare $B_{s,d} \rightarrow \mu^+ \mu^-$ decay

Physics Letter B 699 (2011) 330-340, the LHCb collaboration

 $B(B_{s} \to \mu^{+} \mu^{-}) < 56 \times 10^{-9} \quad (\text{exp. limit} : 65 \times 10^{-9}) \\ B(B_{d} \to \mu^{+} \mu^{-}) < 15 \times 10^{-9} \quad (\text{exp. limit} : 18 \times 10^{-9}) \\ \end{array}$

close to the world best limits from Tevatron

Several rare signal have been observed

$$B^0 \rightarrow K^* \mu^+ \mu^-, B^+ \rightarrow K^+ \mu^+ \mu^-, B^0 \rightarrow K^* \gamma, B_s \rightarrow \Phi \gamma$$

Interesting new results are expected with 2011 run

BACKUP

LHCb As a second second the second ertormance

H(

The LHCb Trigge

The trigger strategy is a sensitive part of the rare decay selection and reconstruction

Level-O Trigger (Hardware)

- Fully synchronous (40 MHz) custom electronics
 Visible interaction rate 10 MHz → 1MHz
- Identification of highest P_T : h, e, γ, π° and μ candidates
 typical threshold : μ ~ 1 GeV/c h, e, γ, π° ~ 3-4 GeV/c
 typical bandwdith : Hadron/Ecal/Muon ~ 700/200/100 kHz

Trigger typical performance

	ε (LO)	ε <mark>(HLT)</mark>	ε(total)
Hadronic	50%	80%	40%
Electromagnetic	70 %	60%	40%
Muon	90%	80%	70%

 ε corrected for acceptance and selection

Trigger efficiencies L0xHLT1 determined on data using the tag-and-probe methods:						
	Muon trigger (J/ψ)	Hadron trigger (D ⁰)				
Data	94.9±0.2%	60±4%				
MC	93.3±0.2%	66%				

LHCb THCp Searc	h for	B _{s,d}	μt			
	B	$\frac{\epsilon_{\text{norm}}^{\text{REC}} \epsilon_{\text{norm}}^{\text{SEL} \text{REC}}}{\epsilon_{\text{sig}}^{\text{REC}} \epsilon_{\text{sig}}^{\text{SEL} \text{REC}}}$	$\epsilon_{norm}^{TRIG SEL}$ $\epsilon_{sig}^{TRIG SEL}$	$N_{\rm norm}$	$\alpha_{B^0_s \to \mu^+ \mu^-}$	$\alpha_{B^0\!\to\mu^+\mu^-}$
	$(\times 10^{-5})$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B		$(\times 10^{-9})$	$(\times 10^{-9})$
$B^+ \rightarrow J/\psi(\mu\mu)K^+$	5.98 ± 0.22	0.49 ± 0.02	0.96 ± 0.05	$12,366\pm403$	8.4 ± 1.3	2.27 ± 0.18
$B^0_s \rightarrow J/\psi(\mu\mu)\phi(KK)$	3.4 ± 0.9	0.25 ± 0.02	0.96 ± 0.05	760 ± 71	10.5 ± 2.9	2.83 ± 0.86
$B^0\!\to K^+\pi^-$	1.94 ± 0.06	0.82 ± 0.06	0.072 ± 0.010	578 ± 74	7.3 ± 1.8	1.99 ± 0.40

Summary of the factors and their uncertainties needed to calculate the normalization factors $(\alpha_{B^0_{(s)} \to \mu^+ \mu^-})$ for the three normalization channels considered. The trigger efficiency and number of $B^0 \to K^+ \pi^-$ candidates correspond to only TIS events, as described in the text.

Normalization factors: systematic uncertainties

	ε(REC)xε(SEL)	ε(TRIG)	fd/fs	N	BR	total
$B^{\pm} {\bigstar} J/\psi \; K^{\pm}$	4%	5%	13%	3%	4%	15%
$B_{S} {\boldsymbol{\rightarrow}} J/\psi \varphi$	8%	5%		9%	26%(*)	28%
$B^0_d \rightarrow K\pi$	7%	14%	13%	13%	3%	23%

(*) from Belle @ Y (5S): arXiv:0905.4345

f_d/f_s: present and future

Currently use HFAG average of LEP/Tevatron: f_d/f_s=3.71±0.47

13% accuracy

http://www.slac.stanford.edu/xorg/hfag/osc/end_2009/#FRAC

Preliminary results from LHCb

1) f_d/f_s from relative yields of $B^0 \rightarrow D^+K^-$ (and $B^0 \rightarrow D^+\pi^-$) to $B^0_s \rightarrow D^+_s\pi^-$, 35 pb⁻¹:

 $f_d/f_s=4.02\pm0.52$ using $B^0\rightarrow D^+\pi^-$

Fleischer et al., Phys.Rev.D83,014017(2011) LHCb-CONF-2011-013

2) f_d/f_s from semileptonic decays, 3 pb⁻¹ : $f_d/f_s=3.84\pm0.34$

16

Geometrical Likelinood Bins

$B_s \rightarrow \mu\mu$ search window GL bin [0.25, 0.5][0.75, 1][0, 0.25][0.5, 0.75] $56.9^{+1.1}_{-1.1}$ $1.31\substack{+0.19\\-0.17}$ $0.282^{+0.076}_{-0.065}$ $0.016\substack{+0.021\\-0.010}$ Exp. bkg. [-60, -40] $0.0076\substack{+0.0034\\-0.0030}$ $0.0050\substack{+0.0027\\-0.0020}$ $0.0037\substack{+0.0015\\-0.0011}$ $0.0047\substack{+0.0015\\-0.0010}$ Exp. sig. Observed 39 $\mathbf{2}$ 0 1 $1.28^{+0.18}_{-0.17}$ $0.269\substack{+0.072\\-0.062}$ $0.015\substack{+0.020\\-0.009}$ $56.1^{+1.1}_{-1.1}$ Exp. bkg. [-40, -20] $0.0220^{+0.0084}_{-0.0079}$ $0.0146\substack{+0.0066\\-0.0053}$ $0.0107\substack{+0.0036\\-0.0026}$ $0.0138\substack{+0.0034\\-0.0024}$ Exp. sig. (MeV/c^2) Observed 55 $\mathbf{2}$ 0 0 $1.24_{-0.16}^{+0.17}$ $0.257^{+0.069}_{-0.059}$ $0.014_{-0.009}^{+0.018}$ $55.3^{+1.1}_{-1.1}$ Exp. bkg. [-20, 0] $0.038^{+0.015}_{-0.014}$ $0.025\substack{+0.012\\-0.010}$ $0.0183^{+0.0063}_{-0.0047}$ $0.0235\substack{+0.0059\\-0.0042}$ hin Exp. sig. Observed 73 0 0 0 mass $54.4^{+1.1}_{-1.1}$ $1.21\substack{+0.17 \\ -0.16}$ $0.246^{+0.066}_{-0.057}$ $0.013\substack{+0.017\\-0.008}$ Exp. bkg. [0, 20]Invariant $0.03761^{+0.015}_{-0.015}$ $0.025\substack{+0.012\\-0.010}$ $0.0183^{+0.0063}_{-0.0047}$ $0.0235\substack{+0.0060\\-0.0044}$ Exp. sig. Observed 60 0 0 0 $53.6^{+1.1}_{-1.0}$ $1.18^{+0.17}_{-0.15}$ $0.235^{+0.063}_{-0.054}$ $0.012\substack{+0.015\\-0.007}$ Exp. bkg. [20, 40] $0.0220\substack{+0.0084\\-0.0081}$ $0.0146\substack{+0.0067\\-0.0054}$ $0.0107^{+0.0036}_{-0.0027}$ $0.0138\substack{+0.0035\\-0.0025}$ Exp. sig. Observed 53 $\mathbf{2}$ 0 0 $1.15\substack{+0.16\\-0.15}$ $0.224^{+0.060}_{-0.052}$ $0.011\substack{+0.014\\-0.007}$ $52.8^{+1.0}_{-1.0}$ Exp. bkg. [40, 60] $0.0076^{+0.0031}_{-0.0027}$ $0.0050\substack{+0.0025\\-0.0019}$ $0.0037^{+0.0013}_{-0.0010}$ $0.0047\substack{+0.0013\\-0.0010}$ Exp. sig. Observed 550 1 0

Invariant Mass bins (MeV/c²)

THCP Search for Bsd->µrµ

LHCb perspective :

Extrapolation from the 37 pb⁻¹ analyzed so far :

LHCb will explore an interesting region in the 2011-2012 long run

Direct Search:

 5σ discovery contours for observing the heavy MSSM Higgs bosons H, A with

$$H, A \rightarrow \tau + \tau \rightarrow \text{jets (solid line)},$$

 $\rightarrow \text{jet} + \mu \text{ (dashed line)},$
 $\rightarrow \text{jet} + e \text{ (dotted line)},$
assuming 30 or 60 fb⁻¹ collected by **CMS**.

• Another way to measure the photon polarization :

-> Angular analysis of the decay $B_d \rightarrow K^*ee$ decay in the low q² region

B(B⁰→K*ee)= $(1.03^{+0.19}_{-0.17}) \times 10^{-6}$

[HFAG2010]

-> preliminary analysis of LHCb data indicates that O(100) are to be collected in 2 fb⁻¹

-> expected to give a competitive measurement to $B^0 \rightarrow \Phi \gamma$

-> additional information from $K^*\mu\mu$ at low q^2 could be used