

Low Mass Higgs Searches at the Tevatron Satish Desai – Fermilab the CDF and DØ Collaborations 23rd Rencontres de Blois Château Royal de Blois, 2011

Fits and Constraints

- Electroweak symmetry breaking is a cornerstone of the standard model
- Higgs mechanism provides mass for the W and Z
- A consequence of this is the Higgs boson
- Mass is not predicted

M_H < 158 GeV (indirect constraints) M_H < 185 GeV (include LEP search)

Leave No Higgs Behind

This Talk

Channel	DØ	CDF		
$WH \rightarrow Ivb\overline{b}$	5.3 fb ⁻¹	5.7 fb ⁻¹		
$ZH ightarrow \nu v b \overline{b}$	6.2 fb ⁻¹	5.7 fb ⁻¹		
$ZH \rightarrow IIb\overline{b}$	6.2 fb ⁻¹	5.7 fb ⁻¹		
$H ightarrow \gamma \gamma$	8.2 fb ⁻¹	7.0 fb ⁻¹		
H+X ightarrow au aut	5.4 fb ⁻¹	6.0 fb ⁻¹		
Updated Since Moriond				

Comprehensive search program

- Look everywhere we can
- High mass searches contribute too

And...

And
$$H \rightarrow WW \rightarrow I_V I_V$$

And
$$H \rightarrow WW \rightarrow Ivjj$$

And same sign dilepton

Signals and Backgrouds

Signals and Backgrounds

Signals and Backgrounds

Associated Production Searches

- Crucial ingredients
 - Maximize lepton acceptance
 - Efficient b-tagging
 - Multivariate discriminants

Leptons and Jets

- One or two high p_T electrons or muons
- Infer neutrinos from p_T
 imbalance (missing E_T)
- Two Jets
- At least one b-tag

Events / 1.5 GeV

Run 248968 Evt 48062268 Fri Jan 23 06:59:26 2009 Recovers events from WH Jet Large missing E_{T} Jet • Two high p_T jets At least one b-tag TRK <u>×10³</u> ZH→vvbb Analysis sample (pre b-tag) CDF Run II Preliminary, 5.7 fb⁻¹ Events / 0.04 Events/10 D0 Preliminary (6.2 fb⁻ 1SHiggs Multijet Top V+h.f.+VV W+HF V+I.f. Z+HF 400 Multijet VH × 500 Diboson Single Top Top Pair - DATA Signal (x100) 200 0 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8 0.4 Multijet DT 300 100 200 Ŭ 400 Dijet invariant mass

b-tagging

How to Get a Limit

- Train multivariate
 discriminants
- Exploit full distribution by doing counting experiment for each bin

- Combine by multiplying per bin likelihoods
- Track correlations of uncertainties across bins
- Combination of many channels becomes straightforward (in concept) – just add more bins

Results at M _H = 115 GeV						
Channel	DØ		CDF			
	Expected	Observed	Expected	Observed		
$WH \rightarrow l\nu b\overline{b}$	4.8	4.5	3.5	3.6		
$ZH ightarrow \nu v b \overline{b}$	4.0	3.4	4.0	2.3		
$ZH \rightarrow IIb\overline{b}$	5.7	8.0 🔨	5.5	6.0		

Updated since combination

Combined limits @ 115 GeV: Exp: 1.45 × σ_{SM} Obs: 1.56 × σ_{SM}

Exclude M_H < 109 GeV

More Recent Results

Channel	DØ	CDF		
$WH \rightarrow Ivb\overline{b}$	5.3 fb ⁻¹	5.7 fb ⁻¹		
$ZH \rightarrow \nu \nu b \overline{b}$	6.2 fb ⁻¹	5.7 fb ⁻¹		
$ZH \rightarrow IIb\overline{b}$	6.2 fb ⁻¹	5.7 fb ⁻¹		
$H\to \gamma\gamma$	8.2 fb ⁻¹	7.0 fb ⁻¹		
H+X ightarrow au auttjj	5.4 fb ⁻¹	6.0 fb ⁻¹		
Updated Since Moriond				

Searches in ττ plus jets channels

Selection:

One hadronic τ One electron or μ At least one jet

Searches in ττ plus jets channels

Diphoton final states

Backgrounds from control samples and Monte Carlo

Multivariate analysis to enhance sensitivity

Background from sideband method

Extended selection: forward photons conversions

Diphoton final states

Tevatron Run II Preliminary $H \rightarrow \gamma \gamma$ L \leq 8.2 fb⁻¹

- All major channels will be updated for EPS
- Expect analyzed datasets of 8-9 fb⁻¹
- Will soon start pushing past the LEP lower bound

 Sensitivity across entire mass range by the winter conferences

http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm http://www-cdf.fnal.gov/physics/new/hdg/hdg.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm http://www-cdf.fnal.gov/physics/new/hdg/hdg.html

Production and Decay

Associated Production Searches

Resolving the Mass Peak

- For $H \rightarrow b\overline{b}$, dijet mass is the key variable
- Better mass resolution gives better sensitivity
- In IIbb channels expect minimal missing E_T
 - Exploit to improve jet energy measurement

