# Searches for SUperSYmmetry



Oliver Buchmüller (Imperial College London) 23rd Rencontres de Blois  $\vec{q}$   $\vec{\lambda}_1$  $\vec{q}$   $\vec{\chi}_2^0$   $\vec{1}^+$   $\vec{1}^+$  $\vec{q}$   $\vec{\chi}_2^0$   $\vec{q}$   $\vec{1}^ \vec{\chi}_1$   $\vec{\chi}_1^0$   $\vec{\chi}_1^0$   $\vec{\eta}$   $\vec{$ 

• Landscape of SUSY searches

• SUSY searches at ATLAS and CMS

• Putting it all together – where are we today?

31 May 2011

## **Searches for SUSY**



"Searches for SUSY" O. Buchmüller (ICL)

## **Searches for SUSY**



"Searches for SUSY" O. Buchmüller (ICL)

# Why is SUSY so Attractive?

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided



(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,



The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

"Searches for SUSY" O. Buchmüller (ICL)



# The Large Hadron Collider at CERN



# LHC: Run Year 2010



# 2011 Run Year – So Far



# **Early Searches at the LHC**

- Step1: commissioning of machine and detectors of unprecedented complexity, technology and performance
- Step2: Rediscovery of the Standard Model at 7 TeV. Establishing (i.e. measuring) its properties at a new energy frontier is essential for the searches! After all, Standard Model process are THE background to the New Physics Searches.
- Step3: perform the search

# **Re-Discovery of the Standard Model**



# **Re-Discovery of the Standard Model**



London

"Searches for SUSY" O. Buchmüller (ICL)

# **Re-Discovery of the Standard Model**



# What do we call a "SUSY search"?

The definition is purely derived from the experimental signature. Therefore, a "SUSY search signature" is characterized by Lots of missing energy, many jets, and possibly leptons in the final state



#### Missing Energy:

from LSP

#### Multi-Jet:

• from cascade decay (gaugino)

#### Multi-Leptons:

from decay of charginos/neutralios

RP-Conserving SUSY is a very prominent example predicting this famous signature but ...

# What is its experimental signature?

... by no means is it the only New Physics model predicting this experimental pattern. Many other NP models predict this genuine signature



#### Missing Energy:

• Nwimp - end of the cascade

#### Multi-Jet:

• from decay of the Ns (possibly via heavy SM particles like top, W/Z)

#### Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc but a more generic definition for this signature is as follows.

## Search strategy

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |

- Generic missing energy signatures
- Categorised by numbers of leptons and photons
- ➤ Many include jet requirement → strong production

## Search strategy

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |

- > Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies based on kinematics and detector understanding
- > Extend to b,  $\tau$  and top-tagged final states

# First SUSY Search of the LHC

The "QCD killer" 
$$a_T = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2}/E_{T j1}}}{\sqrt{2(1 - \cos\Delta\phi)}} \le 0.5$$

- Event selection:
  - Require >=2 jets with  $p_T$ >50 GeV
  - leading 2 jets with  $p_T > 100 \text{ GeV}$
  - Scalar sum of jet  $p_T$ ,  $H_T > 350$  GeV
  - Explicit veto on
    - isolated el/mu with p<sub>T</sub>>10 GeV
    - photons with p<sub>T</sub> > 25 GeV
  - $\alpha_{T} > 0.55$

• QCD multijet events eliminated

| Selection                                               | Data  | SM             | QCD multijet    | $Z \rightarrow \nu \bar{\nu}$ | W + jets      | tī            |
|---------------------------------------------------------|-------|----------------|-----------------|-------------------------------|---------------|---------------|
| $H_{\Upsilon} > 250 \text{ GeV}$                        | 4.68M | 5.81M          | 5.81M           | 290                           | 2.0k          | 2.5k          |
| $E_T^{i\mu} > 100 \text{ GeV}$                          | 2.89M | 3.40M          | 3.40M           | 160                           | 610           | 830           |
| $H_{\Upsilon} > 350 \mathrm{GeV}$                       | 908k  | 1.11M          | 1.11M           | 80                            | 280           | 650           |
| $\alpha_T > 0.55$                                       | 37    | $30.5 \pm 4.7$ | $19.5 \pm 4.6$  | $4.2 \pm 0.6$                 | $3.9 \pm 0.7$ | $2.8 \pm 0.1$ |
| $\Delta R_{\text{ECAL}} > 0.3 \lor \Delta \phi^* > 0.5$ | 32    | $24.5 \pm 4.2$ | $14.3 \pm 4.1$  | $4.2 \pm 0.6$                 | 3.6±0.6       | $2.4 \pm 0.1$ |
| $R_{\rm miss} < 1.25$                                   | 13    | 9.3±0.9        | $0.03 \pm 0.02$ | $4.1\pm0.6$                   | 3.3±0.6       | $1.8\pm0.1$   |

"Searches for SUSY" O. Buchmüller (ICL)



London

# **Exclusion in the CMSSM**

- CMSSM: 4 parameter model assuming common gaugino and scalar masses at GUT scale (m<sub>1/2</sub>, m<sub>0</sub>)
- In absence of signal, calculate 95% CL exclusion limit using Feldman-Cousins
- tanβ independent exclusion
- Exclude squark and gluino masses of ~550-650 GeV in CMSSM





 Selection efficiency approximately production-process independent

| Production mechanism | Yields for 35 pb <sup>-1</sup> | $\epsilon_{\text{total}}(\%)$ | $\epsilon_{signature}(\%)$ |
|----------------------|--------------------------------|-------------------------------|----------------------------|
| Ĩ Ĩ                  | 9.7±0.1                        | $16.0 \pm 0.1$                | 22.2±0.4                   |
| Ĩ Ŝ                  | 8.8±0.1                        | $14.4 \pm 0.1$                | $23.0\pm0.5$               |
| Ĩ Ŝ                  | 0.71±0.02                      | $12.0\pm0.4$                  | 22.5±2.0                   |

• 12% uncertainty on signal efficiency, dominated by 11% luminosity uncertaint

17

# ATLAS: Jets+E<sup>mis</sup>



|          |                                                                   | Α     | В     | С      | D      |
|----------|-------------------------------------------------------------------|-------|-------|--------|--------|
| ion      | Number of required jets                                           | ≥ 2   | ≥ 2   | ≥ 3    | ≥ 3    |
| lect     | Leading jet $p_T$ [GeV]                                           | > 120 | > 120 | > 120  | > 120  |
| e-se     | Other jet(s) $p_{\rm T}$ [GeV]                                    | > 40  | > 40  | > 40   | > 40   |
| Pr       | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]                            | > 100 | > 100 | > 100  | > 100  |
| tion     | $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$ ) <sub>min</sub> | > 0.4 | > 0.4 | > 0.4  | > 0.4  |
| elec     | $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$                 | > 0.3 | -     | > 0.25 | > 0.25 |
| Final se | $m_{\rm eff}$ [GeV]                                               | > 500 | -     | > 500  | > 1000 |
|          | $m_{T2}$ [GeV]                                                    | -     | > 300 | _      | -      |

#### Define search in categories to cover different signatures and to improve sensitivity (e.g. in CMSSM).



"Searches for SUSY" O. Buchmüller (ICL)

# Jets+E<sup>mis</sup> (plus b's)

 $\geq$  3 jets, with at least 1 btag Two analyses: with/without 1 lepton



## MET & HT define the signal region

#### estimated bkg

|                           | 0-lepton       | 1-lepton<br>Monte Carlo | 1-lepton<br>data-driven |
|---------------------------|----------------|-------------------------|-------------------------|
| $t\bar{t}$ and single top | $12.2 \pm 5.0$ | $12.3 \pm 4.0$          | $14.7 \pm 3.7$          |
| W and Z                   | $6.0 \pm 2.0$  | $0.8 \pm 0.4$           | -                       |
| QCD                       | $1.4 \pm 1.0$  | $0.4 \pm 0.4$           | $0^{+0.4}_{-0.0}$       |
| Total SM                  | $19.6 \pm 6.9$ | $13.5 \pm 4.1$          | $14.7 \pm 3.7$          |
| Data                      | 15             | 9                       | 9                       |



"Searches for SUSY" O. Buchmüller (ICL)

 $\geq$  2 jets, with at least 1 btag



#### $\boldsymbol{\alpha}_{_{T}}$ & HT define the signal region

#### bkg from MC

| N-jets   | QCD             | tť              | W               | $Z \rightarrow \nu \overline{\nu}$ | $Z \rightarrow l^+l^-$ | total           |
|----------|-----------------|-----------------|-----------------|------------------------------------|------------------------|-----------------|
| 2        | $0 \pm 0.11$    | $0.01 \pm 0.01$ | $0 \pm 0.1$     | $0 \pm 0.09$                       | $0 \pm 0.09$           | $0.01 \pm 0.21$ |
| $\geq 3$ | $0.05 \pm 0.05$ | $1.08 \pm 0.07$ | $0.10 \pm 0.10$ | $0.38 \pm 0.18$                    | $0 \pm 0.09$           | $1.61 \pm 0.26$ |

#### bkg from data

| N-jets   | MC            | Background Prediction                                       | Data | LM0          |
|----------|---------------|-------------------------------------------------------------|------|--------------|
| $\geq 2$ | $1.61\pm0.26$ | $0.33^{+0.43}_{-0.33} (\text{stat}) \pm 0.13 (\text{syst})$ | 1    | $14.2\pm0.3$ |



**Jets+E**<sub>T</sub><sup>mis</sup>: **2010** 



# **Additional Interpretation**

CMSSM

What we see is much more simple...



# Simplified Model Spectra



## Search strategy

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |



- > A natural SUSY signature
- Very small Standard Model backgrounds
- > Include all three generations of leptons and all cross channels

# Same-sign dilepton search



# SUSY: All Together



# **SUSY: All Together**



# **B**<sub>s</sub> -> μμ



## **Direct Dark Matter Searches**

10-35 DAMA/Na 10<sup>-40</sup> WIMP-Nucleon Cross Section [cm<sup>2</sup>] CoGeNT DAMA/I 10-41 CDMS 10<sup>-42</sup> EDELWEISS 10-43 XENON100 (2010) 10.4 XENON100 (2011) Buckmueller et al. 10-43 40 50 300 400 6 7 8 910 20 100 200 1000 30 WIMP Mass [GeV/c<sup>2</sup>]

Example: Xenon100

New result: arXiv:1104.2549



The XENON100 experiment is located deep underground at the Gran Sasso National Laboratory in Italy.

#### 62 kg liquid Xenon target 100 days of data taking 1.8±0.6 events expected 3 events observed

 $\Rightarrow Exclude 7.0 \times 10^{-45} \text{ cm}^2$ for a  $M_{WIMP}$  = 50 GeV at 90% CL.

## **Putting it all Together – Where are Toady?**



## **Confronting Data with Theory: New Physics**

0707.3447 [hep-ph]

#### $\Delta \chi^2$ MASTERCODE 3.5 SM 2.5 15 CMSSM 0.5 LEP excluded 40 200100 $m_{\rm Higgs} \, [{\rm GeV}/c^2]$

Global SUSY Fit

*Example: "redo" SM fit in SUSY predicting the lightest higgs boson mass in the Constraint Minimal Supersymmeteric Standard Model (CMSSM)* 

"Searches for SUSY" O. Buchmüller (ICL)

#### MasterCode Collaboration



iomeas ofiti meas

OB (Exp), R. Cavanaugh (Exp), A. De Roeck (Exp), J. Ellis (Theo), H. Flaecher (Exp), S. Heinemeyer (Theo), G. Isidori (Theo), K. Olive (Theo), P. Paradisi, (Theo), F. Ronga (Exp), G. Weiglein (Theo)

| 10                                                        |                                   | IO -0 1/8 |                   |
|-----------------------------------------------------------|-----------------------------------|-----------|-------------------|
| Variable                                                  | Measurement                       | Fit       | 0 1 2 3           |
| $\Delta \alpha_{\rm had}^{(5)}({\rm m_z})$                | $0.02758 \pm 0.00035$             | 0.02774   |                   |
| m <sub>z</sub> [GeV]                                      | $91.1875 \pm 0.0021$              | 91.1873   |                   |
| $\Gamma_{\rm Z}$ [GeV]                                    | $2.4952 \pm 0.0023$               | 2.4952    |                   |
| $\sigma_{had}^0$ [ <b>nb</b> ]                            | $41.540 \pm 0.037$                | 41.486    |                   |
| R                                                         | $20.767 \pm 0.025$                | 20.744    |                   |
| A <sup>0,1</sup>                                          | $0.01714 \pm 0.00095$             | 0.01641   |                   |
| $\mathbf{A}_{\mathbf{I}}(\mathbf{P}_{\tau})$              | $0.1465 \pm 0.0032$               | 0.1479    |                   |
| R <sub>b</sub>                                            | $0.21629 \pm 0.00066$             | 0.21613   | ⊨                 |
| R <sub>c</sub>                                            | $0.1721 \pm 0.0030$               | 0.1722    |                   |
| $\mathbf{A}_{\mathbf{fb}}^{0,\mathbf{b}}$                 | $0.0992 \pm 0.0016$               | 0.1037    |                   |
| A <sup>0,c</sup>                                          | $0.0707 \pm 0.0035$               | 0.0741    |                   |
| A <sub>b</sub>                                            | $0.923 \pm 0.020$                 | 0.935     |                   |
| A <sub>c</sub>                                            | $0.670 \pm 0.027$                 | 0.668     |                   |
| A <sub>l</sub> (SLD)                                      | $0.1513 \pm 0.0021$               | 0.1479    |                   |
| $\sin^2 \theta_{\rm eff}^{\rm lept}(\mathbf{Q}_{\rm fb})$ | $0.2324 \pm 0.0012$               | 0.2314    |                   |
| m <sub>w</sub> [GeV]                                      | $80.398 \pm 0.025$                | 80.382    |                   |
| m <sub>t</sub> [GeV]                                      | 170.9 ± 1.8                       | 170.8     |                   |
| R(b→sγ)                                                   | $1.13 \pm 0.12$                   | 1.12      |                   |
| B <sub>s</sub> →μμ [×10 <sup>-8</sup>                     | ] < 8.00                          | 0.33      | N/A (upper limit) |
| Δa <sub>μ</sub> [×10 <sup>-9</sup> ]                      | $\textbf{2.95} \pm \textbf{0.87}$ | 2.95      |                   |
| $\Omega h^2$                                              | $0.113 \pm 0.009$                 | 0.113     |                   |
|                                                           |                                   |           |                   |

#### Pull for CMSSM fit

## **LHC & SUSY Parameter Space**



## **LHC & SUSY Parameter Space**



# Where might we be in 2012?



# Where might we be in 2012?



"Searches for SUSY" O. Buchmüller (ICL)

London

# Summary

- The experimental landscape for SUSY searches is multifaceted!
  - > Several very powerful direct searches but also a lot of indirect information
  - > Many of the direct searches are pursued on similar times scales.
- Already in 2010 the LHC has enter new territory for almost all low mass searches and has pushed the SUSY mass scale to almost 1 TeV
  - ➢ No observation so far − set limits
  - In 2011 first signals might emerge very early but it might also take more time and ingenuity before we can claim a discovery
- The outcome of the direct searches in 2012/13 will have crucial implications.
  - With ~3fb<sup>-1</sup> the LHC reach will extend significantly beyond the 1 TeV mass scale
  - > Continue to explore detection of a dark matter candidate signal

So far SUSY has not revealed itself but with many of the powerful direct searches continuing to push the limits, discovery of a SUSY-like signal could now happen almost every day! The next two years will be very important!





# LHC SUSY Searches - additional material -

# Hadronic search with "Razor"

Another interesting all-hadronic search based on kinematics.

| R>0.5                   | Predicted | Observed |
|-------------------------|-----------|----------|
| M <sub>R</sub> >500 GeV | 5.5 ± 1.4 | 7        |



- Similar limits to jets+MHT analysis
- > Complementary use of kinematics instead of detailed detector understanding

# First SUSY search of the LHC

# SM backgrounds predicted with 3 data-driven methods

- Total background (QCD, W/tt, Z $\rightarrow$ vv) extrapolating  $\alpha_{T}$  ratio (R $_{\alpha T}$ ) from low H<sub>T</sub> to high H<sub>T</sub> region
  - Two methods based on data only:



- 1) exponential  $H_T$  dependence: 9.4<sup>+4.8</sup><sub>-4.0 stat</sub>  $\pm$  1.0<sub>syst</sub>
- 2) No HT dependence (const.  $R_{\alpha T}$ ) 12.5 ± 1.9<sub>stat</sub> ± 0.7<sub>syst</sub>
- W/tt background from muon control sample
  - invert muon veto
  - $6.1^{+2.8}_{-1.9stat} \pm 1.8_{syst}$
- Z→vv background from photon control sample
  - invert photon veto
  - $4.4^{+2.3}_{-1.6stat} \pm 1.8_{syst}$



# 13 events in data after full selection

- kinematic properties compatible with SM expectation
- $M_{eff} = H_T + MH_T$



## Hadronic search with missing energy

- Analysis based on understanding the detector response in detail
- Complementary to kinematicsbased searches
- Baseline selection
  - > At least 3 jets with  $E_T > 50$  GeV & |  $\eta$  | <2.5 anti-kT (0.5)
  - >  $H_T$ >300 GeV and MHT > 150 GeV
  - Veto isolated electrons and muons

## Backgrounds from

- Multi-jet QCD, Z → vv, W+jets, ttbar
- All determined from data-driven techniques →





MC backgrounds (illustrative)

## Hadronic search with missing energy



. Results expressed in terms of 95% C.L. in CMSSM

. Extends limit from  $\alpha_T$  search and Tevatron

## Search strategy (what and how?)

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |

- ? Lepton (electron or muon) requirement reduces background considerably
- ? Only ttbar and W+jets left  $\rightarrow$  topological handles

# Jets+E<sub>T</sub><sup>mis</sup> + 1 Lepton

#### 1 e or $\mu$ (pt > 20) $\geq$ 4 jets, pt > 30 MET > 250, HT > 500



| Sample                   | $\ell = \mu$        | $\ell = e$             |
|--------------------------|---------------------|------------------------|
| Predicted SM 1 ℓ         | $1.7\pm1.4$         | $1.2\pm1.0$            |
| Predicted SM dilepton    | $0.0^{+0.8}_{-0.0}$ | $0.0^{+0.6}_{-0.0}$    |
| Predicted single $\tau$  | $0.29\pm0.22$       | $0.32^{+0.38}_{-0.32}$ |
| Predicted QCD background | $0.09\pm0.09$       | $0.0^{+0.16}_{-0.0}$   |
| Total predicted SM       | $2.1\pm1.5$         | $1.5\pm1.2$            |
| Observed signal region   | 2                   | 0                      |



1 e or  $\mu$  (pt > 20)  $\geq$  3 jets, pt > (60,30,30) MET > 125, Meff > 500





"Searches for SUSY" O. Buchmüller (ICL)

## Search strategy (what and how?)

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |



- ? Adding a second lepton (electron or muon) reduced W background
- ? Two analyses here: inclusive and Z peak search
- ? Several techniques including opposite-sign opposite-flavour subtraction
- ? Shape information and mass edges

# **Opposite-sign dilepton search**

Adding a second lepton rejects W+jets leaving mostly top background

arxiv:1103.1348

### Baseline selection

- > Two isolated leptons (e or  $\mu$ ); one with p<sub>T</sub>>20 GeV, other with p<sub>T</sub>>10 GeV
- Veto same-flavour pairs in Z mass window and m<sub>l</sub><10 GeV</p>
- > At least 2 jets with  $p_T$ >30 and  $|\eta|$ <2.5

#### Study selected events

- Simulation predicts background from top
- > General event properties well understood

#### > Determine backgrounds from data $\rightarrow$

# **Opposite-sign dilepton result**



|          |           |          | • |
|----------|-----------|----------|---|
|          | Predicted | Observed |   |
| Region D | 1.3 ± 0.8 | 1        |   |



- Limit in CMSSM beyond previous Tevatron searches
- Also result from opposite-sign opposite-flavour subtraction
  - > Observed in data: ee:0  $\mu$   $\mu$ :0 Predicted background: ee: 0.1<sup>+1</sup>-0.4  $\mu$   $\mu$ : 0.5<sup>+1.2</sup>-0.4
  - Powerful technique to obtain mass edge in the case of SUSY

## Jets+E<sub>T</sub><sup>mis</sup> + OS-Lepton

#### 2 leptons, pt > (20,10), OS, Z veto $\geq$ 2 jets, pt > 30 HT > 300, MET/ $\sqrt{HT}$ > 8.5

| sample                               | NA              | NB               | N <sub>C</sub>   | N <sub>D</sub>  | $N_A \times N_C/N_B$ |
|--------------------------------------|-----------------|------------------|------------------|-----------------|----------------------|
| $t\bar{t} \rightarrow \ell^+ \ell^-$ | $8.44 \pm 0.18$ | $32.83 \pm 0.35$ | $4.78 \pm 0.14$  | $1.07 \pm 0.06$ | $1.23 \pm 0.05$      |
| $t\bar{t} \rightarrow other$         | $0.12 \pm 0.02$ | $0.78 \pm 0.05$  | $0.16 \pm 0.02$  | $0.02 \pm 0.01$ | $0.02 \pm 0.01$      |
| Drell Yan                            | $0.17 \pm 0.08$ | $1.18 \pm 0.22$  | $0.04 \pm 0.04$  | $0.12 \pm 0.07$ | $0.01 \pm 0.01$      |
| $W^{\pm} + jets$                     | $0.00 \pm 0.00$ | $0.09 \pm 0.09$  | $0.00 \pm 0.00$  | $0.00 \pm 0.00$ | $0.00 \pm 0.00$      |
| $W^{+}W^{-}$                         | $0.11 \pm 0.01$ | $0.29 \pm 0.02$  | $0.02 \pm 0.01$  | $0.03 \pm 0.01$ | $0.01 \pm 0.00$      |
| $W^{\pm}Z$                           | $0.01 \pm 0.00$ | $0.04 \pm 0.00$  | $0.00 \pm 0.00$  | $0.00 \pm 0.00$ | $0.00 \pm 0.00$      |
| ZZ                                   | $0.01 \pm 0.00$ | $0.02 \pm 0.00$  | $0.00 \pm 0.00$  | $0.00 \pm 0.00$ | $0.00 \pm 0.00$      |
| single top                           | $0.29 \pm 0.01$ | $1.04 \pm 0.03$  | $0.04 \pm 0.01$  | $0.01 \pm 0.00$ | $0.01 \pm 0.00$      |
| total SM MC                          | $9.14 \pm 0.20$ | $36.26 \pm 0.43$ | $5.05 \pm 0.14$  | $1.27 \pm 0.10$ | $1.27 \pm 0.05$      |
| data                                 | 12              | 37               | 4                | 1               | $1.30 \pm 0.78$      |
| LM0                                  | $4.04 \pm 0.19$ | $4.45 \pm 0.20$  | $13.92 \pm 0.36$ | $8.63 \pm 0.27$ | $12.63 \pm 0.88$     |
| LMI                                  | $0.52\pm0.02$   | $0.26\pm0.02$    | $1.64 \pm 0.04$  | $3.56\pm0.06$   | $3.33 \pm 0.27$      |



<sup>&</sup>quot;Searches for SUSY" O. Buchmüller (ICL)

# 2 OS leptons, pt > 20, MET > 150 (100 for FS analysis), no jet requirement



## Search strategy (what and how?)

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |

- ? Very clean events with very low Standard Model background
- ? Include all three generations of leptons and all combinations
- ? Search inclusively, on the Z peak, with and without MET
- ? Some striking Standard Model events observed already

# Jets+E<sub>T</sub><sup>mis</sup> + Multi-Lepton

≥ 3 leptons, including taus! pt from 8 GeV Tau: full tau ID; also isolated track MET > 50 or  $H_{\tau}$  > 200

Complex analysis: many exclusive search channels



e and µ, pt > 20,20,20(e) or 10(µ) Z veto, m(ℓ) < 20 also vetoed ≥ 2 jets, pt > 50 MET > 50

- 19 events with 3 leptons (before other cuts). 0 events after cuts
- 0 events with 4 or more leptons



"Searches for SUSY" O. Buchmüller (ICL)

## Search strategy (what and how?)

| 0-leptons  | 1-lepton                      | OSDL                                       | SSDL                                    | ≥3 leptons   | 2-photons                | γ+lepton                 |
|------------|-------------------------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|
| Jets + MET | Single lepton<br>+ Jets + MET | Opposite-sign<br>di-lepton +<br>jets + MET | Same-sign di-<br>lepton + jets<br>+ MET | Multi-lepton | Di-photon +<br>jet + MET | Photon +<br>lepton + MET |



- ? Many gauge-mediated models predict photons in final state
- ? Di-photon searches dominated by QCD multijet and  $\gamma$  +jet backgrounds



# Jets+E<sub>T</sub><sup>mis</sup> + Di-Photon



75

150

600

E<sup>miss</sup> [GeV]

# **Diphoton search**

#### Observe 1 event MET >50 GeV consistent with 1.2 ± 0.8 background



- Consider GGM model with neutralino (bino), gluino, and squark decaying to jets + two photons + two Gravitinos
- > 95% CL upper limit this simple model for neutralino mass = 150 GeV
- > Upper limits between 0.5 and 1.1 pb depending on masses
- > Beyond previous experiments

# W Polarisation in pp

- Dominant production of high P<sub>T</sub> (e.g. >50 GeV) W-bosons:
  - Valence quark-gluon dominating from low  $P_T(W)$  at the LHC



- Strong polarisation effects in transverse plane
- SM predicts predominant lefthandedness for both charges
- Initial states and CP counterparts not present in equal amounts at pp collider in contrast to pp
- Robust with jet multiplicity

# Strong polarisation effects in transverse plane at LHC expected. → W's are mainly produced left-handed in pp.

# LP Variable

- Fraction of W momentum imparted to a lepton solely depends on cos θ\* (Lorentz boost)
- Given that P<sub>z</sub>(W) cannot be uniquely determined, the polarisation variables can only include transverse quantities
- Define a transverse variable highly correlated to cos θ\*



Use LP to measure W polarisation at large  $P_T(W)$ 

"Searches for SUSY" O. Buchmüller (ICL)

## **Electron and Muon Channels Combined**

68% confidence level contours shown in the  $(f_L - f_R, f_0)$  plane



"Searches for SUSY" O. Buchmüller (ICL)

# ~40/pb (LHC) vs. ~10/fb (Tevatron)



"Searches for SUSY" O. Buchmüller (ICL)

# How much do we Gain?



57

# **Supersymmetry**

Extension of the Standard Model: Introduce a new symmetry Spin  $\frac{1}{2}$  matter particles (fermions)  $\Leftrightarrow$  Spin 1 force carriers (bosons) Standard Model particles SUSY particles

