Diboson production cross sections at the Tevatron

Ralf Bernhard
University of Freiburg
For the CDF and DØ Collaborations

23rd Rencontres de Blois
Particle Physics and Cosmology
Blois, 31. May 2011
Tevatron

- Most recent Diboson measurements from the CDF and DØ experiments
 - $W\gamma \rightarrow l\nu\gamma$
 - $Z\gamma \rightarrow ll\gamma$
 - $WZ \rightarrow ll\nu$
 - $ZZ \rightarrow llll, ll\nu\nu$
 - $WZ+ZZ \rightarrow lvbb/vvbb$

- Tevatron is a vector boson factory
 - Delivering ~ 50 pb$^{-1}$/week
 - ~ 600 WW, ~ 200 WZ, ~ 100 ZZ
 - Access to charged final states (not possible at LEP)
 - $W\gamma \rightarrow l\nu\gamma$, $WZ \rightarrow l\nu ll$, $l\nu qq$
Motivations for Diboson Physics

- Test of Standard Model
 - SM provides precise predictions of Diboson production cross sections

- New physics can enhance Diboson production
 - Enhancement of triple gauge couplings (TGCs)
 - Resonances decaying to pairs of bosons

- Measurement of SM Diboson Production is important step in hunt for Higgs boson
 - $H \rightarrow WW$ / $H \rightarrow ZZ$: Higgs can decay to Dibosons
 - Associated WH / ZH production: also same final states
$\sigma_{\text{NLO}} = 16.0 \pm 0.4 \text{pb}$
- $p_T(\gamma) > 8 \text{ GeV}, \Delta R(\gamma, l) > 0.7$
- Use 3-body mass $M_{l\nu\gamma}$ to distinguish Final State Radiation
- $\gamma W W$ vertex $\Rightarrow \kappa_\gamma$ and λ_γ
Wγ Cross Section (DØ)

- Unique test of the SM: Radiation amplitude zero
 - Destructive interference between tree-level diagrams
 - Dip in sign(l) × | η(γ) − η(l) |
 - In agreement with SM

- Cross section measurement
 - 4.2 fb⁻¹ of data
 - High p_Τμ, high p_Τγ, and MET
 - 492 Wγ candidates
 - Expected signal: 376 ± 42
 - Expected background: 134 ± 9
 - ~100 from W+jets

\[\sigma(p\bar{p} \rightarrow W\gamma) = (15.2 \pm 1.6(stat + syst)) \text{ pb} \]

\[\sigma_{NLO} = (16.0 \pm 0.4) \text{ pb} \]
Photon ET spectrum sensitive to anomalous TGCs
- Set 95% CL limits on anomalous TGCs ($\Lambda_{NP} = 2$ TeV)

1D Limits:
- $-0.14 < \Delta \kappa_\gamma < 0.15$
- $-0.02 < \lambda_\gamma < 0.02$

2D Limits:

68% Limits

| | $-0.1 < \Delta \kappa_\gamma < 0.029$ | $-0.043 < \lambda_\gamma < 0.014$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>$-0.049 < \Delta \kappa_\gamma < 0.095$</td>
<td>$-0.062 < \lambda_\gamma < 0.019$</td>
</tr>
<tr>
<td>OPAL</td>
<td>$-0.1 < \Delta \kappa_\gamma < 0.018$</td>
<td>$-0.097 < \lambda_\gamma < 0.024$</td>
</tr>
<tr>
<td>LEP2 combined</td>
<td>$-0.072 < \Delta \kappa_\gamma < 0.017$</td>
<td>$-0.049 < \lambda_\gamma < 0.008$</td>
</tr>
<tr>
<td>$D\O \ 4.2 \text{ fb}^{-1}$</td>
<td>$-0.07 < \Delta \kappa_\gamma < 0.07$</td>
<td>$-0.012 < \lambda_\gamma < 0.011$</td>
</tr>
</tbody>
</table>
Zγ Production

- No s-channel at the tree-level
- Zγγ and ZZγ vertices $\Rightarrow h_3^γ, h_3^Z, h_4^γ, h_4^Z$
Zγ Production (CDF)

- Photon ET spectra sensitive to TGCs
 - Combination of two selections
 - $Z\gamma \rightarrow ll\gamma$: 5.1 fb^{-1}, $\text{ET}(\gamma) > 50 \text{ GeV}$
 - $Z\gamma \rightarrow \nu\nu\gamma$: 4.9 fb^{-1}, $\text{ET}(\gamma) > 100 \text{ GeV}$
 - Observe 176 candidate events
 - Expected signal: 140 ± 9
 - Small background (mostly cosmic μ)
- Set 95% CL limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$(\Lambda = 1.2 \text{ TeV})$</th>
<th>$(\Lambda = 1.5 \text{ TeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_3^Z</td>
<td>$-0.018, 0.020$</td>
<td>$-0.017, 0.016$</td>
</tr>
<tr>
<td>h_4^Z</td>
<td>$-0.0009, 0.0009$</td>
<td>$-0.0006, 0.0005$</td>
</tr>
<tr>
<td>h_3^γ</td>
<td>$-0.021, 0.021$</td>
<td>$-0.017, 0.016$</td>
</tr>
<tr>
<td>h_4^γ</td>
<td>$-0.0009, 0.0010$</td>
<td>$-0.0006, 0.0006$</td>
</tr>
</tbody>
</table>

Tightest limits on $\gamma ZZ/\gamma\gamma Z$ couplings
WZ Production

- $\sigma_{NLO} = 3.5 \pm 0.3$ pb
- Not directly accessible at LEP
- No SM backgrounds with three leptons and MET
 - Small background from $ZZ \rightarrow llll$, $Z+$jets, tt
- WWZ vertex $\Rightarrow \kappa_Z, \lambda_Z, g_1^Z$
$WZ \rightarrow l\nu l\ell$ (CDF)

- Signature: three isolated, high-p_T leptons with MET
- Build Z from two opposite-sign, same-flavor leptons, require invariant mass to be close to Z mass

\[\frac{\sigma(p\bar{p} \rightarrow WZ)}{\sigma(p\bar{p} \rightarrow Z)} = (5.5 \pm 0.9) \times 10^{-4} \]

\[\sigma(p\bar{p} \rightarrow WZ) = (4.1 \pm 0.7) \text{ pb} \]
In 4.1 fb$^{-1}$, expect ~23 signal and ~6 BG events, observe 34, $\sigma(WZ) = 3.90^{+1.06}_{-0.90}$ pb

Use pT of Z boson to set limit on aTGCs: best limit from direct measurement of WWZ vertex

In the SM:
$g_1^Z, \kappa_\gamma, \kappa_Z \equiv 1$ and $\lambda_\gamma, \lambda_Z \equiv 0$
\(\sigma(p\bar{p} \rightarrow ZZ) = 1.26^{+0.47}_{-0.37} \text{(stat)} \pm 0.14 \text{(syst)} \text{ pb} \)

- Two pairs of opposite-sign, same flavor leptons → very clean signature
- First observation of ZZ in 2008 with three four-lepton events
- Now in 6.4 fb\(^{-1}\)
 - Expect ~9 signal events, ~0.4 BG events
 - Observe 10 events
ZZ → llll (CDF)

- In 6.1 fb⁻¹, expect ~10 signal events ~0.26 BG events
- Observe 14 events

\[\sigma(p\bar{p} \rightarrow ZZ) = 2 \pm 29\% (\text{stat}) \pm 16\% (\text{syst}) \pm 6\% (\text{lumi}) \text{ pb} \]
ZZ Kinematics

- Azimuthal angle between Z decay planes can distinguish different Scalar models
 - Higgs-like, CP violating/conserving scalar
Azimuthal angle between Z decay planes can distinguish different Scalar models
- Higgs-like, CP violating/conserving scalar
$ZZ \rightarrow llvv$ (CDF)

- **Z → l+l- plus high MET**
 - Not as clean as $Z \rightarrow llll$: background from Drell-Yan production

- **To reduce D-Y background, require MET to be back-to-back with Z boson in transverse plane**
 - 5.9 fb$^{-1}$
 - Expect ~50 signal events
 - Expect ~1100 BG events
 - Observe 1162 events

- **Use neural network to separate signal and background**
 - $\sigma(p\bar{p} \rightarrow ZZ) = 1.45^{+0.45}_{-0.42}(\text{stat})^{+0.41}_{-0.30}(\text{syst}) \text{ pb}$
VV with Hadronic Decays

- $\sigma_{\text{NLO}}(WZ+ZZ) = 4.9 \pm 0.3 \text{ pb}$
- Larger hadronic branching ratios
- Much larger background contamination
 - $W/Z+$jets: same final states, orders of magnitude larger cross sections
VV with Hadronic Decays

- **2009**: observed $VV \rightarrow \text{MET} + \text{jets}$ final states
 - $WW \rightarrow l\nu qq$, $WZ \rightarrow l\nu qq/qq\nu\nu$, $ZZ \rightarrow vvqq/qq\nu\nu$

![Graph showing dijet mass distribution](image-url)

Data (3.5 fb$^{-1}$)
- EWK Uncertainty
- Background
- Diboson Signal
- Signal Uncertainty

PRL 103, 091803 (2009)
WW+WZ \rightarrow lvjj

- One trigger lepton, two jets and MET \rightarrow large W+jets background
- Challenge is to separate signal and BG; model BG well

CDF matrix element:
\[\sigma(\text{WW}+\text{WZ}) = 17.4 \pm 3.3 \text{ pb} \]
PRD 82, 112001 (2010)

D0 random forest:
\[\sigma(\text{WW}+\text{WZ}) = 20.2 \pm 4.5 \text{ pb} \]
PRL 102, 161801 (2009)

CDF dijet mass:
\[\sigma(\text{WW}+\text{WZ}) = 18.1 \pm 4.1 \text{ pb} \]
VV with b-Tagging

- Now apply b-tagging (5.5 fb\(^{-1}\))
 - Try to separate out \(WZ \rightarrow l\nu bb\), \(ZZ \rightarrow \nu\nu bb\)
 - Same analysis tools as low mass Higgs searches
- Fit \(WZ+ZZ\) cross section
 - \(WW\) is constrained to prediction
 - \(W/Z+jet\) normalization free to fit

\[\sigma_{NLO} = 4.9 \pm 0.3 \text{ pb}\]
VV with b-Tagging

- Try to separate out $WZ \rightarrow l\nu bb$, $ZZ \rightarrow \nu \nu bb$
 - Same analysis tools as low mass Higgs searches

- Fit $WZ+ZZ$ cross section
 - WW is constrained to prediction
 - $W/Z+\text{jet}$ normalization free to fit

$$\sigma(p\bar{p} \rightarrow WZ + ZZ) = 5.0^{+3.6}_{-2.5} \text{ pb}$$

$$\sigma(p\bar{p} \rightarrow WZ + ZZ) < 13 \text{ pb at 95\% CL}$$

$\sigma_{\text{NLO}} = 4.9 \pm 0.3 \text{ pb}$
$WW \rightarrow l\nu l\nu$

- Signature: two opposite-sign, isolated, high-p_T leptons and large MET Major BGs from Drell-Yan, $W\gamma$, W+jets

- D0: count events, combine ee, $e\mu$ and $\mu\mu$ channels
 - \sim65 signal, \sim40 BG events in 1 fb$^{-1}$
 - $\sigma(WW)= 11.5\pm2.2$ pb

- CDF: matrix element probabilities to separate signal and BG
 - \sim300 signal, \sim300 BG events (3.6 fb$^{-1}$)
 - $\sigma(WW)= 12.1\pm1.8$ pb

PRL 103, 191801 (2009)

PRL 104, 201801 (2010)
4 – 6 fb⁻¹ of RunII Tevatron data analyzed by each experiment

Measuring very small cross sections

Setting some of the tightest limits on anomalous TGCs

Most results are still statistics limited

Expect ~2 × more data before the Tevatron shuts off
Tevatron Run II $p\bar{p}$ at $\sqrt{s} = 1.96$ TeV

Cross Section (picobarn)

- W
- Z
- W_γ
- Z_γ
- WW
- tt
- WZ
- t
- ZZ
- $H(150$ GeV)
- $H(120$ GeV)

CDF Run II
D0 Run II
Tevatron Run II Combined
Backup starts right here....
Motivation for Diboson Physics

- **Probe of new physics at some higher energy scale Λ_{NP}**

 - SM is the low energy limit of a more general theory
 - γWW and ZWW TGCs
 General Lagrangian has 14 TGC parameters
 Assume EM gauge invariance and C and P conservation
 $\Rightarrow g_{1Z}^2, \kappa_{\gamma}, \kappa_{Z} \equiv 1$ in the SM
 $\Rightarrow \lambda_{\gamma}, \lambda_{Z} \equiv 0$ in the SM
 - γZZ and $\gamma\gamma Z$ TGCs
 General Lagrangian has 8 TGC parameters
 Assume CP conservation
 $\Rightarrow h_{3\gamma}, h_{3Z}, h_{4\gamma}, h_{4Z} \equiv 0$ in the SM
Dibosons and the Higgs

- Sensitive Higgs search channels at the Tevatron:
Diboson production cross sections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>11.5 ± 2.2</td>
<td>$12.1^{+1.8}_{-1.7}$</td>
<td>11.7 ± 0.8</td>
</tr>
<tr>
<td>WZ</td>
<td>$3.90^{+1.06}_{-0.90}$</td>
<td>4.1 ± 0.7</td>
<td>3.5 ± 0.3</td>
</tr>
<tr>
<td>ZZ</td>
<td>$1.35^{+0.52}_{-0.43}$</td>
<td>$1.56^{+0.84}_{-0.68}$</td>
<td>1.4 ± 0.1</td>
</tr>
</tbody>
</table>

Different measurements use different integrated luminosities, between 1 and 6 fb$^{-1}$
WZ+ZZ →qqll

- 4.8 fb-1 of data
 - Two high pT leptons, two high pT jets, and low MET
 - Expected signal ~202 events
 - Expected background ~13000 events: Dominated by Z+jets
- Use an artificial Neural Network to identify signal like events
- Includes variables to separate quark and gluon jets
 ⇒ Significance ~1 standard deviation above background
$WW \rightarrow lvlv$

- CDF Run II, 184 pb$^{-1}$: 14.6 pb \pm 6.1
- D0 Run II, 224-252 pb$^{-1}$: 13.8 pb \pm 4.6
- CDF Run II, 825 pb$^{-1}$: 13.6 pb \pm 3.0
- D0 Run II, 1000 pb$^{-1}$: 11.5 pb \pm 2.2
- CDF Run II, 3600 pb$^{-1}$: 12.1 pb \pm 1.8

WW Cross Section (pb)
Moving to different kinematical region

- Using exactly the same kinematical cuts as the diboson analysis but:
- We require both jets to have $E_T > 30$ GeV
 1. Energetic jets are measured with better accuracy.
 2. Modeling in this region is expected to be more accurate
 3. A possible heavier particle would be characterized by more energetic jets
- Sample modeling using same processes with different relative contribution
- All cuts chosen “a priori”
CDF Dijet Mass Excess

Fitting procedure

- Combined χ^2 fit to the dijet mass distribution in electron and muon samples.
- 5 templates:
 1. $W + \text{jets}$ (unconstrained, normalization determined from the fit)
 2. QCD (normalization constrained to its fraction with 25% error)
 3. $Z + \text{jets}$ (normalization constrained to the measured cross section)
 4. top & single top (normalization constrained to the theoretical cross section)
 5. WW/WZ (normalization constrained to the theoretical cross section)
CDF Dijet Mass Excess

31/05/2011

Ralf Bernhard - Diboson Production cross sections at the Tevatron

arXiv:1104.0699 [hep-ex]
DZero lνqq Measurement

PRL 102, 161801 (2009)
Anomalous Couplings

- **ZWW and γWW couplings**
 - General Lorentz invariant Lagrangian has 14 couplings

\[
\frac{L_{WWV}}{g_{WWV}} = i g_f^V (W^*_\mu W^\mu V^\nu - W^*_\nu V^\mu W^\mu V^\nu) + i \kappa_\gamma W^*_\mu W^\mu V^\nu + \frac{\lambda_\gamma}{M_W^2} W^*_\mu W^\mu V^\nu V^\rho \\
- g_f^V W^*_\mu W^\mu \left(\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu} \right) + g_f^V \varepsilon^{\mu \nu \lambda} \left(W^*_\mu \partial^{\lambda} W^\nu - \partial^{\lambda} W^*_\mu W^\nu \right) V^\rho \\
+ i \kappa_\gamma W^*_\mu W^\mu \bar{V}^\mu V^\nu + i \frac{\lambda_\gamma}{M_W^2} W^*_\mu W^\mu \bar{V}^\mu V^\nu ;
\]

- **C and P conserving:** $g_1^Z, g_1^{Z'}, \kappa_\gamma, \kappa_Z, \lambda_\gamma, \lambda_Z$
- **C and P violating, but CP conserving:** g_5^Z
- **CP violating:** $g_4^{Z'}, g_4^{Z}, k_\gamma, k_Z, \lambda_\gamma, \lambda_Z$

SM: $g_1^\gamma = g_1^Z = \kappa = \kappa_Z = 1$ and all others are zero
Any new physics that causes anomalous TGCs must respect unitarity. However, anomalous TGCs in the SM violate unitarity at high energies. Thus, a dipole form factor:

$$a(s) = \frac{a_0}{\left(1 - \frac{s}{\Lambda_{NP}^2}\right)^2}$$

is used to regulate this behavior. Λ_{NP} can be interpreted as the energy at which the new physics turns on.
Fermilab

Tevatron Facts:
- RunII since 2002
- 36 x 36 bunches
- Average initial luminosity: $>350 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
- $>50 \text{ pb}^{-1}$ per week