The Status of QCD

Nikos Varelas University of Illinois at Chicago http://www.uic.edu/~varelas

Results from HERA/Tevatron/LHC

22nd Rencontres de Blois Particle Physics and Cosmology Blois July 15-20, 2010

Outline

- The Landscape
- Parton Distribution Functions
- Jet Production
- Direct Photon Production
- W/Z + Jets
- The Underlying Event
- Charged Particle Spectra
- Final Words

More results in the Backup slides

Details in the Parallel Talks

Sunday 14:00-16:00

- Particle Multiplicities in Minimum Bias Event with the ATLAS Detector at 7 TeV – R. Zaidan
- Single and Double Particle Studies at CMS K. Stenson
- Sunday 16:30-19:30
 - Properties of the Underlying Event in Minimum Bias Collisions with the ATLAS Detector at 7 TeV – G. Hare
 - Jet Production with the ATLAS Detector at 7 TeV Z.
 Marshall
 - Recent QCD Results from CMS G. Safronov
 - Recent QCD Results from the Tevatron M. Strauss
 - Status of PDFs from HERA S. Glazov

N Varelas

References

https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults

https://twiki.cern.ch/twiki/bin/view/CMS/PublicPhysicsResults"

http://aliceinfo.cern.ch/Collaboration/Documents/Publications/index.html

http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/qcd.htm

http://www-zeus.desy.de/publications.php3

http://www-h1.desy.de/h1/www/publications/H1_sci_results.shtml

QCD at Hadron Colliders

UIC

The HERA Experiments

UIC

N. Varelas

Blois2010 - July 17, 2010

Tevatron Complex

N. Varelas

UIC

Blois2010 - July 17, 2010

Tevatron Detectors

N. Varelas

UIC

Tevatron Luminosity

UIC

Blois2010 - July 17, 2010

The LHC Experiments

PDFs

$d\sigma(h_1h_2 \to cd) = \int dx_1 dx_2 \sum f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) d\hat{\sigma}^{(ab \to cd)}(Q^2, \mu_F^2)$				
Determine PDFs from global fits to many observables	a,b Data Data set H1 MB 99 e^+p NC H1 MB 97 e^+p NC H1 low Q^2 96–97 e^+p NC H1 high Q^2 98–99 e^-p NC H1 high Q^2 99–00 e^+p NC EUS SVX 95 e^+p NC ZEUS SVX 95 e^+p NC ZEUS 96–97 e^+p NC	N _{pts.} 8 64 80 126 147 30 144	Data set Data set BCDMS $\mu p F_2$ BCDMS $\mu d F_2$ NMC $\mu p F_2$ NMC $\mu d F_2$ NMC μf_2 NMC	N _{pts.} 163 151 123 123 148 53
 DIS (HERA, fixed tar Drell-Yan (Tevatron, Vector boson production Jet Production (Tevatron) Heavy quark production 	ZEUS 98–99 e^-p NC ZEUS 99–00 e^+p NC H1 99–00 e^+p CC ZEUS 99–00 e^+p CC H1/ZEUS $e^\pm p$ F_2^{charm} H1 99–00 e^+p incl. jets ZEUS 96–97 e^+p incl. jets ZEUS 98–00 $e^\pm p$ incl. jets DØ II $p\bar{p}$ incl. jets CDF II $p\bar{p}$ incl. jets CDF II $p\bar{p}$ incl. jets CDF II $W \rightarrow l\nu$ asym. DØ II Z rap. CDF II Z rap.	92 90 28 30 83 24 30 30 110 76 22 10 28 29	E605 $\mu d F_2$ SLAC $ep F_2$ SLAC $ed F_2$ NMC/BCDMS/SLAC F_L E866/NuSea pp DY E866/NuSea pd/pp DY NuTeV $\nu N F_2$ CHORUS $\nu N F_2$ NuTeV $\nu N \times F_3$ CHORUS $\nu N \times F_3$ CCFR $\nu N \rightarrow \mu\mu X$ NuTeV $\nu N \rightarrow \mu\mu X$ All data sets • Red = New w.r.t. MR	53 37 38 31 184 15 53 42 45 33 86 84 2743 ST 2006 f

PDF Global Fits

• MSTW: (DIS+DY+jets, LO/NLO/NNLO) (Martin, Stirling, Thorne, Watt) • MRS \rightarrow ... \rightarrow MSTW2008 http://projects.hepforge.org/mstwpdf/ arXiv: 0901.002 CTEQ: (DIS+DY+jets, LO/NLO) (Pumplin, Huston, Lai, Nadolsky, Tung, Yuan) $CTEQ \rightarrow ... \rightarrow CTEQ6.6 \rightarrow CT10$ (to be released) http://www.phys.psu.edu/~cteg/#PDFs arXiv: 0802.0007 NNPDF: (DIS+DY+jets, NLO) (Ball, Del Debbio, Forte, Guffanti, Latorre, Rojo, Ubiali) • NNPDF1.0→…→NNPDF2.0 http://sophia.ecm.ub.es/nnpdf/ arXiv: 1002.4407 • JR: (DIS+DY, NLO/NNLO) (Jiminez-Delgado, Reya) http://durpdg.dur.ac.uk/hepdata/grv.html arXiv: 0810.4274 • ABKM: (DIS+DY, NLO/NNLO) (Alekhin, Blümlein, Klein, Moch) arXiv:0908.2766 HERAPDF: (DIS, NLO) arXiv: 0911.0884 http://www-h1.desy.de/

UIC

ZEUS-H1 Combined Results

LHC Standard Candles

Different values of $\alpha_s(M_7)$ and its uncertainties are used in PDF fits

- CTEQ used 0.118 and NNPDF 0.119, where MSTW2008 uses 0.12 as determined by their best fit
- PDG value: $\alpha_{c}(M_{7}) = 0.1184 \quad 0.0007$
- Evaluate LHC standard candles with same value of α_s

Maria Ubiali DIS 2010

Jet Production

Jet Reconstruction

Calorimeter Jets Track Jets Inputs: Clustering of energy depositions Clustering of tracks EM+HAD towers Use of topological energy clusters in finely Sampling only charged particles segmented calorimeter **JetPlusTrack** Particle Flow (PFlow) Calorimeter jets with energy corrections based Clustering of tracks, photons, and neutral on tracks hadrons **Clustering algorithms:** $E_{T}(GeV)$ **Cone algorithms:** let 1 Jet 2 з Iterative Cone/JetClu Midpoint • Seedless Infrared Safe Cone (SISCone) -2 **Recombination algorithms:** $d_{ii} = p_{T,i}^{2p}$ $d_{ij} = min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta R_{ij}^2}{D^2}$ 0 ŋ • p=1 \rightarrow k_T jet algorithm p=0 → Cambridge/Aachen jet algorithm 0 -2 p=-1 → "Anti-k_T" jet algorithm Soft particles will first cluster with hard particles before am

- Almost a cone jet near hard partons
- No merge/split
- N. Varelas

UIC

Blois2010 - July 17, 2010

Jet Production at Tevatron

Sensitivity to new physics (e.g., quark substructure, new particles decaying into jet final states, extra dimensions, ...)

Jet Production in DIS (HERA)

Confront pQCD

- Extraction of $\alpha_s(M_z)$ and test of running of α_s
- Constraints on proton + photon PDFs

Photoproduction of jets

• Q² < 1 GeV² – photon virtuality

Jet production in NC DIS

 $d\sigma_{
m jet} = \sum_{a=q,ar q,g}\int dx \; f_a(x,\mu_F) \; d\hat\sigma_a(x,lpha_s(\mu_R),\mu_R,\mu_F)$

Kinematics:

– momentum transfer:

$$Q^2 = -q^2 = -(k - k')$$

– Bjorken
$$x$$
: $x = \frac{Q^2}{2P \cdot q}$

- inelasticity:

$$y = \frac{P \cdot q}{P \cdot k} = 1 - \frac{E'_e (1 - \cos \theta_e)}{2E_e}$$

Jet Cross Sections in NC DIS

The Strong Coupling Constant

Inclusive jet, 2- and 3-jet cross sections are used to derive α_s Use of 5 < Q² < 100 GeV² and Q² > 150 GeV²

α_s Determination at Tevatron

- Inclusive jet cross section is sensitive to α_s
 - α_s is determined from 22 inclusive cross section data points at the range 50<p_T<145 GeV
 - MSTW2008NNLO PDFs

Most precise determination of

 α_s from a hadron collider

```
\alpha_{s}(M_{Z}) = 0.1161^{+0.0041}_{-0.0048}
```


PRL 101, 062001 (2008)

Consistent results from many processes

Katharina Müller, QCD2010

N. Varelas

UIC

Blois2010 - July 17, 2010

Dijet Mass Cross Sections

N. Varelas

UIC

UIC

N. Varelas

Dijet Angular: Results

DØ: PRL 103, 191803 (2009)

Compositeness (Λ): ~2.8 – 3 TeV ADD LED (GRW, M_s): ~1.6 – 1.7 TeV TeV⁻¹ Extra Dim (M_c): ~1.6 – 1.7 TeV

Blois2010 - July 17, 2010

- R_{3/2} : probability to find a third jet in an inclusive dijet event
- Sensitive to high order radiation and α_s
- Almost independent of PDFs
- Use inclusive *n-jet* (*n*=2,3) sample with *n* (or more) jets above p_{Tmin}
- |y_{jet}| < 2.4, ∆R_{jet-jet} > 1.4
- Measurement of R_{3/2}(p_{Tmax}, p_{Tmin}) vs. p_{Tmax} (i.e. leading jet p_T)

$\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

- Data can discriminate against PYTHIA tunes
 - Reasonable agreement with tune BW
 - Disagreement with tunes A & DW
- SHERPA describes the data well

UIC

Direct Photons

Direct Photon Production

q

q

- Photon processes:
 - Annihilation
 - Compton
- Also fragmentation contributes
 - But suppressed with isolation
 - Directly sensitive to hard scatter
- Important for QCD studies, detector calibration, gluon PDFs, background to new physics
- Challenging measurement
- Large QCD jet background
 - Observable: isolated photons

Inclusive Photon Cross Section

Photon + HF Jet Production

- Sensitive to HF-content of photon
- Photon p_T : 30 150 GeV
- Rapidities: |y^γ|<1.0, |y^{jet}|<0.8
- Probe PDFs in 0.01<x<0.3 range</p>
- Photon+b:
 - Agreement over full p_T range
- Photon+c:

UIC

- Agree only at p_T<50 GeV
- Using PDF w/ intrinsic charm (IC) improves the theory behavior vs p_T

N. Varelas

Blois2010 - July 17, 2010

Di-Photon Production

2 photons with p_T > 21(20) GeV

 Data are compared to RESBOS, DIPHOX, PYTHIA

Accepted by PLB arXiv:1002.4917 (2010)

N. Varelas

Di-Photon Results

UIC

Z(W)+Jets

Z + Jets

Jet multiplicity

Good agreement with NLO MCFM

1st and 2nd leading jet p_T

PRL 100, 102001 & update

UIC

Z(ee) + (1, 2, 3) Jets: p_T Spectra

Normalize to inclusive Z production \rightarrow compare to MC Event Generators

ME + Parton-shower generators describe shape better

PLB 669, 278 (2008) PLB 678, 45 (2009)

N. Varelas

UIC

Ł

Soft QCD

The Underlying Event

"Toward"

"Away"

Transverse"

• Define three regions:

- "toward"
- "away"
- "transverse"
 - Sensitive to UE

Study

- charged particle multiplicity
- p_T and E_T sum density
- Average charge particle p_τ

Tevatron measurements are used to tune MC event generators

UE in Drell-Yan and Jet Production

- Use the direction of the lepton pair per event to define the three regions
- Correct observables to particle level
 - Comparison of distributions between jets and DY

CDF: Submitted to PRD arXiv: 1002.3146

Blois2010 - July 17, 2010

UE @ 0.9 TeV: Particle & Energy Densities

- Charged particle multiplicity and scalar Σp_T as a function of leading track-jet p_T
- Study performed in the transverse region

Discrepancies between the various tunes and data of order ~25%

Charged Particle Spectra

N. Varelas

UIC

<pT> and dN_{ch}/dη distributions increase with the C.M. energy Power law dependence fits the data well Consistent results with previous measurements at same \sqrt{s}

UIC

Final Words

- Recent combined cross section results from HERA will help to increase the precision of PDFs
- Measurements at HERA and Tevatron have reached higher precision than theoretical predictions
- LHC experiments have started producing first rate physics results
- QCD is important at LHC for understanding signals and backgrounds
 - Precision phenomenology at LHC requires an accurate knowledge of PDFs
- The golden time of QCD at LHC has started

The Stairway to Heaven

Backup Slides

PDFs @ HERA

PDFs Then and Now

PDFs in 1984

FIG. 25. Parton distributions of Gélak, Hoffmann, and Reyn (1983). at $Q^2=3$ GeV¹, where quark distribution x(u,(n)+u',(n)) isolated-solved linet. and q_i , (strend linet).

GHR vs Duke-Owens

Doke and Owers (1984) at $Q^2 = 5 \text{ GeV}^2$, valence quark distribution $\pi[[w_s(n) + d_s(n)]]$ idented-dashed line), $\pi O(n)$ ideahed line), and $-g_s(n)$ ideated line).

N. Varelas

Plan. Mod. Phys., Nol. 56, No. 4, Detabor 198

UIC

PDFs 25 years later

Comparison of PDFs: Do they agree?

MSTW2008 vs CTEQ6.6

WLSW

2

Tatio

N. Varelas

10⁻³

10-4

10⁻²

101

NNPDF2.0 vs MSTW2008 vs CTEQ6.6

Reasonable agreement within uncertainties

-0.05

Comparisons of PDFs (2)

Jet Production

Inclusive Jets – The Old Days

Photoproduction of Jets

Discrepancies between data and NLO QCD at low E_T^{jet} and high η^{jet}

N. Varelas

UIC

ZEUS

Blois2010 - July 17, 2010

ZEUS_prel_10_003

The Strong Coupling Constant

Consistent measurements of $\alpha_s(M_z)$ with world average and of the running of $\alpha_s(Q^2)$ over a wide range of $E_T^{jet} \rightarrow Great$ Success of QCD!

UIC

EUS

Dijet Mass Distribution

Select jets with |y|<1.0 Sensitive to new particles decaying to dijets

Data described by NLO pQCD No indications for resonances **Exclusions mass ranges:** excited quarks 260 - 870 GeV Axigluon, flavor-universal coloron 260 - 1250 GeV E₆ Diquark 290 - 630 GeV Color-octet techni-p 260 - 1100 GeV W': 280 - 840 GeV Z': 320 - 740 GeV

Compositeness and Large Extra Dim.

Quark Compositeness:

• For $\sqrt{\hat{s}} \ll \Lambda$ the composite interactions can be represented by contact terms: $g^2 = \frac{1}{2}$

$$L_{qq} = \pm \frac{g}{2\Lambda^2} \overline{q}_L \gamma^\mu q_L \overline{q}_L \gamma_\mu q_L$$

- Eichten, Lane, Peskin, PRL <u>50</u>, 811 (1983)
- $\Lambda = \infty$ \rightarrow point-like quarks
- Λ =finite \rightarrow substructure of mass scale Λ

Large Extra Dimensions (LED)

- In the ADD Model:
 - N.Arkani-Hamed, S.Dimopoulos, G.R.Dvali, PLB <u>429</u>, 263 (1998), et al.
 - 3+n spacelike dimensions
 - n dimensions compactified to a n-torus with radius R
 - R~1 mm for n=2, R~3 nm for n=3, ...
 - All SM fields are confined to a 3-dim membrane (brane)
 - Only gravity propagates in all dimensions (bulk)
- Mass hierarchy problem is solved
- The unification scale can be lowered to M_s~TeV

N. Varelas

TeV⁻¹ Extra Dimensions

In the TeV⁻¹ Extra Dimension Model

- K.Dienes, E.Dudas, T.Gherghetta, Nucl. Phys. B 537, 47 (1999)
- A.Pomarol, M.Quirós, PLB 438, 255 (1998)
- I.Antoniadis, K.Benakli, M.Quirós, PLB <u>460</u>, 176 (1999), et al.
- Matter resides on a p-brane (spacelike dim p>3):
- Fermions are confined to 3-dim world
- SM gauge bosons can also propagate in the extra (p-3) dimensions
 - SM cross sections are modified due to the exchange of virtual Kaluza-Klein excitations ($M_n = \sqrt{M_{SM}^2 + n^2/R^2}$, *n*=1,2,...) of the SM gauge bosons (e.g., gluons) through the ED
 - Compact dimension R=1/M_c (M_c is the compactification scale)
 - the 95% CL limit: M_c=6.6 TeV from combined LEP data

Search for BSM Signatures

- BSM signatures will populate the low-χ region at high M_{ii}:
 - Compositeness (scale Λ)
 - Virtual exchange of KK excitations of graviton (ADD LED scale M_s)
 - Virtual KK excitation of gluon (TeV⁻¹ ED scale M_c)
- Theory implementation:

$$\sigma_{NP}^{NLO} = \sigma_{QCD}^{NLO} \cdot \frac{\sigma_{NP}^{LO}}{\sigma_{QCD}^{LO}} = \sigma_{NP}^{LO} \cdot \frac{\sigma_{QCD}^{NLO}}{\sigma_{QCD}^{LO}}$$
$$\sigma_{NP}^{LO} = ME_{SM} + \xi \cdot ME_{int} + \xi^2 \cdot ME_{NP}$$

$$\xi = \lambda / \Lambda^2 (QC)$$

$$\xi = 1 / M_s^4 (ADD LED)$$

$$\xi = 1 / M_C^2 (TeV^{-1} ED)$$

3-Jet Mass Cross Section

- First measurement of 3-jet cross section at Tevatron
- Require at least 3 jets in the event
 - Jet1 p_T > 150 GeV
 - Jet 2,3 p_T > 40 GeV
 - Jets separated by ∆R > 1.4 = 2*R_{cone}
- Measurement performed in:
 - rapidity intervals |y| < 0.8, 1.6, 2.4
 - p_T ranges of the 3rd jet: p_T^{Jet3} > 40, 70, 100 GeV
- Compared data to NLO pQCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{3\mathrm{jet}}} = \frac{1}{L\cdot\Delta M_{3\mathrm{jet}}}\cdot\left(\sum_{i=1}^{N_{\mathrm{evt}}}\frac{1}{\epsilon_{\mathrm{v}}^{i}}\right)\cdot C_{\mathrm{unsmear}}$$

o_T^{Jet3} Dependence ce

Direct Photons

Di-Photon Results

Diphoton results w/ 5.4 fb⁻¹ \rightarrow show discrepancies with predictions

W/Z+Jets

B

3-Jet Mass: Data vs pQCD

Z(ee) + (1, 2, 3) Jets: p_T Spectra

Normalize to inclusive Z production \rightarrow compare to pQCD @ LO / NLO

Z(µµ) + Jets: Rapidity, Azimuth

PLB 682, 370 (2010)

UIC

8,2

- Z+b probes the b-quark PDF and provides an important test of pQCD
- Background for many channels: ZH, top, SUSY, ...
- Analysis combines Z→ee and μμ channels
- At least one jet with p_T>20 GeV, |η|<1</p>
- 2 electrons (muons)
 - p_T>15 GeV (10 GeV), |η|<2.5 (2.0)

Measurement:

σ(Z+b)/σ(Z+j) = 0.0176±0.0024(stat)±0.0023(sys) Good agreement with NLO QCD: 0.018±0.004

Previous measurements: DØ: PRL 94, 161810 (2005) CDF: PRD 79, 052008 (2009)

W + b jet

 σ b-jets (W+b-jets) · BR(W \rightarrow I v) = 2.74 ± 0.27 (stat) ± 0.42(syst) pb

All predictions are lower than the measurement: Pythia: 1.10 pb, ALPGEN: 0.78 pb, NLO: 1.22±0.14 pb

CDF: PRL 104, 131801 (2010)

N. Varelas

s.d

- g+s ~ 90%, g+d ~ 10%
- At Tevatron W+c is ~5% of the inclusive W+1 jet cross section with p₁^{jet}>10 GeV
- Charge correlation of leptons used in event selection
- Use soft lepton tagger +NN for c-jet

Preliminary Measurement (4.3 fb⁻¹) $\sigma(W_c) \bullet BR(W \rightarrow Iv) = 33.7 \pm 11.4 \text{ (stat)} \pm 7.3 \text{ (syst) pb}$ Theory prediction @NLO (MCFM): 16.5 ± 4.7 pb Previous CDF: PRL 100, 091803 (2008)

- Measure of the ratio of σ (W+c jet)/ σ (W+jets) cancels many systematic uncertainties
- p₇^{jet}>20 GeV, |η^{jet}|<2.5

 $\frac{\sigma[W+c-\text{jet}]}{\sigma[W+c-\text{jet}]} = 0.074 \pm 0.019^{+0.012}_{-0.014}$

N. Varelas

DØ: PLB 666, 23 (2008)

 $\sigma[W + \text{jets}]$

UIC

Theory: 0.044±0.003 Alpgen+Pythia

Blois2010 - July 17, 2010

Soft QCD

Double Parton in γ + 3 Jets

- Scattering of two parton pairs in a collision
- σ_{eff}: a measure of effective size of interaction region
 - Contains information on the spatial distribution of partons
 - Uniform \rightarrow Large $\sigma_{eff} \rightarrow$ small σ_{DP}
 - Clumpy \rightarrow Small $\sigma_{eff} \rightarrow$ large σ_{DP}

Double parton scattering can be background to many rare processes

UIC

Double Parton: Results

UIC

Blois2010 - July 17, 2010

Charged Particle Correlations in MB Events

Selection of MB Sample:

- Trigger on dimuon events
- Then require one or more Minimum Bias primary vertex
 - At least 0.5 cm away from triggered PV
 - Within 20 cm from z=0
 - With at least 5 tracks

Observable:

(background subtracted, normalized) $\Delta \phi$ distribution of tracks from leading p_T track

Regions: $|\eta| < 1$, $|\eta| < 2$, same/opposite sides

Compare data to Pythia predictions

UIC

N. Varelas

Charged Particle Correlations: Results

Sensitivity to Pythia tunes \rightarrow Further studies are under way

UIC

Hyperon Production in Min. Bias

Λ

1.14 1.15 M_{n=} (GeV/c²)

Ξ

1.33 1.34

Blois2010 - July 17, 2010

N. Varelas

1.35 1.36

M₀₇₇ (GeV/c²)

Minimum Bias Studies at LHC

 Traditionally defined as Non-Single Diffractive events:

$$\sigma_{tot} = \sigma_{elas} + \sigma_{sd} + \sigma_{dd} + \sigma_{nd}$$

NSD

- Large model dependence on LHC expectations/predictions based on lower energy data
 - Need to understand the properties of inelastic events as they will be background due to pile-up at high luminosities

