- Cosmology

From ground based surveys

Recontres de Blois 2010

Tutroduction

- * What can cosmology tell you
- * What are the relevant buzzwords
- * Cosmological parameters:
 - some we know
 - some we want to know
 - some we don't care

Evolution of the Universe

The Dark Sector

- To make it work, we need dark sector
- * Dark matter:
 - Cold, pressureless, non-interacting stuff
 - Collapses under its own gravity
- * Dark energy:

- Drives accelerated expansion of the Universe

Standard cosmological model

- * General macroscopic picture well understood
- * The microscopic picture and relation to the fundamental physics remain to be understood:
 - What is the nature of dark matter and dark energy?
 - How the dark sector fits with the standard model of particle physics
 - Does gravity obey general relativity on all scales and at all energies?
 - How did it all begin? Is inflation an accurate description of the early universe?

Measuring the Universe

- * Homogeneous expansion:
 - Measures content and geometry of the Universe
 - BBN, CMB peak positions, BAO, supernovae
- * Growth of structure:

- CMB peaks, galaxy power spectra, RS distortions, Lyman-alpha forest

* GR requires consistency between the two

PAMELA, ATIC, etc.

- Interesting, but absolutely no control over gastrophysics.
- stuff in this talk can be made robust.

FIG. 3: **PAMELA** positron fraction with other experimental data. The positron fraction measured by the PAMELA experiment compared with other recent experimental data[24, 29, 30, 31, 32, 33, 34, 35]. One standard deviation error bars are shown. If not visible, they lie inside the data points.

Doing stuff from the ground

- * Advanges:
 - Very cheap
 - Fast development compared to space
 - Can poke/upgrade your instrument
 - No weight/size constraints
 - No bandwidth constraints

Doing stuff from the ground * Disadvantages:

- Atmosphere mostly opaque:

- Atmospheric seeing impacts SNR, adds systematics

- Lack of stability
- Can't see full sky

* The most influential survey experiment * Data Release 7: - Imaging of 11k sq degrees over 5 bands, 357 mil uniq objects - Spectra for 930k galaxies, 120k QSOS, 460k stars, 28k unknown

leasuring density

Galaxies are few and faint at high-redshift

Low-redshift probes

- * Supernovae type Ia: original discovery of DE
- * BAO: clean, geometrical probe
- Weak lensing:
 - Sees dark matter rather than galaxies
 - Probes growth of structure
- * Other probes:
 - Lyman-alpha forest
 - Clusters & groups

Percival et al, 2009

Where do we stand with DE?

- * Dark Energy:
 - Seen in many very different, very independent probes
 - Most promising future probes are BAO, weak lensing
 - Cosmological constant the best candidate: no convincing theoretical alternative
 - Phenomenologically described by parameter

$$w = \frac{p}{\rho}$$

$$\Omega_{\Lambda} = 0.73 \pm 0.017$$

$$w = -0.92 \pm 0.17$$

Why bother?

Universe without cosmological constant but with a scalar field instead is really quite contrived.

•There is no symmetry protecting vacuum energy •Even if it is, it would apply to more symmetric state •If it looks like a duck, swims like and quacks like a duck, it is a duck (Raphael Bousso)

Modified gravity

- Dark energy could be described by modified gravity, after all.
- Easiest to see through consistency relations between oth and 1st order perturbation theory: background vs growth
- e.g. f(R) gravity: $B_0 < 1.1 \times 10^{-3}$
- No existing models that would not have LCDM as a limit (self accelerated branch of DGP dead)

Where do we stand with DM?

- Dark Matter:
 - A cold, non-interacting stuff
 - Limits on its mass quite weak from cosmology: for WDM, m>2.5 keV (Seljak et al)
 - Really unlikely to be explained away on modified gravity
 - More likely to learn about DM from noncosmological probes: direct detection, LHC signatures, etc.

Anote on DM coincidences:

* Coincidence 1:

- WIMP miracle: WIMPS are naturally produced as thermal relics of the Big Bang with the required density

* Coincidence 2:

- Baryon and dark matter densities are of the same order of magnitude

* Naively, one of the two must be just a coincidence! (see ADM by Sarkar et al)

Where do we stand with DM?

DM scaffolding from COSMOS survey

Where do we stand with inflation?

- Inflation:
 - Very exciting period: $n_s = 0.959 \pm 0.0127$ (but see Pandolfi et al, 2010,)
 - slow roll inflation predicts n_s less than one by a small parameter!
 - Running of spectral index $O(10^{-3})$ a clear prediction achievable in the next decade.
 - B-mode polarization, iso-curvature modes: good tests, but no clear goals
 - Primordial non-Gaussianity very promising.

Primordial NG

- Parametrised in terms of parameter f_NL
- * Current limits:

 $-1 < f_{NL}^{\rm local} < 63$

- Expected magnitude
 -10<f_{NL}<10
- Constrained from
 CMB and galaxy
 distribution
- Distinct signature
 of inflation

Where do we stand with vs?

- Neutrinos & relativistic species:
 - Number of rel. species:

$$N_{\nu} = 3.75 \pm 0.65$$

- Neutrino mass:

* Cluster abundance, Megaz DR7 (95% cl)

$$\sum m_{\nu} < 0.3 \mathrm{eV}$$

* Ly-alpha forest (95% cl):

$$\sum m_{\nu} < 0.19 \mathrm{eV}$$

* If you believe us KATRIN will not see anything!

Mass hierarchies

"California no longer has low-hanging fruits - we don't have any medium-hanging fruits, and we also don't have any highhanging fruits. We have to take the ladder from the tree and shake the whole tree." [A Schwarzenegger]

Cosmology is at medium-high hanging fruit stage.

- Expect progress in:
 - inflationary physics
 - Neutrinos
- Hope for progress in:
 - Dark energy
 - Dark matter
- We do this through new experiments:
 - More wavelengths
 - More sky coverage
 - Deeper
 - Higher fidelity

Currently with galaxies: BOSS

BOSS @ SDSS3:

- 10,000 sq degrees
- Mid res spectrograph
- 2.5 meter telescope
- Millon LRGs to z=0.7
- 160,000 QSO sightlines
- Distance to z=0.3,0.6
 and 2.5 with % precision
 using BAO
- Auxiliary science: neutrinos, non-Gaussianity can be quite exciting

- 5,000 sq degrees imaging
- 5 bands
- 4 m Blanco telescope
- 570 Mpix camera, 2.2 deg FoV
- Weak lensing instrument

JDEM and Euclid:

- Measuring dark energy in space through:
 - 1) BAO
 - 2) Weak lensing
 - 3) Supernova Ia (JDEM only)
- Galaxies over 20,000 sq deg up to z=2.0
- None funded
- · BOTH to fly is unlikely
- JDEM oscillates in and out of mess
- · Launch no early than 2017

BigBOSS

- Idea is to compete with JDEM from ground
- 4000 fibre spectrograph doing BAO on a 4m telescope
- Order of magnitude cheaper than JDEM
- Same people who made
 SDSS[1,2,3] happen
- First light 2015
- An old 4m has a lot of old 4m users

- Deep, wide, fast
- 6m class telescope with 3deg FoV; imaging in 5 bands; 3.2 Gpix
- Amazing cadence: 15s
 shots: entire sky in 3
 days
- First light 2017
- Requires DOE/NSF
 cooperation
- Amazing science, but cadence not really required for cosmology

Other disruptors:

- HETDEX:
 - Integral field
 spectrographs, 34k fibers
 - Million LAE at z=2-4
 - 9m Hobby-Eberly telescope

- Hyper Supreme Cam survey:
 - 8m Subaru telescope, 1.5 deg FoV, 5 band imaging
 - Competitive with LSST for weak lensing
 - Replaces WFMOS

