ATLAS Status and First Results

Marjorie Shapiro Lawrence Berkeley National Laboratory On behalf of the ATLAS Collaboration

07/16/10

Outline

- Introduction
- Performance of the ATLAS Detector
 - Inner Detector
 - Calorimeters
 - Muons
- First Physics Results
 - Soft QCD
 - Jet Cross Section
 - W/Z Production
- Conclusions and Outlook

The Start of an Era!

- After 15 years of planning, the LHC physics program now underway
- Tremendous excitement within collaboration
- First steps in physics programme:
 - Study performance of ATLAS with pp collision data and validate simulation
 - Characterize pp interactions and test predictions of event generators
 - Rediscover Standard Model: Study Jets, W/Z bosons, Top
 - Characterize potential backgrounds to new physics
 - Keep our eyes open for any deviatives from expectations

Data Collection To Data (7 TeV)

- Integrated luminosity:
 209 nb⁻¹
- Record instantaneous luminosity:
 - $-1.44 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
- Data-collection efficiency: ~90%
 - Up time for all subsystems
 ≥ 95% during 2010 stable beam ops
- Systematic uncertainty on luminosity: 11%
 - Determined from van der Meer beam separation scans
 - Dominant uncertainty: LHC beam current measurement

ATLAS Detector

07/16/10

Inner Detector

- 2 T Magnetic Field
- Pixel Detector
 - 3 barrel layers, 2x3 disks
 - $\sigma(r\phi) = 10 \mu m$, $\sigma(z)=115 \mu m$
- Silicon Strip Detector
 - 4 barrel layers, 2x9 disks
 - Pairs of single-sided sensors
 - $\sigma(r\phi) = 17 \mu m$, $\sigma(z) = 580 \mu m$
- Transition Radiation Tracker
 - 73 barrel, 2x160 Endcap layers
 - $-\sigma(r\phi) = 130 \ \mu m$

Nominal Resolution:

$$\sigma \frac{(p_T)}{p_T} \simeq 3.4 \times 10^{-4} (p_T/GeV) \oplus 0.015$$

$$\sigma (d_0) \simeq 10 \,\mu m \oplus \frac{140 \,\mu m}{(p_T/GeV)}$$

TRT R = 554 mm R = 554 mm R = 514 mm R = 443 mm R = 443 mm R = 371 mm R = 299 mm Pixels R = 122.5 mm R = 88.5 mm R = 50.5 mm R = 0 mm

07/16/10

Tracking Performance: Reconstruction of Resonances

07/16/10

Tracking Performance: Efficiencies and MC Modeling

07/16/10

Marjorie Shapiro (LBNL) Blois-2010

Tracking Performance: B-Tagging

Secondary Vertex Tagging

Impact Parameter Tagging

07/16/10

- Several taggers available:
 - Impact Parameter, jet probability, secondary vertex
- Reasonable agreement between data and MC
- Excess for positive decay length
 - Vertex mass consistent with expectations for heavy flavor

Calorimeters

07/16/10

EM Calorimeter Performance: Electrons and Photons

- E_T(γ) > 400 MeV
- $E_{T}(\gamma\gamma) > 900 \text{ MeV}$
- M_{γγ} = 135.04±0.04 MeV (PDG: 134.977 MeV)
- Systematic uncertainty
 - 1% on mass
 - 10% on width

- 2 electrons: pT> 2,4 GeV
- Shower shape and track quality cuts
- Mass calculated from tracks: no brem recovery yet

Calorimeter Performance: Jet Energy Scale

- Input to Jet reco:
 - 3D Topological clusters
- Baseline calibration:
 - EM scale
- Corrections necessary for:
 - Lower response to hadrons
 - Energy loss in dead material
 - Leakage outside clusters
- Systematic uncertainties:
 - Momentum spectrum of particles in the jets
 - Uncertainties in hadron response
 - Cluster Thresholds
- Jet fragmentation compared to MC
- In-situ responds to single hadrons measured

7% JES uncertainty for central jets with p_{τ} >60 GeV

Calorimeter Performance: Missing E_T

- Essential for new physics searches
- Reduce sensitivity to noise:
 - Use only cells belonging to 3D calorimeter "topo-clusters"
- "Refined" algorithms to correct for e, μ , τ exist and under study
- Excellent agreement between data and MC over 6 orders of magnitude

Muon Spectrometer

- Coverage |η|<2.7
- Trigger Chambers: RPC/TGC
- Precision Chambers: MDT/CSC
- Magnetic Field ~0.5 T
- Bending Power: ~2-5 Tm

- Stand-alone resolution:
 - $\Delta p_T/p_T < 10\%$ up to 1 TeV
- Combined muon/ID tracking for optimal performance over full p_T range

Muon Spectrometer + ID Performance

- Muon reconstruction working well, both standalone and in combination with ID
- Performance well modeled in simulation
- Measurements of trigger efficiencies using data in progress (tag-and-probe)

First Physics: Particle Production in Min Bias Events

- Charged-particle multiplicities with:
 - $|\eta|$ < 2.5, pT > 100 and 500 MeV - Standard analysis requires n_{cb}≥1
- Study $n_{ch} \ge 6$ to reduce sensitivity to
 - diffractive component
- First tuning of PYTHIA6 to LHC data at 900 GeV and 7 TeV ("AMBT1")
 - Good agreement with 500 MeV cut
 - Poor for 100 MeV cut
 - Lower pT: larger diffractive component

Details in talk by Remi Zaidan

Soft QCD: Description of Underlying Event

- Ambient level of particles in events with a hard scatter not predicted by pQCD
 - Phenomenological models implemented in MC generators
- Description of UE necessary,
 - eg for predicting lepton isolation
- Study UE via distributions of tracks transverse to leading track in event
- Not well modeled w/ default generator tunes:
 - Used as input to ATLAS tunes

See talk by Gabriel Hare

Jet Production: First Tests of pQCD at LHC

- Requirements on jet finding algorithm:
 - Theoretical:
 - Infrared safe
 - Experiment:
 - Performs well in presence of UE and pileup
 - Well defined shape (pileup corrections)
- ATLAS Baseline: <u>Anti-Kt</u> Cacciari, G. Salam, and G. Soyez JHEP 0803 (2008)

- Anti-Kt algorithm has one free parameter: R
 - For each input *i*, construct: $d_{ij} = min(k_{Ti}^{-2}, k_{Tj}^{-2}) \frac{(\Delta R)_{ij}^{2}}{R^{2}}$ $d_{iB} = k_{Ti}^{-2}$

$$(\Delta R)_{ij}^{2} = (y_{i} - y_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$$

- When $d_{ij} < d_B$ combine i&jwhen $d_{ij} < d_B$ jet complete
- Recalculate until stable
- Experimental results can be compared to:
 - Same algorithm run on MC truth particles OR

pQCD: Inclusive Jet Cross Section

- Inclusive cross section compared to NLO QCD calculation
 - Non-perturbative corrections from leading-log partonic showering MC
- Systematic Uncertainties:
 - -7% Jet Energy Scale for central jets with pT > 60 GeV (<9% for all P₁)
 - Response vs η modeled to better than 5%
 - Luminosity: 11%
- R=0.6 shows similar level of agreement

See talk by Zachary Marshall

PQCD: Dijet Cross Section and Angular Distribution

- Study cross section is function of dijet invariant mass and rapidity section $v = \frac{1 + \cos \theta}{2}$
- Also measure angular distribution
- Good agreement between data and pQCD (NLOJET++ 4.1.2)

07/16/1₀

 $1 - \cos \theta$

Electroweak W[±] Production at 7 TeV

$W \rightarrow e\nu$ (L_{int} = 6.7nb⁻¹ ± 20%)

- Track pointing to EM cluster
- E_T > 20 GeV
- Shower shape & leakage cuts
- TRT e^{\pm} probability > 90%

- $W \rightarrow \mu \nu$ (L_{int} = 6.4nb⁻¹ ± 20%)
 - Isolated combined track (ID-MS)
 - p_τ > 20 GeV

	$W \rightarrow e \nu$ channel	$W \rightarrow \mu \nu$ channel
Observed	17	40
Expected	23.1 ± 1.2 (stat) ± 1.7 (syst) ± 4.6 (lumi)	$28.7 \pm 0.5(\text{stat}) \pm 3.9(\text{syst}) \pm 5.7(\text{lumi})$
Signal	20.7 ± 1.7 (syst) ± 4.1 (lumi)	$25.9 \pm 3.6(\text{syst}) \pm 5.2(\text{lumi})$
Bkg	2.4 ± 1.2 (stat) ± 0.4 (syst) ± 0.5 (lumi)	$2.8 \pm 0.5(\text{stat}) \pm 0.8(\text{syst}) \pm 0.6(\text{lumi})$

1st Cross Section Measurement With Improved Statistics Expected for ICHEP

> See talk by Kristin Lohwasser

Electroweak Z Production at 7 TeV

 $Z \rightarrow ee \ (L_{int} = 6.7 nb^{-1} \pm 20\%)$

- 2 tracks with opposite charge pointing to EM clusters
- E_T > 20 GeV
- Shower shape & leakage cuts
- 80 GeV < m_{ee} < 100 GeV
- Observed 1, expected 1.6 ± 0.3
- Reconstructed mass: 91.4 GeV

 $Z \rightarrow \mu \mu$ (L_{int} = 7.9nb⁻¹ ± 20%)

- 2 isolated combined track (ID-MS) with opposite charge
- p_{T1} > 20 GeV, p_{T2} > 15 GeV
- 80 GeV < $m_{\mu\mu}$ < 100 GeV
 - Observed 2, expected 3.2 ± 0.9
- Reconstructed mass: 87.6, 80.2 GeV

1st Cross Section Measurement With Improved Statistics Expected for ICHEP

See talk by Kristin Lohwasser

Conclusions

- After 15 years of preparation, ATLAS is performing beautifully
 - All subsystems operating within specifications
 - Data collection efficiency > 90%
 - Detector response well modeled by simulation
- First physics results now available
 - Studies of soft QCD processed: min bias, UE
 - First measurements of Jet Cross Section
 - Excellent agreement with pQCD
 - Observation of W/Z
- With increased luminosity expected soon
 - High statistics studies of SM processes
 - First searches for (and perhaps discovery of) BSM Physics

Exciting times ahead!

Backup Slides

Marjorie Shapiro (LBNL) Blois-2010

25