

Top physics

from Tevatron to LHC

Elizaveta Shabalina II. Physikalisches Institut, Universität Göttingen

Friday, July 16, 2010

July 16, 2010

22nd Recontres des Blois -- Particle Physics and Cosmology - First results from the LHC

The Fermilab Tevatron

- the birthplace of the top quark
- the highest energy collider in the world ...until December 2009
- $\begin{array}{c} \Box & p \bar{p} \text{ collisions at} \\ \sqrt{\mathsf{s}=\mathsf{I}.\mathsf{96}\,\mathsf{TeV}} \end{array}$
- > 2fb⁻¹/year, peak luminosity ~4e³²
- expected 12 fb⁻¹ by the end of 2011
- extension of the run till 2014 is under discussion

The Fermilab Tevatron

- the birthplace of the top quark
- the highest energy collider in the world ...until December 2009
- $\begin{array}{c} \Box & p \bar{p} \text{ collisions at} \\ \sqrt{\mathsf{s}=\mathsf{I}.\mathsf{96}\,\mathsf{TeV}} \end{array}$
- > 2fb⁻¹/year, peak luminosity ~4e³²
- expected 12 fb⁻¹ by the end of 2011
- extension of the run till 2014 is under discussion

The only place where top quark are produced!

Tevatron luminosity

Top quark analyses up to 5.6 fb⁻¹

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Experiments

Tevatron

Multipurpose collider detectors

- high resolution inner detectors
- calorimeters
- outer muon system
- magnetic field

Top quark physics

Top quark production top quark pairs electroweak single top quark

Top quark properties mass width forward-backward asymmetry spin correlations

Searches in top quark sector

- Needed in theory as isospin partner of b-quark
- Properties well defined by the standard model
- Unknown top quark mass

- Needed in theory as isospin partner of b-quark
- Properties well defined by the standard model
- Unknown top quark mass

Friday, July 16, 2010

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Discovered at Fermilab in 1995

The top quark

- Needed in theory as isospin partner of b-quark
- Properties well defined by the standard model
- Unknown top quark mass

Discovered at Fermilab in 1995

As heavy as the atom of gold

- Needed in theory as isospin partner of b-quark
- Properties well defined by SM
- Unknown top quark mass

- The heaviest fundamental particle with unique properties
 - Large coupling to Higgs boson (~I)
 - important role in electroweak symmetry breaking?
 - $\begin{array}{ll} \square & \mbox{short lifetime: decays before} \\ & \mbox{fragmenting} \\ & \mbox{$\tau \approx 5 \times 10^{-25}s << \Lambda_{QCD}^{-1}$} \end{array}$

The most probable place for new physics to show up?

What do we know about top?

July 16, 2010

What do we know about top?

What do we know about top?

8

Main mechanism: pair production vis strong interaction

Main mechanism: pair production vis strong interaction

LHC

PRD 80, 054009 (2009)

Main mechanism: pair production vis strong interaction

Main mechanism: pair production vis strong interaction

assuming similar efficiency

In Standard Model

W decay mode defines top pair final state

E.Shabaina -- Top physics -- 22nd Recontres des Blois

In Standard Model

W decay mode defines top pair final state

small rate, small background main background: Drell-Yan

E.Shabaina -- Top physics -- 22nd Recontres des Blois

In Standard Model

W decay mode defines top pair final state

Top quark decay

high rate, high background main background: multijet

In Standard Model $\sim 100\%$ v, q $t + \bar{q}'$ $t + \bar{q}'$

W decay mode defines top pair final state

Friday, July 16, 2010

small rate, high background backgrounds: multijet,W+jets high rate, high background main background: multijet

W decay mode defines top pair final state

Friday, July 16, 2010

Finding top quarks: b-tagging

- Powerful tool to suppress backgrounds to top
- Utilizes
 - Iong live time of B-hadrons
 - semileptonic B decays

- ³ CDF: Neural network heavy flavor separator applied after SVX tagger
 - separates b from charm and light
 - 25 input variables
- D0: Neural Network tagger
 - combines track and secondary vertex properties - 7 variables

Tevatron experience: b-tagging usually improves the sensitivity

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

b-jet identification at LHC

Impressive agreement between data and simulation
 Looks very promising even for the first top analyses at LHC

Top quark production

top quark pairs electroweak single top quark

Top pair cross section

l+jets channel

Methods:

- kinematical information
- b-jet identification

- First step in understanding selected top quark sample
- Test of theoretical QCD calculations

 Take ratio to Z cross section: trade for Z theory uncertainty

PRL 105:012001,2010

 $\sigma_{t\bar{t}} = 7.63 \pm 0.37(\text{stat}) \pm 0.35(\text{syst}) \pm 0.15$ (theory) pb

7% relative precision, 8.8% with luminosity uncertainty

...to be compared to Tevatron goal of 10%

E.Shabaina -- Top physics -- 22nd Recontres des Blois

More on cross sections

- $\begin{tabular}{ll} \square Simultaneous measurement of σ_{tt} and background normalization $\end{tabular}$
- use NN flavor separator and N_{jets} distribution
 - 9% (15%) improvement of stat (syst) uncertainties
- measures K-factors for W+jets

 $\sigma_{\text{ttbar}} = 7.64 \pm 0.57 \text{ (stat+syst)} \pm 0.45 \text{ (lumi) pb}$

 $K_{W_{b\bar{b}}} = 1.57 \pm 0.25$ $K_{W_{q\bar{q}}} = 1.10 \pm 0.29$ $K_{W_{c\bar{c}}} = 0.94 \pm 0.79$ $K_{W_c} = 1.90 \pm 0.29$

Differential tt cross sections

No deviation from the SM

Cross sections summary

- Measured in all channels except for Thad Thad channel
- Dilepton results achieving good precision (13-14%) (~350 events)

Cross sections summary

- Dilepton results achieving good precision (13-14%) (~350 events)

Latest dilepton result not included

- Consistent with theory prediction, challenges its precision
- Work on CDF-D0 combination is in progress

July 16, 2010 Friday, July 16, 2010

Electroweak top production

Predicted I0 years before top discovery
 Observed I4 years after top discovery

S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)

 σ=1.04±0.04 pb
 σ=2.26±0.12 pb

 NNNLO_{approx}, m_{top}=172.5 GeV

Small at Tevatron, important at LHC

Friday, July 16, 2010

Electroweak top production

Predicted I0 years before top discovery
 Observed I4 years after top discovery

S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)

 σ=1.04±0.04 pb
 σ=2.26±0.12 pb

 NNNLO_{approx}, m_{top}=172.5 GeV

Small at Tevatron, important at LHC

 $\sigma \sim |V_{tb}|^2$ $t = \frac{V_{tb}}{b}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

Electroweak top production

Predicted I0 years before top discovery
 Observed I4 years after top discovery

S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)

σ=1.04±0.04 pb σ=2.26±0.12 pb NNNLO_{approx}, m_{top}=172.5 GeV

Small at Tevatron, important at LHC

 $\sigma \sim |V_{tb}|^2$ $t = \frac{V_{tb}}{b}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Sensitive to new physics in s-channel

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Electroweak top production

Predicted I0 years before top discovery
 Observed I4 years after top discovery

S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)

σ=1.04±0.04 pb σ=2.26±0.12 pb NNNLO_{approx}, m_{top}=172.5 GeV

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Small at Tevatron, important at LHC

in t-channel

Friday, July 16, 2010

 $\sigma \sim |V_{tb}|^2$

A challenge

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

A challenge

July 16, 2010

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

A challenge

July 16, 2010

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

A challenge

July 16,2010

A challenge

Single top observation

D0: PRL 103 092001 (2009) CDF: 103, 092002 (2009)

Single top observation

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Friday, July 16, 2010

July 16, 2010

E.Shabaina -- Top physics -- 22nd Recontres des Blois

20

After the discovery

CDF-D0 combination (3.2 fb⁻¹)

 $\sigma = 2.76^{+0.58}_{-0.47} (\text{stat} + \text{syst}) \text{pb}$ |V_{tb}|=0.91±0.08 (stat+syst)

arXiv:0908.2171v1 [hep-ex]

E.Shabaina -- Top physics -- 22nd Recontres des Blois

After the discovery

First evidence of t-channel single top production

- □ drop assumption of SM s/t ratio
- train discriminant for t-channel
- measure s and t simultaneously

4.8 σ evidence

E.Shabaina -- Top physics -- 22nd Recontres des Blois

PLB 683 363 (2010)

Top rediscovery at LHC

expect 60 tt events per lepton

flavor per experiment in l+jets

channel, ≥4 jets background ~40 events

- Primary short term goal establish top quark signal
- □ Rediscovery is possible with $\sim 10 \text{ pb}^{-1}$
- Major milestone for detectors
 - trigger, lepton identification, jet and E_T^{miss} calibration

Events Equivalent to 90 ATLAS Preliminary Simulation 80 50 pb⁻¹ at 7 TeV 70 CMS Preliminary @ 20 pb⁻¹ **Candidate Events** Electron Channel Pseudo data 60 ttbar $L = 200 pb^{-1}$ 10⁴ SingleTop 50 W+Jets 40 Z+Jets VV+Jets 10³ 30 20 10² 0 350 100 150 200 250 300 10 M_{ii} [GeV] 2 3 **≥**6 1 5 General strategy: Jet multiplicity simple analysis - cut and count template fit of hadronic top mass no b-tagging Reference: at Tevatron 230 pb⁻¹ $\Delta\sigma/\sigma$ (b-tagged, l+jets) - 20% E.Shabaina -- Top physics -- 22nd Recontres des Blois July 16, 2010

Signal in dilepton channel can be established with ~5 pb⁻¹ of data - 15 events over background of 3

Expected 10 pb⁻¹ sensitivity (per experiment)

Channel	N(Signal)	N(background)
e - µ	14	2.5
e – e	4.3	1.1
μ - μ	6.6	1.9
Total	25	5.5

ATL-PHYS-PUB-2009-086 + scaling to 10 pb-1 @ 7 TeV.

P. Ferrari, talk at Top 2010

$$\Delta \sigma / \sigma = 15\%$$
(stat) ± 10%(syst) ± 10%(lumi)

Atlas

Single top will be challenging

at 7 TeV 3σ excess with ~500 pb⁻¹ 5σ with ~1 fb⁻¹

@10 TeV,200 pb-	Cut based	Likel.	
s	118	112	
8	185	127	
S/B	0.64	0.89	

E.Shabaina -- Top physics -- 22nd Recontres des Blois

July 16, 2010

Top quark properties

mass width forward-backward asymmetry spin correlation

- □ Free parameter of the SM
- Together with W mass constrains SM Higgs mass
- Provides guideline for SM Higgs searches
- Constraint on Higgs mass can point to physics beyond the SM

Top quark mass

- □ Free parameter of the SM
- Together with W mass constrains SM Higgs mass
- Provides guideline for SM Higgs searches
- Constraint on Higgs mass can point to physics beyond the SM

 $\Delta r_t \sim m_t^2$

I GeV change of m_{top} leads to ~10 GeV change of m_{Higgs}

Top quark mass

- Free parameter of the SM
- Together with W mass constrains SM Higgs mass
- Provides guideline for SM Higgs searches
- Constraint on Higgs mass can point to physics beyond the SM

 $\Delta r_{t} \sim m_{t}^{2}$

$$\Delta r_{Higgs} \sim \ln(m_{H}^{2})$$

I GeV change of m_{top} leads to ~10 GeV change of m_{Higgs}

The most precisely known top quark property

- only jets can be measured
- clean mapping between reconstructed objects and partons
- jet energy scale calibration to particle level
 - dominating uncertainty
- in-situ calibration using hadronic W mass

Jet scale used to be severely limiting factor for top physics

Mass extraction methods

Template method

- Choose variable strongly correlated with the top mass
- Compare data to MC with different mass hypothesis
- Matrix element method

- Calculate probability for event to be signal or background as a function of top mass
- Multiply event probabilities to extract the most likely mass

Maximizes statistical power by using full event information

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

lepton+jets channel

Friday, July 16, 2010

Tevatron mass combination

March 2009

- does not include the latest CDF result
- to be updated for ICHEP

$$m_{top}=173.1\pm1.3(total) \text{ GeV}$$

- Improved understanding of systematics
- Measurement in different channels consistent with each other
- Different methods produce consistent results

Tevatron mass combination

Mass of the Top Quark

Probing CPT

Is top quark mass equal to anti-top quark mass?

Drop assumption $m_t = m_{\overline{t}}$ in top mass measurement

□ Extension of ME mass analysis □ m_t , JES → m_t , m_t

- Template method
- □ variables: Δm_{reco} and $\Delta m_{reco(2)}$

32

Electron channel

Muon channel

10 TeV

100 pb⁻¹

 2.7 ± 1.3

 2.8 ± 0.8

Time is needed to achieve similar precision at LHC

Tevatron measurement dominated by systematics

First measurements: template method ID for $\sim 100 \text{ pb}^{-1}$: stabilized top mass, $\Delta m/m = 2 \text{ GeV} (\text{stat}) \pm 3.8 \text{ GeV} (\text{syst})$

2D for ~1 fb⁻¹: b-tagged events, m_t and JES

 $\Delta m/m = 0.6 \text{ GeV} (\text{stat}) \pm 2.0 \text{ GeV} (\text{syst})$

Statistical uncertainty [GeV] as a function of \mathscr{L}_{int}

30 pb⁻¹

 7.0 ± 2.1

 5.8 ± 1.5

Talk by J.Parsons

10 pb⁻¹

 10.8 ± 3.5

 9.9 ± 3.9

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Top mass prospects at LHC

Top quark width

SM: $\Gamma_t \sim 1.5$ GeV at NLO for $m_t = 172.5$ GeV

Additional decay modes: $t \rightarrow H^+b$, $t \rightarrow dW^+$, $t \rightarrow sW^+$?

- Direct measurement: build templates in Γ_t
- reconstruct mreco and mw

$\Gamma_{\rm t}$ < 7.5 GeV at 95% C.L.

Indirect measurement

- use single top t-channel cross section
- combine with measured branching ratio
- assumption: coupling in top production and decay is the same

 $\Gamma_t = (1.99^{+0.69}_{-0.55}) \text{GeV}, \ \tau_t = (3.2^{+1.3}_{-0.9}) \times 10^{-25} \text{s}$

Forward-backward asymmetry

- LO: top quark production angle is symmetric with respect to beam direction
- NLO: asymmetry due to interference effects
- □ At Tevatron charge asymmetry = forward-backward asymmetry I+jets events, pp rest frame $A_{fb} = \frac{N(-Q \times Y_{had} > 0) - N(-Q \times Y_{had} < 0)}{N(-Q \times Y_{had} > 0) + N(-Q \times Y_{had} < 0)}$
- Q lepton charge, Y_{had} rapidity of hadronic top

Correct for acceptance and reconstruction effects $A_{fb} (p\bar{p}) = 0.150 \pm 0.050 \text{ (stat)} \pm 0.024 \text{ (syst)}$ $A_{fb} (t\bar{t}) = 0.158 \pm 0.072 \text{ (stat)} \pm 0.017 \text{ (syst)}$ $A_{fb} (t\bar{t}) = 0.158 \pm 0.072 \text{ (stat)} \pm 0.017 \text{ (syst)}$

 $A_{fb} (|\Delta y| < 1.0) = 0.026 \pm 0.104(stat) \pm 0.055(syst)$ $A_{fb} (|\Delta y| > 1.0) = 0.611 \pm 0.210(stat) \pm 0.141(syst)$

 A_{fb} (raw) = 0.073 ± 0.028

Forward-backward asymmetry

- LO: top quark production angle is symmetric with respect to beam direction
- NLO: asymmetry due to interference effects
- □ At Tevatron charge asymmetry = forward-backward asymmetry I+jets events, pp rest frame $A_{fb} = \frac{N(-Q \times Y_{had} > 0) - N(-Q \times Y_{had} < 0)}{N(-Q \times Y_{had} > 0) + N(-Q \times Y_{had} < 0)}$
- Q lepton charge, Y_{had} rapidity of hadronic top

Correct for acceptance and reconstruction effects 300 250 $A_{fb} (p\bar{p}) = 0.150 \pm 0.050 \text{ (stat)} \pm 0.024 \text{ (syst)}$ 5.6 fb⁻¹ 200 A_{fb} (tt) = 0.158 ± 0.072 (stat) ± 0.017 (syst) 150 **MCFM** 100 0.039 ± 0.006 A_{fb} ($|\Delta y| < 1.0$) = 0.026 ± 0.104(stat) ± 0.055(syst) 50E 0.123 ± 0.018 A_{fb} ($|\Delta y| > 1.0$) = 0.611 ± 0.210(stat) ± 0.141(syst) 02

Deviation from standard model ? ~30 theory papers in last 2 years!

new D0 update with 4.3 fb⁻¹ for ICHEP!

Spin correlations

Short lifetime

Flight directions of top decay products carry information about top polarization at production

July 16, 2010

Searched in Top quark sector

Searches in top production

Searches in top decay

Searches in top production

July 16, 2010

Friday, July 16, 2010

GEORG-AUGUST-UNIVERSITÄT Göttingen

Searches in top production

July 16, 2010

Friday, July 16, 2010

Searches in decay

- Properties and searches are statistically limited
- Large samples at LHC will allow precise measurement
- Impact can be made with L~500 pb⁻¹
 - Early measurement

Techniques to reconstruct highly boosted top quarks are being developed

- Properties and searches are statistically limited
- Large samples at LHC will allow precise measurement
- Impact can be made with L~500 pb⁻¹
 - Early measurement

Techniques to reconstruct highly boosted top quarks are being developed

Can Tevatron help?

CDF result for boosted tops is expected for ICHEP

- Properties and searches are statistically limited
- Large samples at LHC will allow precise measurement
- □ Impact can be made with L~500 pb⁻¹
 - Early measurement

Techniques to reconstruct highly boosted top quarks are being developed

Can Tevatron help?

CDF result for boosted tops is expected for ICHEP

NLO: κ=0.78

NLO: κ=0.33

- Top quark physics today
 - unprecedented precision on top quark mass and cross section
 - significantly beyond Tevatron goals
 - Impressive number of studied properties
 - new measurements possible: spin correlations
 - only now reaching sensitivity
 - broad program of searches in top sector
- No significant deviation from standard model predictions so far

- Top quark physics today
 - unprecedented precision on top quark mass and cross section
 - significantly beyond Tevatron goals
 - Impressive number of studied properties
 - new measurements possible: spin correlations
 - only now reaching sensitivity
 - broad program of searches in top sector
- No significant deviation from standard model predictions so far

Looking forward for first top physics results from LHC this year

July 16, 2010

22nd Recontres des Blois -- Particle Physics and Cosmology - First results from the LHC

Single top quark at HERA

- Use the same selection as for W
- SM production is strongly suppressed
- Can be enhanced by FCNC
 - coupling of t to up-type quark U via γ or Z
- Background: single W production

42

Understanding Jets

- Jet energy scales used to be severely limit top physics
- □ Has become less important with the W→jj calibration (simultaneous fit) in lepton+jets and all-hadronic, even applied to dilepton.
- Still limits some measurements, try to find creative ways around...

Friday, July 16, 2010

ME method details

- Integrate over unknown q₁, q₂, y
- The jet energy calibration (JES) is a free parameter in the fit, constrained in-situ by the mass of hadronically decaying W

 $\mathcal{P}_{ ext{event}}(x; m_t, ext{JES}) = f_t \; \mathcal{P}_{tar{t}}(x; m_t, ext{JES}) + (1 - f_t) \mathcal{P}_{bkg}(x, ext{JES})$

Testing the Theory

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

45

Sample composition

S/B at CDF	Dilepton (≥2 jets)	Lepton+Jets (≥4 jets)	All-hadronic (6-8 jets, after NN Selection)
0 b-tag	1:1	~1:4	~1:20
1 b-tag		4:1	1:4
2 b-tags	20:1	20:1	1:1

top width and new physics

t-channel cross section

$$\Gamma_t = \frac{\sigma(t-\text{channel}) \ \Gamma(t \to Wb)_{\text{SM}}}{\mathcal{B}(t \to Wb) \ \sigma(t-\text{channel})_{\text{SM}}}$$

top width and new physics

example: charged Higgs with $m_{H+} < m_t - m_b$

t-channel cross section

branching ratio $t \rightarrow Wb$

$$\Gamma_t = \frac{\sigma(t-\text{channel}) \ \Gamma(t \to Wb)_{\text{SM}}}{\mathcal{B}(t \to Wb) \ \sigma(t-\text{channel})_{\text{SM}}}$$

top width and new physics

example: charged Higgs with $m_{H+} < m_t - m_b$

t-channel cross section

branching ratio $t \rightarrow Wb$

$$A_C = \frac{N_t(p) - N_{\bar{t}}(p)}{N_t(p) + N_{\bar{t}}(p)}$$

Charge asymmetry: number tops and anti-tops in a given direction (proton beam)

$$A_{fb} = \frac{N_t(p) - N_t(\bar{p})}{N_t(p) + N_t(\bar{p})}$$

Forward-backward asymmetry: number of top and anti-top quarks moving for or against a given direction

For CP invariant system $N_{\overline{t}}(p) = N_t(\overline{p})$ $A_c = A_{fb}$

$$A_{fb} = \frac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

 $\Delta y = y(top) - y(anti-top)$

Color reconnection

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

Spin correlations: axis

beamline: A = 0.777 at NLO best for production at threshold

helicity: A = -0.352 at NLO use direction of (anti)top quark in tt rest frame to quantize the spin

Helicity angle: angle between decay product momentum in top rest frame and top quark momentum in tt rest frame

 $\tan \omega = \sqrt{1 - \beta^2} \tan \theta$

off-diagonal: A = 0.782 at MCNLO good for pairs above threshold

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 81 (2004)

E.Shabaina -- Top physics -- 22nd Recontres des Blois

July 16, 2010

Wtb vertex

$$\begin{split} L_{tWb} &= \frac{g}{2\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} (f_{1}^{L} (1 - \gamma_{5}) + f_{1}^{R} (1 + \gamma_{5})) t \\ &- \frac{g}{2\sqrt{2}M_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} (f_{2}^{L} (1 - \gamma_{5}) + f_{2}^{R} (1 + \gamma_{5})) t \end{split}$$

• In SM
$$f_1^L = V_{tb} \approx 1$$
, $f_2^L = f_2^R = f_1^R = 0$

E.Shabaina -- Top physics -- 22nd Recontres des Blois

Friday, July 16, 2010

Future precision

CDF example

Systematic source	δm _{top} (GeV)
calibration	0.10
MC generator	0.37
Radiation	0.15
Residual jet energy scale	0.49
b-jet energy scale	0.26
Lepton p _T	0.14
Multiple hadron interactions	0.10
PDFs	0.14
Background	0.34
Gluon fraction	0.03
Color reconnection	0.37
Total	0.88

Approaching I GeV uncertainty on a single measurement

W helicity

Relative direction between the spin and direction of motion

Lorentz structure of Wtb vertex predicts:

Measure angle between the momenta of d-type fermion and top quark in W rest frame

Other possible variables: lepton p_T and $M_{lb}{}^2$ Lower sensitivity than $cos \vartheta^*$

July 16, 2010

W helicity results

- Matrix Element method in I+jets channel
 - simultaneous fit of (f₀,f₊)
 - $\begin{array}{ll} f_0 = & 0.88 \pm 0.11 \; (stat) \pm 0.06 \; (syst) \\ f_+ = -0.15 \pm 0.07 \; (stat) \pm 0.06 \; (syst) \end{array}$

 $Q_{0+} = -0.59$

 $\begin{array}{ll} f_0 = & 0.70 \pm 0.07 \; (stat) \pm 0.04 \; (syst) \; for \; f_+ = 0 \\ f_+ = -0.01 \pm 0.02 \; (stat) \pm 0.05 \; (syst) \; for \; f_0 = 0.7 \\ f_+ < 0.12 \; at \; 95\% \; CL \end{array}$

- Template method in dilepton and l+jets channels
- □ simultaneous fit of (f_0, f_+)
 - $f_0 = 0.490 \pm 0.106 \text{ (stat)} \pm 0.085 \text{ (syst)}$
 - $f_{+} = 0.110 \pm 0.059 \text{ (stat)} \pm 0.052 \text{ (syst)}$

E.Shabaina -- Top physics -- 22nd Recontres des Blois

July 16, 2010

W helicity results

Matrix Element method in I+jets channel

simultaneous fit of (f₀,f₊)

 $f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}$ $f_+ = -0.15 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst)}$

 $Q_{0+} = -0.59$

 $\begin{array}{ll} f_0 = & 0.70 \pm 0.07 \; (stat) \pm 0.04 \; (syst) \; for \; f_+ = 0 \\ f_+ = -0.01 \pm 0.02 \; (stat) \pm 0.05 \; (syst) \; for \; f_0 = 0.7 \\ f_+ < 0.12 \; at \; 95\% \; CL \end{array}$

Expected precision at 8 fb⁻¹

