Recent results from LHCb (and prospects)

XXIInd Rencontres de Blois Château de Blois, 15th - 20th July 2010

Particle Physics and Cosmology First Results from the LHC

The standard model in particle physics and beyond Neutrinos in the laboratory and the universe The search for dark matter and dark energy New trends in astrophysics and cosmology

http://confs.obspm.fr/Blois2010/index.htm

Programme Committee Réza Ansari (France) Etienne Argé (France) Jacques Dumarchez (France) Jean-Marie Frère (Beigium) Yannick Giraud-Heraud (France) Karl Jikobs'(Germany) Boaz Klima (USA) Sotiris Loucatos (France) Bölék Pietrzyk (France) Bölék Pietrzyk (France) Liz Simmons (USA) Chung-I Tan (USA) Jean Trian Thành Văn (France)

new physics new techniques new models 21.11.2009 4:38:08 -50ns

Introduction and detector overview
 Preliminary results and ongoing analysis
 Outlook and prospects for 2010/2011

Andreas Schopper (CERN)

on behalf of the LHC

Collaboration

B Physics as a probe for New Physics

Standard Model (SM) cannot be the ultimate theory !

SM could be a low-energy effective theory of a more fundamental theory at a higher energy scale, probably in the TeV region → accessible at LHC !

How can New Physics (NP) be discovered and studied ?

- NP models introduce *new particles*, dynamics and/or symmetries at a higher energy scale, and these new particles could
 - ✓ be produced and observed *as real particles* at energy frontier machines like the LHC → detected by GPD (ATLAS & CMS)
 - ✓ appear *as virtual particles* in e.g. loop processes, leading to observable deviations from the pure SM expectations in flavour physics and CP violation → detected by LHCb in B decays

B decays in the Standard Model and beyond

virtual particles appear in loop mediated processes

The LHCb Collaboration

LHCD

B production in LHCb

- \checkmark bb pair production correlated and sharply peaked forward-backward
 - ➢ forward geometry: 15-300 mrad, unique 5> η> 2 coverage
 - > cross section of bb production in LHCb acceptance at $\sqrt{s}=14$ TeV: $\sigma_{bb} \sim 230 \ \mu b$
 - $\blacktriangleright\,\, {\rm B}^{\scriptscriptstyle +}$, ${\rm B}^{\scriptscriptstyle 0}$, ${\rm B}_{\rm s}$, b-baryons , ${\rm B}_{\rm c}$
- ✓ LHCb limits luminosity to few 10³² cm⁻²s⁻¹ instead of 10³⁴ cm⁻²s⁻¹ by not focusing the beam as much as ATLAS and CMS
 - maximizes probability of a single interaction per crossing
 - reach ~design luminosity in first year!

Requirements to detector performance

Triggering & selecting B's

- ✓ B's have a typical decay length of L~1cm in LHCb
- ➢ good vertex resolution
- ✓ B decay products have large transverse momentum (because of their high mass)
- \blacktriangleright select particles with high p_t that come from displaced vertex

Tagging flavour of the B at production

- ✓ opposite side tagging of companion B (e.g. charge of the kaon in the b→ c→ s chain)
- ✓ same side tagging (e.g. charge of the kaon accompanying the B_s)
- particle identification

Overview of LHCb detector

forward spectrometer specialized for B hadron reconstruction

Vertex locator

Blois, 15-20 July 2010

22nd Rencontres de Blois

9

Tracking system

Particle identification

crucial for trigger, flavour tagging and B candidate selection

Blois, 15-20 July 2010

22nd Rencontres de Blois

Trigger and data taking

+ large and clean data sets

Blois, 15-20 July 2010

LHCD THCD

First pp collisions at \sqrt{s} = 7 TeV

→ <u>Giacomo Graziani</u>

"Typical" data taking at LHCb

Accumulated statistics and data taking efficiency

When moving to crossing angle and 75 (150) ns bunch spacing we expect $L\sim 1-2\cdot 10^{32}$ cm⁻²s⁻¹ with ~200 pb⁻¹ in 2010 and ~1 fb⁻¹ in 2011 (~1/2 of a nominal year for LHCb)

LHCb trigger

Trigger is crucial:

- > $\sigma_{b\bar{b}}$ is less than 1% of total inelastic cross section
- > B decays of interest typically have $BR < 10^{-5}$

Customized Hardware Level Trigger (L0)

- random trigger
- > high- p_t μ , e, γ and hadron candidates

Software High Level Trigger (HLT1&HLT2) Farm with O(2000) multi-core processors <u>HLT1</u>:

- > minimum bias: no bias & micro bias (at least one track)
- c & b physics: L0 confirmation with more complete info, add impact parameter and lifetime cuts

<u>HLT2</u>:

> inclusive and exclusive selections

LHCb trigger performance and strategy for 2010

HLT1 di-hadron line (tested on reconstructed charm in MB sample)

Di Hadron Vertex Chi²

expected eff. (MC)	charm	hadr. B	lept. B
nominal L	~ 10%	~ 40%	~ 90%
low L (2010)	40–50%	75–80%	> 90%

Blois, 15-20 July 2010

22nd Rencontres de Blois

Vertexing performance

impact parameter resolution: $\sigma(IPx) \sim 16.2 + 24.6/p_t \ \mu m$ $\sigma(IPy) \sim 15.7 + 24.6/p_t \ \mu m$

twoprong proper lifetime (ps)

Luminosity measurement at $\sqrt{s} = 0.9$ TeV (2009 data)

Grey: beam-beam

White: beam-beam predicted from beam-gas

get the bunch currents from machine measurements (BCT)
 measure (with VELO) beam sizes, positions and angles using beam-gas interactions

Luminosity:
$$\mathcal{L} = n_1 \cdot n_2 \cdot f / \mathcal{A}_{eff}$$

 $\begin{array}{ll} n: & \text{protons/bunch} \\ f: & \text{collision frequency} \\ \mathcal{A}_{eff}: & \text{effective area calculated from} \\ & \text{beam size and position} \end{array}$

$$\mathcal{L} = (6.8 \quad 1.0) \ \mu b^{-1}$$

15% accuracy expected to improve to ~5% in 2010

Tracking performance: efficiency

Currently known to ~2%

> Orange points \rightarrow photon hits

➤ Continuous lines → expected distribution for each particle hypothesis (proton below threshold)

S/

PID for muons

- ✓ achieved muon ID efficiency of >95% for p>6 GeV in 25 ns (5 stations), in good agreement with MC
- ✓ clean J/ψ sample using muon ID and pion mis-ID

LHCD

- ✓ 5 % mis-ID rate for 90 % efficiency
 ✓ 4.5 % in MC at same efficiency
- very good agreement!

Preliminary results and outlook

Early physics results = cross section measurements & particle multiplicities/ratios

LHCb has a unique rapidity range of $2 < \eta < 5$ (crucial input to Event Simulation)

- charged particle multiplicities, kinematic distributions
- \succ K_s cross section as function of p_T and η
- $\succ \Lambda / K_s$ and $\Lambda / \overline{\Lambda}$ ratios
- $> J/\psi$ cross-section (prompt & from b)
- \rightarrow D+, D0, D*, D_s production cross section
- \succ bb cross section
- expectations for 2010 (0.2 fb⁻¹) and 2011 (1fb⁻¹)

	σ (3.5+3.5TeV)	events in LHCb acceptance	
	[mbarn]	2010	2011
total	100		
$b\bar{b}$	0.2	$40 \cdot 10^9$	$200 \cdot 10^{9}$
$c\bar{c}$	2	$400 \cdot 10^9$	$2 \cdot 10^{12}$

conservative estimates of cross-sections

event yields for subset of bench-mark exclusive decays

The "strange" outlook... **Prompt K_s production cross section at** $\sqrt{s} = 0.9$ TeV

Reconstruct $K_s \rightarrow \pi^+\pi^-$ pointing back to primary vertex (PV) in bins of p_t and rapidity y:

- ✓ beam-gas substracted,
- background-subtracted
- ✓ efficiency-corrected using MC tuned/reweighted to the data

DD analysis:

➤ use only downstream (D) tracks with hits in TT and T, ignore VELO info

LL analysis:

2009 data

 \succ use only long (L) tracks with VELO hits

candidates per 2 MeV/c³ 0 0 0 00 00 2 MeV/c 250 -LHCb preliminary LHCb preliminary candidates per 200 DD add luminosity LL 150 measurement ... 100 100 0.4 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 m_{"*"} [GeV/c²] m____ [GeV/c²] Results of both analyses in agreement → Sophie Redford \rightarrow take most precise result in each bin

2009 data

Blois, 15-20 July 2010

Prompt K_s production in pp collisions at √s=0.9 TeV

 \blacktriangleright differential production cross section as function of the K_s transverse momentum and rapidity in the region $0.2 < p_T < 1.6$ GeV/c and 2.5 < y < 4.0 in comparison with MC \triangleright data tend to be harder in p_t than MC

Prompt K_s production in pp collisions at √s=0.9 TeV

steepening of p_t spectrum with increasing y
 more abundant production with increasing energy

(first publication under approval by the collaboration)

Blois, 15-20 July 2010

Prompt $\overline{\Lambda}$ and Λ production

 \rightarrow valuable input to baryon number transport

➢ use only long tracks in 2010 data recorded with "microbias" trigger → Susanne Koblitz

Prompt $\overline{\Lambda}$ and Λ production ratio

The "charming" outlook... Untagged two-body D0 decays

 $in \sim 2.7 nb^{-1}$

Measure D⁰ lifetime as a check:

- → make very pure D⁰ → K⁻π⁺ selection (S/B ~ 22)
- proper-time distribution with simple exponential
- \blacktriangleright use only tail, where efficiency is constant

✓ τ (D⁰) = 0.398 0.026 ps (6.5% stat. precision)

✓ result does not depend on where the fit starts and agrees with the known D⁰ lifetime of 0.4101 0.0015 ps

Direct CP violation studies in the charm sector

- ➢ interesting modes are:
 - ✓ single Cabibbo-suppressed decays where NP may enter in gluonic Penguin
 - ✓ 3-body decays, where Dalitz plot analysis allows for many local CP asymmetries to be probed
- \succ D⁺ → K⁺K⁻π⁺ is an excellent candidate:

✓ use Cabibbo-favoured $D_s^+ \to K^+K^-\pi^+$ and $D^+ \to K^+\pi^-\pi^+$ decays as control channels

expect several million events in 0.1 fb⁻¹ (an order of magnitude more than B-factory samples)

J/w production: prompt and from b

measure cross sections: $d\sigma/dp_t$ (all J/ ψ) $\sigma(\text{prompt } J/\psi)$ $\sigma(J/\psi \text{ from } b)$

 μ - π and μ - p misidentification rates determined using large samples of $K_s \rightarrow \pi\pi$ and $\Lambda \rightarrow p\pi$ decays

 $\pi \rightarrow \mu$ dominated by decays in flight

 $p \rightarrow \mu$ dominated by combinatorics in muon stations

J/w production

- > only statistical error
- ➤ no corrections (e.g. efficiency)

p_t spectrum softer in data than MC
 rapidity distribution in good agreement

- \checkmark b-events identified via detached vertex analysis
- ✓ combined fit to mass and pseudo proper-time t_z allows separation of prompt J/ψ and b → J/ψ components

$$t_{z} = (z_{J/\psi} - z_{PV}) \frac{m_{J/\psi}}{p_{z J/\psi}}$$

Semileptonic B-decays

Large branching fraction, suitable for early cross section measurement:

- ▶ with 100 nb⁻¹, expect 2.8k B \rightarrow D⁰µ⁻vX signal events with good purity
- > measurement complementary to $b \rightarrow J/\psi$ result

$B_d \to D^- \mu^+ \nu$ and $B_s \to D_s^- \mu^+ \nu$ decays useful for:

- > B_d and B_s oscillations (Δm_d and Δm_s), flavour tagging studies and calibration
- > CP violation in B_d and B_s mixing:
 - ✓ measure $\Delta A_{fs} = (a_{fs}(B_s) a_{fs}(B_d))/2$ where detector asymmetry will drop out if D⁻ and D_s⁻ decay to same K⁺K⁻π⁻ final state

Semileptonic B-decays

Large branching fraction, suitable for early cross section measurement:

- \rightarrow with 100 nb⁻¹, expect 2.8k B \rightarrow D⁰ μ ν X signal events with good purity
- measurement complementary to $b \rightarrow J/\psi$ result

 $B_d \rightarrow D^-\mu^+\nu$ and $B_s \rightarrow D_s^-\mu^+\nu$ decays useful for:

- > B_d and B_s oscillations (Δm_d and Δm_s), flavour tagging studies and calibration
- \succ CP violation in B_d and B_s mixing:

 \checkmark measure $\Delta A_{fs} = (a_{fs}(B_s) - a_{fs}(B_d))/2$ where detector asymmetry will drop out if D⁻ and D_s⁻ decay to same K⁺K⁻ π ⁻ final state \checkmark from MC study, assuming 0.1 fb⁻¹ and

 $\sigma_{bb} = 500 \ \mu b$, expect statistical precision on ΔA_{fs} of 2 10⁻³ similar to that of D0 on $A_{sl}^{b} \sim (a_{fs}(B_{s}) + a_{fs}(B_{d}))/2$

 $A_{sl}^b = (-0.957 \pm 0.251 \,(\text{stat}) \pm 0.146 \,(\text{syst}))\,\%$

 A_{sl}^b (SM) = $\left(-2.3^{+0.5}_{-0.6}\right) \times 10^{-4}$

2

Semileptonic B-decays

Large branching fraction, suitable for early cross section measurement:

- > with 100 nb⁻¹, expect 2.8k B → $D^0\mu^-\nu X$ signal events with good purity
- ▷ measurement complementary to $b \rightarrow J/\psi$ result

 $B_d \rightarrow D^-\mu^+\nu$ and $B_s \rightarrow D_s^-\mu^+\nu$ decays useful for:

- > B_d and B_s oscillations (Δm_d and Δm_s), flavour tagging studies and calibration
- > CP violation in B_d and B_s mixing:

✓ measure $\Delta A_{fs} = (a_{fs}(B_s) - a_{fs}(B_d))/2$ where detector asymmetry will drop out if D⁻ and D_s⁻ decay to same K⁺K⁻π⁻ final state

✓ from MC study, assuming 0.1 fb⁻¹ and $\sigma_{bb} = 500 \ \mu b$, expect statistical precision on ΔA_{fs} of 2 10⁻³ similar to that of D0 on $A_{sl}^{\ b} \sim (a_{fs}(B_s) + a_{fs}(B_d))/2$

 ✓ provide constraint "orthogonal" to recent D0 measurement of A_{sl}^b

Fully reconstructed B decays

$B^+ \rightarrow J/\psi K^+$ candidate

Search for effects induced by New Physics in CP violation and Rare decays using the FCNC processes mediated by loop diagrams (box and penguin)

LHCb key measurements

<u>in CP–violation</u>: → <u>Anton Poluektov</u>

- $> B_s \overline{B}_s \text{ mixing angle } \phi_s$
- \blacktriangleright weak phase γ in trees
- \blacktriangleright weak phase γ in loops

<u>in Rare Decays</u>: → <u>Antonio Perez</u>

- ▶ branching ratio of $B_s → µµ$
- ➢ forward-backward asymmetry in B → K*µµ
- polarization of photon in radiative penguin decays

(early measurements in red)

Physics prospects with 2010/2011 data

are New Physics already around the corner ?

$B_s-\bar{B}_s$ mixing phase ϕ_s in $B_s \rightarrow J/\psi(\mu\mu) \phi$

✓ Sensitive to New Physics effects in mixing $ightarrow \phi_s = \phi_s(SM) + \phi_s(NP)$

$$\frac{\overline{b} \bullet \overline{u}, \overline{c}, \overline{t} \bullet \overline{d}, \overline{s}}{B^{0}}$$

$$B^{0} \bullet H^{+} W \delta \overline{B^{0}} \overline{B^{0}}$$

$$\bullet H^{+} NP? \bullet \overline{B^{0}}$$

$$\bullet in SM: \phi_{s} = -2\beta_{s} = -\arg(V_{ts}^{2}) = -0.036 \quad 0.002$$

- ✓ J/ $\psi \phi$ is not a pure CP eigenstate (2 CP even, 1 CP odd amplitude)
- need to fit angular distributions of decay final states as function of proper time (requires very good proper-time resolution)
- $\checkmark\,$ with 2.8 fb⁻¹ current combined Tevatron result ~2.1\sigma away from SM value
- ➢ hope to improve significance with LHCb's first year data

Branching ratio of rare decay $B_s \rightarrow \mu^+\mu^-$

Blois, 15-20 July 2010

22nd Rencontres de Blois

Andreas Schopper

μ+

b

Summary

- > LHCb is fully operational with a performance very close to "nominal"
 - profit from lower luminosity at start-up to by tuning the trigger for increased physics potential for minimum bias and charm physics
 - \checkmark will deploy the core physics within next year with the first fb⁻¹
- > Initial production measurements ongoing:
 - ✓ absolute K_s production cross section at 0.9 TeV
 - $\checkmark~\bar{\Lambda}/\Lambda$ production ratio at 0.9 and 7 TeV
 - \checkmark to come very soon:
 - $\circ~\bar{p}/p$ production ratio at 0.9 and 7 TeV
 - o open charm, prompt J/ψ , $b \rightarrow J/\psi$ and \bar{b}/b cross sections
- > Indirect New Physics searches at LHCb on the horizon:
 - ✓ several highly-sensitive physics observables in B and D sectors, accessible with data from 2010–2011 run
 - active preparation of analysis using existing calibration & control signals while looking forward to more statistics!

Don't miss the LHCb parallel session talks:

Parallel session on "LHC physics results":

- \checkmark LHCb detector commissioning with first data
 - → Giacomo Graziani (Firenze)
- \checkmark Luminosity measurement and K-short production with first LHCb data
 - → Sophie Redford (Oxford)
- ✓ LHCb particle identification performance and baryon/anti-baryon asymmetries
 → Susanne Koblitz (CERN)

Parallel sessions on "QCD and Heavy Flavour Physics"

- ✓ LHCb physics prospects for CP violation measurements with 0.2 and 1 fb⁻¹
 → Anton Poluektov (Warwick)
- ✓ Search for rare decays at LHCb with 0.2 and 1 fb⁻¹
 - → Antonio Maria Pérez-Calero Yzquierdo (Barcelona)

Electroweak boson production

LHCb coverage:

- interesting pseudo-rapidity region where W⁺/W⁻ ratio varies rapidly
- —small y overlap with ATLAS/CMS
- —unique area of (Q^2, x) plane

Measurements of interest:

 $-Z^0/W^{\pm}$ ratio

- precisely predicted (< 1%)
- should aim at 1% measurement with 0.1 fb⁻¹ \rightarrow test SM
- —W⁺/W⁻ ratio
 - sensitive to u/d ratio
- -W, Z production cross sections
 - can constrain PDFs, down to $\sim 6 \times 10^{-4}$ at $\sqrt{s} = 7$ TeV

$W \rightarrow \mu \nu$ selection

Selection:

- —good track (χ^2 , $\sigma_p/_p$, ...) identified as muon
- $-p_{\rm T} > 30 \; GeV/c \; and \; A_{p\rm T} > 0.8$

 $\mathbf{A}_{\mathbf{p}\mathrm{T}} = \frac{\mathbf{p}_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}}^{\mathrm{rest}}}{\mathbf{p}_{\mathrm{T}} + \mathbf{p}_{\mathrm{T}}^{\mathrm{rest}}}$

excluding the selected track

22nd Rencontres de Blois

Blois, 15-20 July 2010

$W^+ \rightarrow \mu^+ \nu$ candidate

 $\eta = 2.51$ $p_T = 35.4$ GeV/c $A_{pT} = 0.92$

