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Dark Matter Could Be Due to 
New Physics at the TeV Scale!

A remarkable coincidence

2

Particles in thermal equilibrium + decoupling when nonrelativistic
  

Cosmology points to W&Z scale
Inversely standard particle model requires new physics at this scale
     (e.g. supersymmetry, global symmetry or additional dimensions)                                     
=> significant amount of dark matter

Weakly Interacting Massive Particles
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Three methods: 
  Direct Detection in the Cosmos= Halo WIMP elastic scattering
  Indirect Detection in the Cosmos= Annihilation products
               Production at the large Hadron Collider 

 

γ ,e+ , p,v



 

B.SadouletBlois June 2010 3

Halo WIMP Scattering “Direct Detection” 
dn/dEr

Er

Expected recoil spectrum

Elastic scattering
Expected event rates are low 
  (<< radioactive background)
Small energy deposition (≈ few keV)
  << typical in particle physics

Signal = nuclear recoil (electrons too low in energy)
  ≠ Background = electron recoil  (if no neutrons)

Signatures
• Nuclear recoil
• Single scatter ≠ neutrons/gammas
• Uniform in detector

 Linked to galaxy
• Annual modulation (but need several thousand events)
• Directionality (diurnal rotation in laboratory but 100 Å in solids)
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Experimental Approaches

4

CRESST I

CDMS

EDELWEISS

CRESST II 

ROSEBUD

ZEPLIN II, III

XENON

WARP

ArDM

SIGN

NAIAD

ZEPLIN I

DAMA

XMASS

DEAP

Mini-CLEAN

DRIFT

IGEX

COUPP

S
c
in

tilla
tio

n

H
e
a
t 
-

P
h
o
n
o
n
s

Ionization

Direct Detection Techniques
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At least two pieces of information in order to
recognize nuclear recoil
extract rare events from background
  (self consistency)
+ fiducial cuts (self shielding, bad regions)

A blooming field

As large an amount of 
information and  a signal to 
noise ratio as possible
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Situation Summer 2009
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Scalar couplings: Spin independent cross sections
January 2009 compilation by Jeff Filippini
Gray=DAMA 2 regions(Na, I) from Savage et al.
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Spin dependent couplings

ap vs an  at mass of 60GeV/c2

WIMP mass [GeV/c2]

W
IM

P−
pr

ot
on

 σ
SD

 [c
m

2 ]

 

 

101 102 10310−41

10−40

10−39

10−38

10−37

10−36

10−35

10−34

Roszkowski 2007 (95%)
Roszkowski 2007 (68%)
DAMA/LIBRA 2008
COUPP 2008
KIMS 2006
XENON10 2007
SuperK 2004
CDMS all Ge

WIMP mass [GeV/c2]

W
IM

P−
ne

ut
ro

n 
σ SD

 [c
m

2 ]

 

 

101 102 10310−41

10−40

10−39

10−38

10−37

10−36

10−35

10−34

Roszkowski 2007 (95%)
Roszkowski 2007 (68%)
DAMA/LIBRA 2008
XENON10 2007
CDMS all Si
CDMS all Ge

an

a p

 

 

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

DAMA/LIBRA 2008
KIMS 2006
XENON10 2007
SuperK 2004
CDMS all Ge

Situation Summer 2009



 

B.SadouletBlois June 2010 7

Io
ni

za
ti

on
/R

ec
oi

l e
ne

rg
y

Ionization yield

Recoil Energy

Timing -> surface discrimination

Surface 
Electrons

CDMS II December 2009
 Ionization + Athermal Phonons

7.5 cmØ 1 cm thick ≈250g
4 phonon sensors on 1 face
2 ionization channel
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CDMS Blind Analysis

We unblinded the signal region November 5, 2009

masked signal region (2σ NR band)

All WIMP search data
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Unblind Events Failing Timing Cut

All WIMP search data failing 
the timing cut

150 events in the NR band fail the timing cut, consistency checks deemed ok
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Unblind Events Passing Timing Cut 

2 events in the NR band pass the timing cut!

All WIMP search data 
passing the timing cut

Event 1:            
Tower 1, ZIP 5 (T1Z5)           
Sat. Oct. 27, 2007

Event 2:            
Tower 3, ZIP 4 (T3Z4)           
Sun. Aug. 5, 2007

2 events 
near NR 

Background 0.8 ± 0.1 (stat) ± 0.2 (syst)  surface events

         + 0.1 ± 0.05 (syst) neutron  => 23% Probability
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90% C.L. Spin-Independent Limit

Upper limit at the 90% C.L. on the WIMP-nucleon cross section :

 3.8 x 10-44
 cm2 for a WIMP of mass 70 GeV/c2

Science 12 February 2010
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The future of Ge
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‘b’ electrodes (+4V)

collecting
‘a’ electrodes (-1.5V)

field shapping
« VETO »

‘d’ (-4V) ‘c’ (+1.5V)

Volume Guard

Surface
Breakthrough:  Interdigitated detectors

Positive and ground  electrodes on top side
Negative and ground on negative
=> separate surface (asymmetric) from bulk (symmetric)
CDMS + EDELWEISSS

The surfaces are gone!
Rejection should be good enough-> ton scale

 
     →background starts 

           to appear?
      Gammas?

Is this true?  EDELWEISS results presented Sunday 7/18 
3 evts near threshold + 1 evt at 175 keV in the nuclear recoil region (1.6 evt expected)
Best limit: σSI(W-N) = 5.0x10-44 cm2 at MW= 80 GeV(90%CL) 
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The future of Ge 2
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SCDMS Soudan 15kg
2011-2012:  5 10-45 cm2

SCDMS SNOLAB 100kg
2014-2017  3 10-46 cm2

GEODM DUSEL 1.5 tonne
2017-2021 2 10-47 cm2

Challenge is to produce detector 
at low enough cost ($50M)

EDELWEISS 
2012:  5 10-45 cm2

40 detectors  800g + improvement 
background, electronics

EURECA  100kg
 2013-2016
few 10-46 cm2

-> tonne
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New results of Xenon 100 May 2010
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Scintillation (S1) + Ionization (S2)
Log scale

Liquid Xenon
    161kg  Xe
        40kg active volume
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Exclusion limit
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Sensitivity ≈ CDMS
Increasing tension with DAMA
Do not see evidence for low mass seen by CoGeNT

Nuclear recoil 
region

* 50% nuclear recoil 

11 days preliminary run (not blind)
Very few events in fiducial region
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The future of Xenon
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3 experiments
XMASS (single phase)
Xenon 100-> 1t
LUX 350kg-> few tons

Exciting
Currently running
With rejection of ≈7 10-3

could improve by factor 5
≈ 5 10-45 cm2/nucleon

161 kg days
23 events 
4< npe <20 7.4-29 keV

But clearly see volume
 contamination

Will have to understand

Still far from performance needed
 for 10-47 cm2/nucleon (Generation 3 experiment goal!) 
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CoGeNT  Feb 2010
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Excluded by Xenon 10-100?
 it all depends on Leff calibration

Savage et al  ArXiV 1006.0972

Small Ge liquid N2 high resolution
Evidence for a signal ?

Detailed shape of the background: very weak!
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Compatibility between CoGeNT and DAMA?

Hooper, Collar, Hall, McKinsey arXiv 1007.1005
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The future of Direct Detection
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Technologies are rapidly reaching the 
needed level of sensitivity/background 
rejection
• Ge
• Xe
• Bubble Chamber
• Ar

We need several technologies
Several targets to check A dependence
     spin
     threshold effects (excited              

   dark matter)
Need several technologies with different systematics
     cross checks
     insurance against failure 

   (e.g. unknown background)
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3 Complementary Approaches
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Dark Matter
Galactic Halo (simulation)

WIMP annihilation in the cosmos

GLAST

Fermi/GLAST

VERITAS, also HESS, Magic + IceCube (v)

WIMP production on Earth

LHC
CDMS

WIMP scattering on Earth:
e.g. CDMS, Xenon 100 etc.
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We Need All Three Approaches
LHC

Could see quite rapidly some missing energy: New Physics!
But cannot prove that the new particles are stable and form the Dark Matter
             e.g.,  χ-> gravitino +...  (“Super-WIMP”)

   Need to detect those particles in the cosmos

Elastic scattering of halo WIMPs in the laboratory
Very clean + would prove that these particles are stable
But  can only measure approximately a cross section and a mass:
   Little input on the fundamental physics

Annihilation products in the galactic halo 
Most evidence will be ambiguous <- variety of astrophysics phenomena
   Would need confirmation

21
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Conclusions

22

The nature of Dark Matter: Very fundamental 
question!

Weakly Interactive Massive Particles
Dark Matter could be due to TeV Scale

Current 

!1
0 Mass [GeV/c2]

"
SI

 [c
m

2 ]

XENON100CDMS II

1

2
3 4

102 10310−48

10−47

10−46

10−45

10−44

10−43

10−42

Generation 3 

Generation 1 ≈ 2013
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Next five years will be 
very important

Direct Detection: A lot of action
         

Ge and Xe are reaching interesting level of sensitivity
Bubble chamber and Ar are making a lot of progress
Indirect detection: Fermi is a powerful instrument 
   + IceCube
LHC is starting to run
Complement region of sensitivities
In overlap region rich physics!
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Xe 100 Criticisms
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Enr(keVr ) =
S1

npe / keV
1

Leff

See
Snr

Effect of Electric Field


=
S1

2.20 ± 0.09
1

Leff

0.58
0.95

Light yield normalization ±30%
Possibility of a (soft) threshold: may not exclude CoGENT events!

Aprile et al.
ArXiv: 1005:0380

Collar & McKinsey
ArXiv: 1005:0838v2

Curved used

Poisson fluctuation assumption at 4 P.E.
+ apparent increase of rejection at low photo-electrons not understood


