Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC) UC Dark Matter Initiative

Direct Detection Of Galactic Dark Matter

Why WIMPs? Experimental situation

Situation in Summer 2009 Recent action Dec 2009-July 2010 CDMS II 2 events Xenon 100 CoGeNT and DAMA

The future of direct detection

Need for at least 2 technologies Complementarity with LHC and indirect detection

Dark Matter Could Be Due to New Physics at the TeV Scale! A remarkable coincidence Particles in thermal equilibrium + decoupling when nonrelativistic $\Rightarrow \Omega_x h^2 = \frac{3 \cdot 10^{-27} \, cm^3 \, / \, s}{\langle \sigma_A v \rangle} \approx 0.12 \quad \Rightarrow \sigma_A \approx \frac{\alpha^2}{M_{_{\rm FW}}^2}$ Cosmology points to W&Z scale Inversely standard particle model requires new physics at this scale (e.g. supersymmetry, global symmetry or additional dimensions) => significant amount of dark matter Weakly Interacting Massive Particles Three methods: Direct Detection in the Cosmos = Halo WIMP elastic scattering **Indirect Detection in the Cosmos**= Annihilation products $\gamma, e^+, \overline{p}, v$

Production at the large Hadron Collider

Halo WIMP Scattering "Direct Detection"

Elastic scattering

Expected event rates are low (<< radioactive background) Small energy deposition (≈ few keV) << typical in particle physics Signal = nuclear recoil (electrons too low in energy) ≠ Background = electron recoil (if no neutrons)

Signatures

- Nuclear recoil
- Single scatter ≠ neutrons/gammas
- Uniform in detector

Linked to galaxy

- Annual modulation (but need several thousand events)
- Directionality (diurnal rotation in laboratory but 100 Å in solids)

Experimental Approaches

As large an amount of information and a signal to noise ratio as possible

Direct Detection Techniques

At least two pieces of information in order to recognize nuclear recoil extract rare events from background (self consistency)

+ fiducial cuts (self shielding, bad regions)

Situation Summer 2009

Scalar couplings: Spin independent cross sections

January 2009 compilation by Jeff Filippini Gray=DAMA 2 regions(Na, I) from Savage et al.

Situation Summer 2009

Blois June 2010

CDMS II December 2009 Ionization + Athermal Phonons

7.5 cmØ 1 cm thick ≈250g4 phonon sensors on 1 face2 ionization channel

Ionization yield

Timing -> surface discrimination

CDMS Blind Analysis

We unblinded the signal region November 5, 2009

Blois June 2010

Unblind Events Failing Timing Cut

150 events in the NR band fail the timing cut, consistency checks deemed ok

Blois June 2010

Unblind Events Passing Timing Cut

2 events in the NR band pass the timing cut!

Background 0.8 ± 0.1 (stat) ± 0.2 (syst) surface events + 0.1 ± 0.05 (syst) neutron => 23% Probability

Blois June 2010

90% C.L. Spin-Independent Limit

Science 12 February 2010

 $3.8 \times 10^{-44} \text{ cm}^2$ for a WIMP of mass 70 GeV/c²

Blois June 2010

The future of Ge 2

SCDMS Soudan 15kg 2011-2012: 5 10⁻⁴⁵ cm² SCDMS SNOLAB 100kg 2014-2017 3 10⁻⁴⁶ cm²

GEODM DUSEL 1.5 tonne

2017-2021 2 10⁻⁴⁷ cm² Challenge is to produce detector at low enough cost (\$50M)

EDELWEISS

2012: 5 10⁻⁴⁵ cm²
40 detectors 800g + improvement background, electronics

EURECA 100kg

2013-2016 few 10⁻⁴⁶ cm²

-> tonne

New results of Xenon 100 May 2010

Liquid Xenon

161kg Xe 40kg active volume

Scintillation (S1) + Ionization (S2) Log scale

Blois June 2010

Exclusion limit

Sensitivity ~ CDMS

Increasing tension with DAMA Do not see evidence for low mass seen by CoGeNT

The future of Xenon

3 experiments

XMASS (single phase) Xenon 100-> 1t LUX 350kg-> few tons

Exciting

Currently running With rejection of ≈7 10⁻³ could improve by factor 5 ≈ 5 10⁻⁴⁵ cm²/nucleon

But clearly see volume contamination

Will have to understand

Still far from performance needed for 10⁻⁴⁷ cm²/nucleon (Generation 3 experiment goal!)

Blois June 2010

17

Compatibility between CoGeNT and DAMA?

Hooper, Collar, Hall, McKinsey arXiv 1007.1005

Blois June 2010

18

The future of Direct Detection

CDMS II

Generation 1 2 20

Generation 2 == 2016

10⁻⁴³

10⁻⁴⁴

10⁻⁴⁵

10⁻⁴⁶

 $\sigma_{\rm SI} \, [{\rm cm}^2]$

Technologies are rapidly reaching the needed level of sensitivity/background rejection 10⁻⁴²

- Ge
- Xe
- Bubble Chamber
- Ar

We need several technologies

Several targets to check A dependence spin threshold effects (e: dark matter) Need several technologies with different systematics cross checks insurance against failure (e.g. unknown background)

XENON100

3 Complementary Approaches

Blois June 2010

20

We Need All Three Approaches

LHC

Could see quite rapidly some missing energy: New Physics! But cannot prove that the new particles are stable and form the Dark Matter e.g., χ -> gravitino +... ("Super-WIMP")

Need to detect those particles in the cosmos

Elastic scattering of halo WIMPs in the laboratory

Very clean + would prove that these particles are stable But can only measure approximately a cross section and a mass: Little input on the fundamental physics

Annihilation products in the galactic halo Most evidence will be ambiguous <- variety of astrophysics phenomena Would need confirmation

Conclusions

The nature of Dark Matter: Very fundamental question!

10⁻⁴³ Weakly Interactive Massive Particle Dark Matter could be due to TeV Scale **10⁻⁴⁴** σ_{SI} [cm²] 10⁻⁴ Next five years will be very important 10 Direct Detection: A lot of action 10^{-4} Ge and Xe are reaching interesting level of sensitivity Bubble chamber and Ar are making a lot of progress Indirect detection: Fermi is a powerful instrument + IceCube LHC is starting to run Complement region of sensitivities In overlap region rich physics!

Xe 100 Criticisms

Light yield normalization ±30%

Possibility of a (soft) threshold: may not exclude CoGENT events!

Poisson fluctuation assumption at 4 P.E.

+ apparent increase of rejection at low photo-electrons not understood