Review of Experimental CP-Conserving Processes in Heavy Flavour Physics

J. Michael Roney University of Victoria (BABAR Member) Chateau de Blois 17 July 2010

standard model's flavour sector

~two dozen fundamental SM parameters

- Couplings of EW and strong interactions
- Weak mixing angle, Z boson mass
- Masses of quarks and leptons
- Matrix characterizing the mixing of weak and mass eigenstates of quarks and, recently in extended SM, leptons
- Higgs mass, strong-CP angle

Heavy flavour sector primarily touches on the Cabibbo-Kobayashi-Maskawa (CKM) matrix

J.M. Roney - non-CP Heavy Flavour

In SM weak charged transitions mix quarks of different generations

Encoded in unitary CKM matrix $\begin{pmatrix} d' & s' & b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Unitarity → 4 independent parameters, one of which is the complex phase and sole source of CP violation in SM

Wolfenstein parameterisation:

$$\mathbf{V}_{_{CKM}} = \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(\rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

3

CKM Unitarity Triangle

Physics beyond the SM signaled by breakdown of unitarity of CKM matrix Wolfenstein

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}; \quad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}; \quad \overline{\rho} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \quad \begin{array}{c} \text{parameterisation} \\ \text{defined to hold to all} \\ \text{orders in } \lambda \sim 0.2 \text{ and} \\ \text{rephasing invariant} \end{array}$$

$$\frac{V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0}{\alpha = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{ub}^{*}}\right)} \quad \beta = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{cd}V_{cb}^{*}}\right) \quad \beta = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{cd}V_{cb}^{*}}\right) \quad \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right| \quad \left|\frac{$$

CKM experimental programme

•Make as many precision measurements as possible that overconstrain the four CKM parameters (A, λ , ρ , η)

•New Physics would be revealed in discrepancies between measurements

•Generally requires non-perturbative QCD input to convert measurements to a SM CKM interpretation

Programme: Over constrain CKM with broad set of measurements

Quantity Sample Measurement(s) V_{ud} superallowed β decays $|V_{us}| \qquad K_{\ell 3} \to \pi \ell \nu; K_{\ell 2} \to \ell \nu /$ CPV in K^0 \mathcal{E}_{K} $|V_{ub}|$ b \rightarrow u ℓv ; B $\rightarrow (\pi/\rho)\ell v$; B $\rightarrow \tau v$ $|V_{cb}|$ $B \rightarrow D^{(*)} \ell \nu$ $B_d^0 - \overline{B_d^0}$ mixing Δm_d $B_s^0 - \overline{B_s^0}$ mixing $\Delta m_{\rm s}$ $B^0 \rightarrow J/\psi K^{(*)}$ β $B^0 \rightarrow \pi \pi \pi \rho \rho \rho$ α $B^0 \rightarrow D^{(*)}K^{(*)}$ γ $|V_{td}|/|V_{ts}|$ $b \rightarrow d\gamma/b \rightarrow s\gamma; B^0_d \& B^0_s mixing$

Although we probe the charged weak interaction, we need input from strong interaction calculations, which are difficult and often need data

Major experiments providing flavour data... so far

Cleo-c

• 0.818/fb at $\psi(3770)$

• 0.586/fb at $\psi(4170)$

 $\star 0.54 \times 10^6 D_s^{*\pm} D_s^{\mp}$ pairs

BESIII @ BEBC II

8

Booster CDF

D source

Tevatron

Main Injector

& Recycler

KLOE, BNL-E865, KTeV, ISTRA+ and **NA48**

DØ

uminosity (pb^{*})

Deliverer

4000

5000 6000 7000 8000

4000

3000

2000 1000

Related Parallel Session talks

Semi-leptonic and Leptonic B Decays at B Factories - Elisabetta Barberio (Melbourne) Recent B Physics Results from the Tevatron - Karen Gibson (Case Western) Evidence for Significant Matter-Antimatter Asymmetry at DZero - Derek Strom (UIC) Recent Charm Physics Results from e+e- B Factories - Rolf Andreassen (Cincinnati) Recent Quarkonium Results from the e+e- B Factories - Simone Stracka (Milan) Recent Tau Decay Results at B Factories - Kiyoshi Hayasaka (Nagoya) Recent Results from CLEO - David Cassel (Cornell) Single Top and V_tb at the Tevatron - Reinhard Schwienhorst (Michigan State) Constraints on Quark and Neutrino 4th Generation SM Mixing Matrix - Heiko Lacker (Berlin) Highlights of Flavour Violation in the Presence of a 4th Generation - Tillmann Heidsieck (Munich)

9

Sample of recent measurements

•CP violating measurements will be discussed in the next presentation

•Here I'll address a few recent CP-conserving heavy flavour measurements

- $|V_{ub}|$ from Semileptonic B decays
- •B leptonic decays
- | Vus | measurements

|V_{ub}| from Semileptonic B Decays

measurements based on decays with large branching fractions

Two experimental approaches:

- Inclusive $b \rightarrow u \mid \nu$
 - Weak Quark decay + QCD
- Exclusive $B \rightarrow X_u 1 \nu$
- v $y + QCD \quad q^2 = m^2(e_{Ve}) \quad p_X \quad X$ $1 \quad v$
 - QCD handled via Form factors with non-perturbative input from e.g. lattice QCD

Address experimental issues, such as charm background, differently and have different QCD correction issues

11

$$|V_{ub}|$$
 from $B \rightarrow \pi \ell \nu$
(BABAR arXiv:1005.3288)

Determine |Vub| from simultaneous fit to calculated (lattice QCD) and measured values of partial decay rate as function of q²

Latest *BABAR* measured q² spectrum yields a value of:

$$|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$$

Total error has similar contributions from lattice and experimental uncertainties

Latest combined fit to data, lattice $B \rightarrow \pi \ell \nu$ $(2.95 \pm 0.31) \times 10^{-3}$ Inclusive, PDG2010 average: $b \rightarrow u \ell \nu$ $(4.37 \pm 0.39) \times 10^{-3}$ Difference is a problem and perhaps should be identified as an unattributed uncertainty •work of multiple experiments, multiple theoretical groups. •exclusive result relies on non-perturbative normalization input •inclusive result uses m_b, non-perturbative extrapolations and perturbative corrections

Predictions CKM fits:	<mark>s from</mark> UTFit	3.48±0.16	(ICHEP 2008)
	CKMFitter	$3.51 \pm 0.15_{0.16}$	(Beauty 2009)
		14	J.M. Roney - non-CP Heavy Flavour

Leptonic Decays

Remarkably simple pseudo-scalar (spin = 0, Parity is negative) decays carry information about CKM elements, but come with a 'decay constant' factor which accounts for the strong interaction component

- $B \rightarrow \tau \nu$ rate of decay $\alpha (f_B |V_{ub}|)^2$
- $Ds \rightarrow \tau \ \nu \text{ or } Ds \rightarrow \mu \ \nu \text{ rate } \alpha \ (f_{Ds} |V_{cs}|)^2$
- $K \rightarrow \mu \nu$ rate $\alpha (f_K |V_{us}|)^2$

$$\mathcal{B}[M \to \ell \nu_{\ell}]_{\rm SM} = \frac{G_F^2 m_M m_{\ell}^2}{8\pi} \left(1 - \frac{m_{\ell}^2}{m_M^2}\right)^2 |V_{q_u q_d}|^2 f_M^2 \tau_M (1 + \delta_{EM}^{M\ell 2})$$

Particularly interesting because some New Physics theories have charged Higgs which contributed to the observed decay rate, e.g.

- Additional tree level contribution from a charged Higgs
 - It does not suffer from helicity suppression, but gets the same m₁ dependence from Yukawa coupling

• Branching fraction theoretical expression depends on the NP model $\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2\beta \frac{m_B^2}{m_H^2})^2 \qquad \text{W. S. Hou, Phys. Rev. D 48 (1993) 2342.}$ $\mathcal{B}(B \to l\nu)_{SUSY} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - \frac{tan^2\beta}{1 + \epsilon_0 tan\beta} \frac{m_B^2}{m_H^2})^2 \qquad \text{A.G. Akeroyd and S.Recksiegel}$ J.Phys.G29:2311-2317,2003 $I6 \qquad J.M. Roney - non-CP Heavy Flavour$

$B^+ \rightarrow \tau^+ \nu_{\tau}$ Experimental method

Reconstruct event to select B⁻ events from background...

$$B^+ \rightarrow \tau^+ \nu_{\tau}$$
 Results

BABAR Hadronic $\mathcal{B}(B \to \tau \nu) = (1.8^{+0.9}_{-0.8}(\text{stat.}) \pm 0.4 \pm 0.2) \times 10^{-4}$

BABAR Semi-leptonic $\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.4 (\text{stat.}) \pm 0.2) \times 10^{-4}$

BELLE Hadronic $(1, -2, \pm 0, 56)$

 $\mathcal{B}(B \to \tau\nu) = (1.79^{+0.56}_{-0.49}(\text{stat.})^{+0.46}_{-0.51}) \times 10^{-4}$

BELLE Semi-leptonic

 $\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37} (\text{stat.})^{+0.29}_{-0.31}) \times 10^{-4}$

Phys. Rev. D 77, 011107(R) (2008)

Phys. Rev. D 81,051101(R) (2010)

Phys. Rev. Lett. 97, 261802 (2006)

arXiv:1006.4201[hep-ex]

20

$$B^+ \rightarrow \tau^+ \nu_{\tau}$$
 Results

world average: $P(P^+ \rightarrow \pi^+ \alpha) = (1, 7)$

 $B(B^+ \rightarrow \tau^+ \nu) = (1.73 \pm 0.35) \times 10^{-4}$

~2.5 σ higher than expected from CKM fit excluding B⁺ $\rightarrow \tau + \nu$

Summary of leptonic B decay results

Most precise CKM test is from the unitarity condition:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

From the 1st row of the CKM matrix

- $|V_{ub}|$ is negligible in comparison to $|Vud| \sim 1$ and $|V_{us}| \sim 0.2$
- $|V_{ud}| = 0.97425(22)$ is most precisely obtained from super-allowed nuclear beta decay
- $|V_{us}|$ is most precisely obtained from Kaon decays

$$|V_{us}| \text{ from kaons} KLOE, BNL-E865, KTeV, ISTRA+ and NA48}$$

$$|V_{us}| = 0.2254(13), |V_{us}|/|V_{ud}| = 0.2312(13), |V_{ud}| = 0.97425(22)$$
Fit with no CKM unitarity constraint:

$$|V_{us}| = 0.2253(9), |V_{ud}| = 0.97425(22), \\ \chi^{2}/dof = 0.014/1 (91\%)$$

$$|V_{us}|^{2} + |V_{us}|^{2} + |V_{us}|^{2} - 1 = -0.0001(6)$$
Fit with CKM unitarity constraint:

$$|V_{us}| = 0.2254(6), \\ \chi^{2}/dof = 0.024/2 (99\%)$$
Fit with CKM unitarity constraint:

$$|V_{us}| = 0.2254(6), \\ \chi^{2}/dof = 0.024/2 (99\%)$$
this analysis from Antonelli et al arXiv:1005.2323(hep-ph 2010), (use f_{K}/f_{\pi} = 1.193(6).)
M. Roney- non-CP Heavy Flavour.

$|V_{us}|$ from inclusive tau decays to kaons: $\tau^+ \rightarrow X_s \nu_{\tau}$

Decay Mode	Experiment	Reference	Result
(τ ⁻ → K ⁻ ν)/(τ ⁻ → e ⁻ ν v)	BaBar	arXiv:0912.0242 [hep-ex]	(0.03882 ± 0.00032 ± 0.00057)
			$ g_{\tau}/g_{\mu} = (0.9836 \pm 0.0087)$
τ ⁻ → Κ ⁻ π ⁰ ν	BaBar	Phys.Rev.D76:051104,2007	$(0.416 \pm 0.003 \pm 0.018) \times 10^{-2}$
τ [−] → K ⁰ π [−] ν	BaBar	arXiv:0808.1121 [hep-ex]	(0.840 ± 0.004 ± 0.023) x 10 ⁻²
	Belle	Phys.Lett.B654:65-73,2007	(0.808 ± 0.004 ± 0.026) x 10 ⁻²
τ [°] → Κ ⁰ π [°] π ⁰ ν	BaBar	arXiv:0910.2884 [hep-ex]	(0.342 ± 0.006 ± 0.015) x 10 ⁻²
$\tau^{-} \rightarrow K^{-} \pi^{-} \pi^{+} v \text{ (excl. } K_{S}^{0})$	BaBar	Phys.Rev.Lett.100:011801,2008	(0.273 ± 0.002 ± 0.009) x 10 ⁻²
	Belle	arXiv:1001.0083 [hep-ex]	$(0.330 \pm 0.001 +0.016 -0.017) \times 10^{-2}$
τ ⁻ → Κ ⁻ π ⁻ Κ ⁺ ν	BaBar	Phys.Rev.Lett.100:011801,2008	$(1.346 \pm 0.010 \pm 0.036) \times 10^{-3}$
	Belle	arXiv:1001.0083 [hep-ex]	(1.55 ± 0.01 ^{+0.06} _{-0.05}) x 10 ⁻³
τ [*] → K [*] K [*] K ⁺ v	BaBar	Phys.Rev.Lett.100:011801,2008	(1.58 ± 0.13 ± 0.12) x 10 ⁻⁵
	Belle	arXiv:1001.0083 [hep-ex]	$(3.29 \pm 0.17 + 0.19 - 0.20) \times 10^{-5}$
τ [°] → Κ [°] φ ν	BaBar	Phys.Rev.Lett.100:011801,2008	$(3.39 \pm 0.20 \pm 0.28) \times 10^{-5}$
	Belle	Phys.Lett.B643:5-10,2006	$(4.05 \pm 0.25 \pm 0.26) \times 10^{-5}$
τ [−] → Κ* Κ [−] ν	Belle	arXiv:0808.1059 [hep-ex]	$(1.56 \pm 0.02 \pm 0.09) \times 10^{-3}$
τ [−] → K* K [−] π ⁰ v	Belle	arXiv:0808.1059 [hep-ex]	$(2.39 \pm 0.46 \pm 0.26) \times 10^{-5}$
τ [−] → Κ [−] η ν	Belle	Phys.Lett.B672:209-218,2009	(1.58 ± 0.05 ± 0.09) x 10 ⁻⁴
τ ⁻ → Κ ⁻ π ⁰ η ν	Belle	Phys.Lett.B672:209-218,2009	$(4.6 \pm 1.1 \pm 0.4) \times 10^{-5}$
τ [°] → K _S ⁰ π [°] η ν	Belle	Phys.Lett.B672:209-218,2009	$(4.4 \pm 0.7 \pm 0.2) \times 10^{-5}$
τ [°] → K* [°] η v	Belle	Phys.Lett.B672:209-218,2009	(1.34 ± 0.12 ± 0.09) x 10 ⁻⁴

Belle and BABAR measured many modes with significantly higher precision than previous world averages from LEP and CLEO. Measurements are consistent with previous measurements, but slightly lower.

$|V_{us}| \text{ from } B(\tau^- \to K^- \nu_{\tau})/B(\tau^- \to \pi^- \nu_{\tau})$ BABAR (arXiv:0912.0242)

Improve lattice error by taking ratio:

 $\frac{B(\tau^- \to K^- v_\tau)}{B(\tau^- \to \pi^- v_\tau)} = \frac{f_K^2}{f_\pi^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{(1 - m_K^2 / m_\tau^2)^2}{(1 - m_\pi^2 / m_\tau^2)^2} (1 + \delta_{LD})$ Using : $f_K / f_\pi = 1.189 \pm 0.007$ MeV E. Follana, et al, PRL 100, 062002 (2008) $|V_{ud}| = 0.97425$ (22)

$$V_{us} = 0.2255 \pm 0.0024$$

Consistent with unitarity

Summary and Prospects

- Flavour sector provides a means of probing physics beyond the SM at the precision frontier
- The SM describes the flavour data, but there are seen a few 'tensions' in the flavour sector requiring attention
- Looking forward to new data from LHCb and in the future SuperB and SuperKEKB