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Overview

• Introduction and motivation

• Generating primordial density perturbations

• Inflation
• Some cosmological perturbation theory . . .

• Evolution: conserved quantities

• Observational signatures
• Calculating observational consequences
• Higher order observables

• Current and future observational constraints: 21cm anisotropies

• Conclusions
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The evolution of the Universe

What underlying theory or theories govern the evolution of the Universe?

• on small scales:
Quantum Field Theory, necessary to set initial conditions

• on large scale:
Einstein’s General Relativity, necessary to calculate evolution

⇒ can work with two separate, well understood theories, instead of waiting
for final theory . . .

⇒ can calculate how quantum fluctuation evolve into large scale structure
(LSS)

Note: in the following Cosmological standard model (nothing too strange . . . )
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The evolution of the Universe
The cosmological standard model

Science

the CMB as
seen by WMAP
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Inflation

Dynamics controlled by Einstein equations Gµν = 8π G Tµν

Cosmological inflation:
Starobinsky (1980), Guth (1981)

• period of accelerated expansion in the very early universe

• “easily” achieved using scalar field ϕ with potential U :

P =
1

2a2
ϕ′2 − U(ϕ)

⇒ negative P during period of potential domination (field is “slowly
rolling”)

U( )ϕ

ϕ

Background dynamics (using conformal
time η):

ϕ′′ + 2Hϕ′ + a2U,ϕ = 0

H2 =
8πG

3

(
1

2
ϕ′2 + a2U

)
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Vacuum fluctuations

Fluctuations in the scalar field (assuming slow roll, in Fourier space,
wavenumber k) governed by Klein-Gordon equation

δϕ′′ + 2Hδϕ1
′ + k2δϕ+ a2U,ϕϕδϕ = 0

can be solved in terms of Hankel functions

• Initial conditions: making contact with Quantum Field Theory on small
scales (|kη| ≫ 1)

δϕ ∼ e−ikη

a
√
2k

• power spectrum Pδϕ(k) ≡
(

k3

2π2

) ∣∣δϕ
∣∣2 and we get “iconic” result for

fluctuation amplitude at horizon crossing (i.e. k = aH)

δϕ
∣∣
k=aH

=
H

2π

Starobinsky; Hawking; Guth and Pi (1982); Mukhanov and Chibisov (1981)
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Vacuum fluctuations

• Inflation solves many problems of Big Bang model (flatness, horizon,
monopole), but was designed to do so

• Arguably the greatest success of inflation:
vacuum fluctuations δϕ get (nearly) scale-invariant power spectrum Pδϕ

⇒ seeds for structure formation

To relate primordial spectrum to spectrum of temperature fluctuations in the
CMB or distribution of galaxies: need GR
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Cosmological perturbation theory
• GR is nonlinear: need approximation scheme, such as perturbation

theory

• perturbing metric and matter variables, e.g. above ϕ = ϕ+ δϕ

• GR is covariant, splitting variables is not: spurious gauge modes get
introduced ⇒ construct gauge invariant variables

• E.g.: a first order coordinate transformation xµ → x̃µ = xµ + δx µ
1

,
induces a change in metric variable, curvature perturbation, and
energy density:

ψ̃1 = ψ1 +
a′

a
δη1 , δ̃ρ1 = δρ1 + ρ′

0
δη1

combine both ⇒ get gauge-invariant quantity

−ζ1 = ψ1 +
H
ρ′
0

δρ1

curvature perturbation on uniform density hypersurfaces
Bardeen (1980)
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Conserved quantities

• Variables like δϕ evolve ⇒ would need evolution from end of inflation,
“horizon exit” to “horizon entry”

• use instead conserved quantities: only need to calculate at “horizon exit”

• popular example: ζ1

• using energy conservation, can show that on large scales for adiabatic
perturbations

ζ ′1 = 0

• Why is that useful? Can calculate observable quantities in early universe,
e.g. at end of inflation after horizon exit, then map them onto ζ
⇒ observables won’t change until they reenter horizon

To put it crudely:
ζ1 ∼ gravitational potential wells ⇒ dark matter and other fluids “fall in” ⇒
CMB and other anisotropies (in neutral hydrogen and LSS)
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Putting it in context . . .
The cosmological standard model, again . . .

During final stages, at
end of inflation: calculate
the observable of choice,
e.g. 〈δϕ1δϕ1〉

Since the ob-
servables evolve,
translate into con-
served quantities,
say ζ

Horizon re-entry: trans-
late conserved quantities
into temperature fluctu-
ations, use Boltzmann
codes to evolve further
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Calculating observables

getting information from the data:

• calculate two-point correlator or power
spectrum 〈δϕδϕ〉

• translate into conserved quantity
sourcing CMB anisotropies, e.g. cur-
vature perturbation on uniform density
hypersurfaces, 〈ζ1ζ1〉

• feed into Einstein equations and Boltzmann solver

• get theoretical predictions for CMB anisotropies

• compare with observations
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Comparing theory with observations

Theoretical input: formalism sketched above, and model of inflation, i.e. the
potential U(ϕ)

• too many models to list, some grouping of model zoo into:
• single field models versus multi-field models
• large field models compared to small field models

• simplest “chaotic inflation” models still viable (single and large field): e.g.

U(ϕ) =
1

2
m2ϕ2

Linde (1983)

• Biggest problem of inflation: what is the inflaton, the field that drives
inflation?

WMAP7 ruled out Harrison-Zel‘dovich-Peebles spectrum (more than 3 σ)
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Cosmological parameters

Some parameter values from WMAP7 cosmological interpretation paper

• take primordial power spectrum as power law, with amplitude ∆2

ζ(k0) and
spectral index ns

∆2

ζ(k) = ∆2

ζ(k0)

(
k

k0

)ns

and ∆2

ζ(k0) = 2.43× 10−9, ns = 0.969 (at 68%C.L.), pivot scale
k0 = 0.002Mpc−1

• scalar to tensor ratio (contribution of gravitational waves to power
spectrum) r < 0.36

• “running” or scale dependence of spectral index:
−0.084 < dns/d ln k < 0.010

• many more not directly related to primordial perturbations, like Hubble
parameter H0, background energy densities, . . .
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Higher order observables

At linear order in perturbation theory primordial perturbations from inflation
are (very nearly) Gaussian distributed, at higher this is no longer the case.
Note, here and in the following: classical perturbation theory, not loops!

• at linear order two point correlation function:
〈ζζ〉 ⇒ power spectrum P (k) ∼ Akns , with amplitude A , spectral index ns
(and wavenumber k)

• at second order three point correlation function:
〈ζζζ〉 ⇒ bispectrum, more complicated
However: in its simplest form can be characterised by a number,
non-linearity parameter fNL, roughly:

fNL ∝ ζ2
ζ2
1

where ζ = ζ1 +
1

2
ζ2 + . . .
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Higher order observables

• at third order four point correlation function:
〈ζζζζ〉 ⇒ trispectrum, even more complicated
However: in its simplest form can be characterised by parameters τNL,
gNL

Note:
at present fNL treated as a constant (as is spectral index in many studies),
though eventually – when sufficient data available – allow for scale and
configuration dependence.
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Higher order observables: fNL

Use CMB data (and in future also galaxy surveys) to further constrain models

• at linear order most models pass observational tests

• non-linearity parameter fNL is currently becoming a very strong model
discriminator

Gangui et al. (1994), Komatsu and Spergel (2001), Maldacena (2003)

• very simplest single field inflation models (“vanilla”) predict fNL ∼ 1

• the 68% hint in WMAP7 data: fNL = 32± 21 ⇒ “vanilla” inflation model
might be ruled out, multi-field inflation (e.g. curvaton, generic multi-field
model) favoured
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LSS and 21cm anisotropies

The cosmological standard model
Science

the distribution of galaxies as observed by
SDSS
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21cm anisotropies

Maps of the neutral hydrogen have the potential to provide the data we need
to study non-gaussianity:

• neutral hydrogen left over from the Big Bang can be mapped using its
21cm transition

• “same” mechanism in forming 21cm anisotropy involved as in forming
temperature anisotropy of CMB (primordial perturbations sourcing
potential “wells”)

• signal is generated after decoupling but before galaxy formation at
redshift 200 . z . 30 (compare to formation of CMB at decoupling at
z ≃ 1100)

• no Silk damping on small scales

• by “tuning” or shifting the observed wavelength tomography possible
(slices of the universe at different redshifts) ⇒ 21cm maps are in full 3D
glory
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21cm . . . continued

Implications for studies of the early universe and non-gaussianity

• Silk damping makes CMB observation impossible on small scales, no
signal beyond l ∼ 3000 or k . 0.2 Mpc−1

• 21cm observations possible up to l ∼ 50000

• amount of data in 21cm compared to CMB is ∼ 1010 higher
Loeb and Zaldarriaga 2003

Using the 21cm data it should be possible to constrain the non-linearity
parameter ∆fNL . 1 (PLANCK temperature + polarisation ∆fNL ∼ 6)

Many experiments projected or underway: LOFAR, SKA, PAST . . .
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Conclusion

• Cosmological standard model works!

• inflation:
• introduced to solve problems of hot Big Bang
• vacuum fluctuations in inflaton generate nearly scale-invariant

primordial spectrum to source CMB and LSS

• new observable quantities, in particular at higher order in cosmological
perturbation theory, and new and better data will allow to constrain
parameter space further

• there are also problems: what is the inflaton?

• although no candidate for the inflaton obvious at present, at very least an
excellent parametrisation.
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