Searches for Supersymmetry

Volker Büscher Universität Mainz

22nd Rencontres de Blois, July 17, 2010

Selection of results from the ALEPH, ATLAS, Babar, CDF, CMS and DØ Collaborations

- The Higgs Sector (see also parallel talks by Cristobal Cuenca, Artur Kalinowski)
- Superpartners (see also parallel talks by John Parsons, Roberto Rossin)

Tevatron: 2 TeV Proton-Antiproton In operation since 2001 9 fb⁻¹ delivered, expect 12 fb⁻¹ by 2011 LHC: 7–14 TeV Proton-Proton In operation since 2009 0.2 pb⁻¹ delivered, expect 1 fb⁻¹ by 2011 The idea: particle physics is symmetric under transformation of Fermion \leftrightarrow Boson

- \rightarrow one supersymmetric partner for each SM particle
- \rightarrow stabilizes Higgs mass, unification of coupling constants, dark matter candidate

Superpartners are heavy \rightarrow SUSY is broken \rightarrow masses unknown

Prediction:

- Extended Higgs sector: 5 Higgs bosons h,H,A,H[±]
- Many new particles: Charginos/Neutralinos/Gluinos, Squarks, Sleptons

Names		spin 0	spin 1/2	
squarks, quarks	Q	$(\widetilde{u}_L \ \ \widetilde{d}_L)$	$egin{array}{ccc} (u_L & d_L) \end{array}$	
(×3 families)	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	
sleptons, leptons	L	$(\widetilde{ u} \hspace{0.1in} \widetilde{e}_{L})$	$(u \ e_L)$	
(×3 families)	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	
Higgs, higgsinos	H_u	$egin{array}{ccc} (H^+_u & H^0_u) \end{array}$	$(\widetilde{H}^+_u \ \ \widetilde{H}^0_u)$	
	H_{d}	$egin{array}{ccc} (H^0_d & H^d) \end{array}$	$(\widetilde{H}^0_d \ \ \widetilde{H}^d)$	

Names	spin 1/2	spin 1	
gluino, gluon	\widetilde{g}	g	
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm}~W^{0}$	
bino, B boson	\widetilde{B}^0	B^0	

The minimal SUSY Higgs Sector

2HDM with only 2 free parameters, typically chosen as m_A and $tan\beta$

Parameter m_A : regulates masses of heavy Higgs bosons H, A, H^{\pm}

- lightest Higgs h is tied to Z mass and typically behaves SM-like
- decoupling limit $m_A \rightarrow \infty$: MSSM \rightarrow SM
- \rightarrow SM Higgs searches also relevant to MSSM Higgs sector

Tevatron Run II Preliminary, L=2.0-5.4 fb⁻¹

- main difference: couplings to W/Z suppressed
- \rightarrow will become sensitive only after SM Higgs sensitivity has been reached

The minimal SUSY Higgs Sector: Charged Higgs Bosons

Decay Mode	Production	Method	Experiment	Luminosity
$\mathrm{H}^{\pm} ightarrow au$,cs	$e^+e^- \rightarrow H^+H^-$		LEP	2.5 fb^{-1}
$\mathrm{H}^{\pm} ightarrow \mathrm{cs}$	$t {\rightarrow} H^{\pm} b$	direct	CDF	2.2 fb^{-1}
$\mathrm{H}^{\pm} ightarrow au u$, qq	$t {\rightarrow} H^{\pm} b$	direct+indirect	DØ	$1.0 { m ~fb}^{-1}$
${ m H}^{\pm} ightarrow { m tb}$	$qq \rightarrow H^{\pm}$		DØ	$0.9 \ {\rm fb}^{-1}$
${ m H}^{\pm} ightarrow au u$	$t {\rightarrow} H^{\pm} b$	direct	CDF	$0.3 \ {\rm fb}^{-1}$

The minimal SUSY Higgs Sector: the high tan β region

2HDM with only 2 free parameters, typically chosen as m_A and $tan\beta$

Parameter $\tan\beta$: regulates Higgs couplings

- most interesting difference to SM: bb Φ coupling proportional to tan β
- \rightarrow new search channels with potentially large cross sections

New CDF Result: Search for $\Phi b(b) \rightarrow bbb(b)$

- Selection: at least 3 b-jets
- Backgrounds: multijet production
 - 3 main components: bbb, bbc, bbq
- Reconstruction of Higgs boson mass in $b\bar{b}$ spectrum
- Additional variable: *x*_{tags}
 - linear combinations of secondary vertex masses in each jet
 - sensitive to flavour composition of the 3 b-tagged jets

New CDF Result: Search for $\Phi b(b) \rightarrow bbb(b)$

- Selection: at least 3 b-jets
- Backgrounds: multijet production
 - 3 main components: bbb, bbc, bbq
- Reconstruction of Higgs boson mass in $b\bar{b}$ spectrum
- Additional variable: *x*_{tags}
 - linear combinations of secondary vertex masses in each jet
 - sensitive to flavour composition of the 3 b-tagged jets

Main challenge: construct accurate background model from data

Procedure:

- extract background shapes in dijet mass and x_{tags} from double-tagged sample
- fit normalisation of 2d-templates to triple-tagged sample

Fit results (background only):

- data consistent with background expectation

Main challenge: construct accurate background model from data

Procedure:

- extract background shapes in dijet mass and x_{tags} from double-tagged sample
- fit normalisation of 2d-templates to triple-tagged sample

Fit results (background only):

- data consistent with background expectation
- room for signal (in particular for masses around 140 GeV)

Interpretation: upper limit on production cross section

Excess around 140 GeV:

- p-value: 0.9%
- considering trial factor: 5.7%

Interpretation: limits on $\tan\beta$ within m_h^{max} benchmark scenario

2009: Combined DØ MSSM limits based on $\Phi \rightarrow \tau \tau$, $b\Phi \rightarrow bbb$, $b\Phi \rightarrow b\tau \tau$ NEW: Combined MSSM limits based on CDF and DØ $\Phi \rightarrow \tau \tau$ analyses

- same statistical technique as used for the SM Higgs combination

2009: Combined DØ MSSM limits based on $\Phi \rightarrow \tau \tau$, $b\Phi \rightarrow bbb$, $b\Phi \rightarrow b\tau \tau$ NEW: Combined MSSM limits based on CDF and DØ $\Phi \rightarrow \tau \tau$ analyses

- same statistical technique as used for the SM Higgs combination

Excess in bbb channel at 140 GeV not confirmed

2009: Combined DØ MSSM limits based on $\Phi \rightarrow \tau \tau$, $b\Phi \rightarrow bbb$, $b\Phi \rightarrow b\tau \tau$ NEW: Combined MSSM limits based on CDF and DØ $\Phi \rightarrow \tau \tau$ analyses

- same statistical technique as used for the SM Higgs combination

Tevatron now probing down to $tan\beta = 30$

Next step: include $b\Phi$ channels in the combination

LEP 2004: almost full exclusion?

LEP 2004: almost full exclusion?

Tevatron 2010: finally closing in?

LEP 2004: almost full exclusion?

Tevatron 2010: finally closing in?

LHC:

- will start to probe high m_A region with 1 fb⁻¹
- full coverage with 30 fb^{-1}

MSSM LEP Higgs limits can be evaded with light CP-odd Higgs boson a if $h \rightarrow aa$ Possible within the NMSSM, MSSM with CP-violation in Higgs sector, superstring models Many recent results:

– DØ 2009: limits on $par{p}
ightarrow h
ightarrow aa
ightarrow \mu \mu, au au$

MSSM LEP Higgs limits can be evaded with light CP-odd Higgs boson a if $h \rightarrow aa$

Possible within the NMSSM, MSSM with CP-violation in Higgs sector, superstring models

Many recent results:

- DØ 2009: limits on $par{p}
 ightarrow h
 ightarrow aa
 ightarrow \mu \mu, au au$
- Babar 2009: limits on $\Upsilon(3S) \rightarrow \gamma a$ with $a \rightarrow \tau \tau$

MSSM LEP Higgs limits can be evaded with light CP-odd Higgs boson a if $h \rightarrow aa$

Possible within the NMSSM, MSSM with CP-violation in Higgs sector, superstring models

Many recent results:

- DØ 2009: limits on $par{p}
 ightarrow h
 ightarrow aa
 ightarrow \mu \mu, au au$
- Babar 2009: limits on $\Upsilon(3S) \to \gamma a$ with $a \to \tau \tau$
- Babar 2009: limits on $\Upsilon(2S, 3S) \rightarrow \gamma a$ with $a \rightarrow \mu \mu$

MSSM LEP Higgs limits can be evaded with light CP-odd Higgs boson a if $h \rightarrow aa$

Possible within the NMSSM, MSSM with CP-violation in Higgs sector, superstring models

Many recent results:

- DØ 2009: limits on $p \bar{p}
 ightarrow h
 ightarrow a a
 ightarrow \mu \mu, au au$
- Babar 2009: limits on $\Upsilon(3S) \rightarrow \gamma a$ with $a \rightarrow \tau \tau$
- Babar 2009: limits on $\Upsilon(2S, 3S) \rightarrow \gamma a$ with $a \rightarrow \mu \mu$
- CDF 2010: limits on BR(t \rightarrow H[±]b) with H[±] \rightarrow Wa and a $\rightarrow \tau \tau$

New result from ALEPH: $h \rightarrow aa \rightarrow 4\tau$

ALEPH: Search for light $h \rightarrow aa$

No sign of a signal

$$ightarrow ext{limits on } \xi^2 = rac{\sigma(e^+e^-
ightarrow Zh)}{\sigma_{SM}(e^+e^-
ightarrow Zh)} imes BR(h
ightarrow aa) imes BR(a
ightarrow au au)^2$$

Analysis excludes $\xi^2 > 1$ for $m_h < 170$ GeV and $4 < m_a < 10$ GeV

Superpartners

TeV-scale Superpartners?

Hierarchy Problem

A typical Mass Spectrum

A typical Mass Spectrum

Inclusive Search for generic Squarks/Gluinos

Squarks/Gluinos produced via strong interaction

 \rightarrow large cross sections at hadron colliders

Decays: jets + LSP

- LSP assumed to be stable (R_p conserved)
- \rightarrow Signature: jets + E_T

Inclusive Search for generic Squarks/Gluinos

- No evidence for squark/gluino production at the Tevatron
- Limits in squark/gluino mass plane, probing squark/gluino masses up to 400/320 GeV
- starting to be limited by parton luminosities

What SUSY particles to look for?

Search for Supersymmetry – Sbottom Quarks

Decay: $ilde{\mathrm{b}} o b + ilde{\chi}_1^0$

 \rightarrow jets+ E_T analysis with b-tagging

New result: DØ, 5.2 fb $^{-1}$

Search for Supersymmetry – Sbottom Quarks

Visible energy in event depends on $ilde{ ext{b}} ext{-} ilde{\chi}^0_1$ mass difference $\Delta m o$ mass-dependent cuts

Example low Δm : 901 events observed, 971 \pm 152 events expected

– No reach for \tilde{b} - $\tilde{\chi}_1^0$ mass differences below 30 GeV (trigger)

Example high Δm : 7 events observed, 6.9 \pm 1.7 events expected

- Probing sbottom masses up to 250 GeV

Search for Charginos and Neutralinos

Most sensitive channel: $\widetilde{\chi}^{\pm} \widetilde{\chi}^0_2
ightarrow 3\ell + E_T$

Challenges:

- production cross section (electroweak) relatively small
- low- p_T leptons

Large number of trilepton and dilepton plus track analyses from CDF and DØ $\,$

- pt cuts as low as 3 GeV

requiring 2 leptons

requiring 3 leptons

Search for Charginos and Neutralinos: Results

- Analyses probing chargino masses up to 176 GeV
- Reach degrades with increasing $\tan\beta$

- Analyses probing chargino masses up to 176 GeV
- Reach degrades with increasing $tan\beta$

Beyond mSUGRA

Many other SUSY models on the market \rightarrow large variety of SUSY searches at the Tevatron

Gauge-Mediated SUSY Breaking

- Inclusive $\gamma \gamma + E_T$: neutralinos excluded up to 149 GeV (CDF)
- Long-lived neutralinos: limits up to 101 GeV (CDF)

Anomaly-Mediated SUSY Breaking

Stable charginos: excluded up to 206 GeV (DØ)

Split Supersymmetry

- Long-lived Gluinos $\tilde{\mathrm{g}}
ightarrow g \tilde{\chi}_1^0$:

limits up to 320 GeV for lifetimes up to 100 hours (DØ)

R-Parity Violation

– LLE couplings: limits on charginos up to 234 GeV (DØ)

Beyond mSUGRA

Many other SUSY models on the market \rightarrow large variety of SUSY searches at the Tevatron

Gauge-Mediated SUSY Breaking

- Inclusive $\gamma \gamma + E_T$: charginos excluded up to 229 GeV (DØ)
- Long-lived neutralinos: limits up to 101 GeV (CDF)

Anomaly-Mediated SUSY Breaking

- Stable charginos: excluded up to 174 GeV (DØ)

Split Supersymmetry

– Long-lived Gluinos $ilde{ ext{g}} o g ilde{\chi}_1^0$:

limits up to 320 GeV for lifetimes up to 100 hours (DØ)

R-Parity Violation

– LLE couplings: limits on charginos up to 234 GeV (DØ)

Search for Supersymmetry at the LHC

Key ingredient: missing transverse energy

- very sensitive to intermittent, rare detector problems
- \rightarrow extensive cleaning cuts to remove "bad" energy

Key ingredient: leptons

- standard candles $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ observed

Towards searches for Supersymmetry at the LHC

Key ingredient: jets

- excellent description of data up to 500 GeV
- jet energy calibration:

already achieved a 7% uncertainty (central region, $p_T > 60$ GeV)

Towards searches for Supersymmetry at the LHC

Next in line:

- W/Z+jets (very soon)
- Top-Quark production (1 pb^{-1})
- Supersymmetry! (beyond 10-100 pb⁻¹)

Conclusions

- Broad spectrum of results for SUSY Higgs sector and superpartner searches
- Many results beyond minimal models, but very hard to stay model-independent
- Huge Tevatron dataset: some (not all!) analyses limited by centre-of-mass energy
- ATLAS and CMS catching up very quickly
 - excellent understanding of the detectors
 - rapid increase in peak and integrated LHC luminosity

BACKUP

