

THE SEARCH FOR THE HIGGS BOSON

Daniela Bortoletto Purdue University

D. Bor<u>toletto</u>

Blois 2010

THE STANDARD MODEL HIGGS

The standard model

charm

strange

Vu

muon

neutrin

μ

muon

Quarks

Leptons

up

0

down

Ve

electron

eutrino

e

electron

Elementary particles

top

b

bottom

tau

neutrin

τ

tau

Higgs

boson

photon

Ζ

Z boson

boson

 $\Lambda /$

w.

boson

g

gluon

*Yet to be confirmed

ers

e

For

SM unifies weak and electro-magnetic interactions

> Higgs mechanism

Experimentally: weak gauge bosons are massive ⇒ EWK symmetry breaking

- Finding the Higgs boson is essential to confirm the Higgs mechanism
- . Since the Higgs decays very quickly $(10^{-24} s) \Rightarrow$ it can be observed only through its decays into other particles
- The search is difficult since m_H is not predicted in SM

Source: AAAS

 The Higgs couples to mass and decays preferentially to the heaviest objects kinematically allowed

D. Bortoletto

CONSTRAINTS ON THE HIGGS

- SM parameters (M_W, M_t, Z pole measurements etc)
 - M_{Higgs} < 158 GeV with 95% C. L.</p>

 Including direct searches at the Large Electron Positron Collider and at the TEVATRON proton anti-proton collider

central value
$$\pm 1\sigma$$
: $M_{H} = 119.4^{+13.4}_{-4.0}$ GeV
2 σ interval: [114, 157] GeV

The search is continuing at the TEVATRON and at the LHC

D. Bortoletto

The Tevatron

- Proton-antiproton collider with 1.96 TeV center-of-mass energy
- 396 ns between bunches

World record instantaneous luminosity L=4.024 ×10³² cm⁻² sec⁻¹ on 16 April 2010

On Track for collecting 10 fb⁻¹ or more by October 2011

More than 9 fb⁻¹ delivered More than 8 fb⁻¹ acquired by the experiment Current results up to 5.9 fb⁻¹ **Fermilab**

Tevatron

1 km

The LHC

D. Bortoletto

HIGGS PRODUCTION

Four main production mechanisms at hadron colliders

qq'→qq' H (VBF)

m _H =160 Gev	Tevatron $\sqrt{s} = 1.96 \text{GeV}$		LHC $\sqrt{s} = 7 \mathrm{TeV}$		LHC $\sqrt{s} = 14 \mathrm{TeV}$	
	σ[pb]	%	σ[pb]	%	σ[pb]	%
gg→H	0.439	78	8.49	87	32.6	88
WH	0.050	9	0.25	3	0.61	2
ZH	0.034	6	0.13	1	0.34	1
VBF	0.039	7	0.92	9	3.38	9
TOTAL	0.561	100	17.45	100	36.7	100
RATIO			17 X TEVATRON		66 X TEVATRON	

D. Bortoletto

Blois 2010

Theory Progress: ex. ЭН NLO corrections ~ doubles σ_{LO} NNLL **MRST2002** NNLO 4 Tevatron NNLO QCD corrections give an additional 40% 2 Resummed QCD corrections K=0/ ט at NNLL NLI Two-loop EW corrections yield NL up to an 8% boost LLgLO 120 140 160 180 120 160 180 100 100 140 200 $M_{\rm H}$ (GeV) $M_{\rm H}$ (GeV) NLL,NNLL bands: 0.5 m_H<μ_F, μ_R<2M_H • Additional uncertainty on $\sigma(gg \rightarrow H)$ for PDF • Catani, de Florian, Grazzini, Nason JHEP 0307, 028 (2003) • Aglietti, Bonciani, Degrassi and Vicini, Phys. Lett. B 595, 432 (2004)Total 14% bigger cross • Actis, Passarino, Sturm, Uccirati, Phys. Lett. B 670, 12 (2008) section at m_H=160 GeV • Anastasiou, Boughezal, Petriello, JHEP 0904, 003 (2009) relative to NNLO • Grazzini, De Florian, Phys. Lett. B 674, 291 (2009) Workshop on Higgs cross section at CERN http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=92082 D. Bortoletto Blois 2010

HIGGS DECAY

The Higgs challenge S/B

- Many of the background processes have cross section orders of magnitude larger than the Higgs
- Adopt different strategies for low mass/high mass, Tevatron/LHC

D. Bortoletto

Higgs at the LHC and the Tevatron High Mass $M_H > 135 \text{ GeV/c}^2$ Main channel: gg \rightarrow H \rightarrow WW

- Signature: High P_T leptons and Missing transverse energy
- Relatively easy and clean at the LHC and at the Tevatron
- $\sigma(gg \rightarrow H)$ LHC _{7TEV} >> TEVATRON
- Backgrounds such as WW and ZZ originate from qq rise moderately ⇒ S/N rises ⇒ LHC competitive with 1fb⁻¹

D. Bortoletto

LHC primary discovery channel is $gg \rightarrow H \rightarrow \gamma \gamma$

- $\sigma(WH/ZH)$ @ 7 TeV ~ 3-5 x TEVATRON
- W/Z+bb & tt background have a large increase ⇒ small signal rate ⇒ poor S/N at the LHC
- $gg \rightarrow H \rightarrow \gamma\gamma$ is tough
- Br(H $\rightarrow \gamma \gamma$) \cong 0.2% and large QCD $\gamma \gamma$ background

Blois 2010

Tevatron Higgs searches Events produced at CDF in 1 fb⁻¹ 70 Events 60 50 40 ota $H \rightarrow WW \rightarrow V \downarrow_{V}$ 30 20 →vvbb $WH \rightarrow Ivbb$ 10 $H \rightarrow IIbb$ 120 140 150 170 130 160 180 Higgs mass (GeV)

• Critical to have large data sets and good efficiency

 DO and CDF have worked very hard to optimize trigger, b-tagging efficiency, and lepton identification, jet resolution etc.

QCD removal

- NN_{QCD} based on 14 kinematical variables to reduce multijet background
- The most important variables in the NN are $\Delta \Phi(\mathsf{MET},\mathsf{MPT})$ and MET
- The NN is trained on Signal =ZH and WH, Background=pretag data.

Accepts about 95% of the signal rejects about 87% of the background

D. Bortoletto

Understanding the backgrounds

QCD multijet control region
 MET > 70 GeV and φ(MET,j₂) < 0.4

Electroweak control region

• $\phi(MET, j_2) > 0.4$, with leptons

Preselection region

• $\phi(MET, j_2) > 0.4$, with leptons

Blois 2010

Signal Neural Network

New CDF result for ICHEP

- The final NN_{SIG} is trained on ZH/WH as a signal
 - 75% untagged jet data + 25% tt background in the 2 jet bin
 - 50% untagged jet data + 50% tt in background in the 3 jet bin
 - 7 kinematic variables: m(j1,j2) is the most important

$WH \rightarrow lvbb$ channel

SIGNAL

- Isolated High P_T Lepton
- Large Missing E_T
- 2 3 high E_T jets
- Split 1 and 2 b-tags

Backgrounds

- Wbb, Wcc, Wqq'
- *tt*, Single top
- non –*WQCD*

• WZ, WW,
$$Z \rightarrow \tau \tau$$

Good understanding of the background needed

$WH \rightarrow lv$ final discriminant

Limits are set using a NN output based on kinematical variables

2 Jet and 3 jet events treated separately

New CDF result for

ICHEP

No evidence for the HIGGS

Analysis Mh=115 GeV	L (fb-1)	Signal	95% Exp Limit σ/SM	95% Obs Limit σ/SM
CDF (+isolated tracks)	5-7	18.42	3.48	4.47
DO	5.0	12.3	5.1	6.9

High mass searches

■ Higgs→WW

- BR(W→hadrons)~68%
 - Large QCD background
 - Not used now, work in progress
- □ BR(WW→ee,μμ,eμ)~6%
 - Easy and clean triggers on single electron or muon
 - Partially includes τ
 - Dedicated analysis looks at hadronic tau decays

More in A. Canepa's presentation on Sunday

SIGNAL

- Two High P_T leptons
- Large Missing E_T

Backgrounds: WW, WZ, ZZ, $W + jets, W + \gamma, tt$ $Z^{(*)} \rightarrow ll$

Signal vs Background

S/B ~0.6 in the most sensitive bin therefore both experiments use multivariate techniques to discriminate between signal and background:

- Matrix Element (ME), Neural Networks (NN)
- Each channel and M_H hypothesis has its own NN

Δφ(II)

Separate analysis into channels by S/B ratio and lepton purity

- CDF by jet multiplicity: o, 1 and 2+ jets, lepton quality (high & low S/B)
- DØ by di-lepton flavor: ee, eµ, µµ

CDF Run II Preliminary L = 59 fb⁻¹ S C DØ 5.4 fb⁻¹ • Data OS 0 Jets, High S/B Image: Construction Image: Construle Image: Construction

Events / 0.1 Bkgd. syst. Z+jets 10³ Diboson W+jets Signal Multijet tī 10^{2} 10 0.2 0.4 0.6 0 **NN Output**

No evidence for the Higgs

Analysis M _H =165 GeV	Lumi (fb-1)	Signal Evts	95% Exp Limit σ/SM	95% Obs Limit σ/SM
CDF NN Including $ au$	5-9	41.8	1.00	1.08
DØ NN	5.4	29.7	1.36	1.55
D. Bortoletto			Blois 2010	2

TEVATRON Combined limits

- Increase the Tevatron reach:
 - Statistically combine all search channels
 - Effectively double the analyzed luminosity
 - Set 95% C.L. upper limits on the Higgs production cross-section
- Test BG(b) only and BG+signal (s+b) hypotheses using Poisson statistics accounting for systematic uncertainties
- Two methods are used for the combination
 - Bayesian integration over likelihood (CDF)
 - Modified frequentist (DØ)
 - Both methods use differential distributions, not only integrated yields.
- The combined results uses ninety mutually exclusive final states (36 for CDF and 54 for DØ)

TEVATRON low mass pre-ICHEP

TEVATON high mass pre-ICHEP

Published Phys. Rev. Lett. 104, 061802 (2010)

- Observed exclusion 162 < mH < 166 GeV
- Expected exclusion 159 < mH < 169 GeV

D

LHC reach @ 7 TEV and 1 fb-1

- CMS expected exclusion range : [150-185] GeV
- ATLAS expected exclusion range : [140-185] GeV
- Both experiments have 3-5 σ sensitivity near 160 GeV

Blois 2

D. Bortoletto

LHC Golden channel $H \rightarrow ZZ$

CMS

- Four isolated leptons, look for 4l-mass peak
- Backgrounds:
 - ZZ : irreducible background, [assessed from data—Z events]
 - ttbar & Zbbbar removed by lepton isolation & impact parameter veto
- Narrow mass peak, low background
- Low yield ⇒ need to push lepton identification

LHC low mass $H \rightarrow \gamma \gamma$

 Two isolated photons search for mass peak

- QCD bkgd is large and partly irreducible,
 - measured from sidebands
- Not a viable mode of low mass SM Higgs in 7 TeV/ 1fb⁻¹ run

TEVATRON Prospects for the future

If the Tevatron were to run for three more years it could accumulate 16fb⁻¹ and provide 3\sigma evidence for the low mass Higgs boson

D. Bortoletto

Summary LHC (CMS as example)

- SM Higgs expected excluded range: 145-190 GeV
- Experiments are evaluating the impact of improvements and including more channels
- With 30 fb⁻¹ at 14 TeV center of mass energy the LHC can cover the Higgs mass range 115 GeV up to 1 TeV

Conclusion

New TEVATRON combination will be presented at ICHEP

- The hunt for the Higgs continues
- The TEVATRON, CDF and DØ are working well
- More work is ongoing to improve the sensitivity of the analyses
 - SM Higgs exclusion in the range 162-166 GeV/c² @95% C.L.
 - Expected exclusion range 159-168 GeV/c²
 - 16fb⁻¹ could provide 3σ evidence for the low mass Higgs boson
- ATLAS and CMS are collecting the data delivered by the LHC and rediscovering the Standard Model

The Higgs hunt is started also at the LHC

- At 7 TeV & with 1 fb⁻¹ data, ATLAS & CMS will begin to explore a sizable range of Higgs mass
 - SM Higgs discovery sensitivity: [160-170] GeV
 - SM Higgs exclusion range: [140-200] GeV
- Low mass SM Higgs searches require 14 TeV & high luminosity running