Review of Current and Future Neutrino Cross-Section Experiments

David Schmitz, Fermilab

NUFACT09

11 TH INTERNATIONAL WORKSHOP ON NEUTRINO FACTORIES, SUPERBEAMS AND BETA BEAMS JULY 20-25, 2009 – ILLINOIS INSTITUTE OF TECHNOLOGY – CHICAGO

Outline

Quick Audience Survey

Introduction

Relevant Energies and Targets
Current Cross-Section Experiments
Recent Results and Mysteries
Future Cross-Section Experiments

White Sox Survey

- Mark Buehrle pitched the <u>18th perfect game in Major League</u> Baseball history yesterday across the street immediately following the morning session. Please tell me someone saw it??
- I was at home writing this talk...

18th perfect game -- ever

ehrle is mobbed by his teammates. (Phil Velasquez/Tribune) >>> More photos

NuFact09 – IIT, Chicago – 07/24/2009

White Sox win 5-0, tied with Detroit for first in division The catch: Wise in the 9th First Fan: Obama calls (with video) The support: Fields' grand slam Rosenblog: Rooting for Buehrle Black Jack: Sox back on track Video: Postgame | Watch again Fan photos: Send us yours History: 2007 no-hitter | By team More: Complete coverage

). Schmitz, Fermilab

- There has been a recent surge of progress and published results in neutrino cross-section physics! Both experimental measurements and theoretical modelings.
- There are new, dedicated experiments
- I will attempt to give just a flavor of things the measurements and the mysteries
- Please see the many great talks from **NuInt09** or Working Group 2 from **NuFact09 (WG2)** for all the details
 - <u>http://nuint09.ifae.es/Welcome.html</u>
 - http://nufact09.iit.edu/wg2.shtml#wg2tueam

- Neutrino cross-sections first measured in bubble chambers in the 1970's and 80's
 - ANL, BNL, FNAL, CERN, IHEP
 - very successful experiments; observation of neutral currents
 - some low Z targets, deuterium

- x-sec measurements suffered small statistics and poor knowledge of their neutrino fluxes
- Measured cross-sections with higher statistics in the 90's, 00's
 - ex. NuTeV
 - rich physics programs; DIS, structure functions, strange sea, QCD
 - neutrino energies generally higher
- Some data have large uncertainties (20-40%) or show discrepancies that we would like to understand

• Discovery of neutrino oscillations in the last decade has meant two things for neutrino cross-section physics:

- Discovery of neutrino oscillations in the last decade has meant two things for neutrino cross-section physics:
 - 1. suddenly we <u>really care about cross-sections in the 0.5-10 GeV range</u> where they are not well measured and the channels are complicated

- Discovery of neutrino oscillations in the last decade has meant two things for neutrino cross-section physics:
 - 1. suddenly we really care about cross-sections in the 0.5-10 GeV range where they are not well measured and the channels are complicated
 - 2. suddenly there are <u>lots of high intensity neutrino beams around the</u> world in the 0.5-10 GeV range for making these measurements

- Discovery of neutrino oscillations in the last decade has meant two things for neutrino cross-section physics:
 - 1. suddenly we really care about cross-sections in the 0.5-10 GeV range where they are not well measured and the channels are complicated
 - 2. suddenly there are lots of high intensity neutrino beams around the world in the 0.5-10 GeV range for making these measurements
- Future oscillation experiments require a detailed understanding of neutrino interaction mechanisms:
 - θ_{23} ν_{μ} disappearance
 - θ_{13} v_e appearance
- Both use CC interactions as signal, but have different, complicated, and sometimes irreducible backgrounds. Also, neutrino energy reconstruction must be very well understood

D. Schmitz, Fermilab

- Can't we just cancel the cross-section uncertainties once the experiment is running?
 - Fluxes & Detectors at Near/Far locations can be VERY different
 - detector designs are often not identical
 - beam acceptances change the fluxes
 - flux oscillates away or appears between detectors

- Can't we just cancel the cross-section uncertainties once the experiment is running?
 - Fluxes & Detectors at Near/Far locations can be VERY different
 - detector designs are often not identical
 - beam acceptances change the fluxes
 - flux oscillates away or appears between detectors
 - Experiments can spend years characterizing events in their detectors to come up with effective models for fluxes and neutrino cross-sections in order to match their data
 - experimental sensitivities can change as a result

- Can't we just cancel the cross-section uncertainties once the experiment is running?
 - Fluxes & Detectors at Near/Far locations can be VERY different
 - detector designs are often not identical
 - beam acceptances change the fluxes
 - flux oscillates away or appears between detectors
 - Experiments can spend years characterizing events in their detectors to come up with effective models for fluxes and neutrino cross-sections in order to match their data
 - experimental sensitivities can change as a result
 - Better to have accurate *a priori* knowledge of the event rates for ALL event types in order to design better experiments with accurate sensitivities.
 <u>Particulary good when you are building 100's of kilotons for B's of \$.</u>

- Neutrino energy ranges and detector target materials are crucial aspects of an experiment *vis-à-vis* neutrino cross-sections
- The dominant interaction channels change rapidly across the few GeV neutrino energy region
- Many resonances must be considered in this energy region
- Nuclear effects are very complicated and not well known, so the target nucleus has a large <u>impact on how well we can remove</u> <u>backgrounds and understand the kinematics of the final state</u>

- Target Materials:
 - MINOS = Fe
 - BooNE = C
 - CNGS = Pb, Ar
 - $T2K = H_2O, C$
 - NOvA = C
 - DUSEL = H_2O , Ar

NuFact09 – IIT, Chicago – 07/24/2009

Charged-Current Quasi-Elastic Scattering

- oscillation signal channel
- can reconstruct E_v with or without the proton, so possible in Cherenkov detectors or calorimetric detectors

NuFact09 – IIT, Chicago – 07/24/2009

Charged-Current Quasi-Elastic Scattering

L. Alvarez, NuFact 09 Plenary

- Lots of recent results! More complicated than it seems...
- Typically simulated with Relativistic Fermi Gas Model formalism of Smith and Moniz, NP B43, 605 (1972).
- Uncertainty in CCQE cross-section dominated by axial-vector form factor. Written in dipole form:

well known from β decay _____ experiments (Q² = 0)

$$F_A(Q^2) = F_A(0) \left(1 + \frac{Q^2}{M_A^2}\right)^{-2}$$

• Axial mass can be measured from the Q² distribution of QE neutrino-nucleon events. Affected by both the shape and rate of distribution.

D. Schmitz, Fermilab

- <u>Charged-Current Quasi-Elastic Scattering</u>
- MiniBooNE has an enormous sample of single-track (Cherenkov detector) v_µ-Carbon QE events
- MiniBooNE is the first to extract an absolute double differential cross-section in ν quasi-elastic scattering
- Absolute normalization of flux using pion production data from the HARP experiment (SciBooNE also) Euro. Phys. J C 52:29-53 (2007)

Hadron Production Summary Talk. R. Schroeter, NuFact 09, WG2

MiniBooNE

The Interactions (CCQE) MiniBooNE Charged-Current Quasi-Elastic Scattering R. Tayloe, NuFact 09, WG2 $\frac{d^2\sigma}{dT_u d\cos\theta_u} (cm^2/0.1/0.1GeV)$ •146,070 ν_{μ} QE events MiniBooNE data (δN_T =10.8%) (76% purity, 27% ε) MiniBooNE data with shape error 0.25-• provide distributions of 0.2full μ kinematics 0.15 $(\cos\theta_{\mu}, T_{\mu})$ 0.1 • first CCQE absolute 0.05 differential cross-sections $\begin{array}{c} \textbf{1}_{.8}, \textbf{6}_{.4}, \textbf{2}_{.2}, \textbf{0}_{.2}, \textbf{2}_{.5}, \textbf{4}_{.6}, \textbf{6}_{.8}, \textbf{1}_{.1}, \textbf{2}_{.1}, \textbf{4}_{.1}, \textbf{6}_{.1}, \textbf{8}_{.2} \\ \text{os} \theta_{\mu} & \textbf{-5}_{.4}, \textbf{6}_{.8}, \textbf{8}_{.1}, \textbf{0}_{.0}, \textbf{2}_{.0}, \textbf{4}_{.0.6}, \textbf{0}_{.8}, \textbf{1}_{.1}, \textbf{1}_{.2}, \textbf{1}_{.4}, \textbf{1}_{.6}, \textbf{1}_{.8}, \textbf{2}_{.5} \\ \textbf{-5}_{.6}, \textbf{8}_{.1}, \textbf{0}_{.0.2}, \textbf{0}_{.4}, \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.1}, \textbf{1}_{.2}, \textbf{1}_{.4}, \textbf{1}_{.6}, \textbf{1}_{.8}, \textbf{2}_{.5} \\ \textbf{0}_{.6}, \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8} \\ \textbf{1}_{.1}, \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{1}_{.6}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.6}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8}, \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8} \\ \textbf{0}_{.8}$

 $\cos\theta_{\mu}$

(T. Katori)

26

Charged-Current Quasi-Elastic Scattering

R. Tayloe, NuFact 09, WG2

- can clearly resolve final state by identifying the proton track as well as the muon
- 2,680 ν_μ QE events (69% purity, 2.3% ε)

D. Schmitz, Fermilab

• Similar shape disagreements to those seen in MiniBooNE data, but at <u>higher energies</u> and on <u>iron instead of carbon</u>

D. Schmitz, Fermilab

• MiniBooNE/SciBooNE in agreement, but tension with higher energy NOMAD results. All three on carbon.

D. Schmitz, Fermilab

The Interactions (CC π^+)

Single Pion Production

- Pion absorption creates irreducible bkgd to CCQE
- Pion absorption causes missing energy in event reconstruction affects oscillation measurements
- Nuclear effects strike again...

D. Schmitz, Fermilab

<u>Single Pion Production</u>

- very little data available on this channel
- NC π^0 's are critical background to ν_e appearance searches for LBL experiments

24

20

16

₄∏

Schmitz, Fermilab

NuFact09 – IIT, Chicago – 07/24/2009

 $M_{\gamma\gamma}$ (GeV)

The Interactions (NC π^0)

- Single Pion Production
- 21,542 ν_{μ} NC π^{0} events (73% purity, 36% ϵ)
- 2,305 $\overline{\nu_{\mu}}$ NC π^{0} events (58% purity, 36% ϵ)

NuFact09 – IIT, Chicago – 07/24/2009

The Interactions (NC π^0)

- <u>Single Pion Production</u>
- 21,542 ν_{μ} NC π^0 events (73% purity, 36% ε)
- 2,305 $\overline{\nu}_{\mu}$ NC π^0 events (58% purity, 36% ε)
- first NC π^0 absolute differential cross-sections

The Interactions (coherent)

- <u>Coherent Single Pion Production (CC/NC)</u>
- Coherent interaction with nucleus leaving it intact, but producing a pion
- very small rate compared to inelastic processes
- many intriguing results recently from K2K, MiniBooNE, SciBooNE
 - K2K first to see no evidence for CC coherent pion production
 - MiniBooNE did see evidence for NC coherent pion production, though below the prediction
 - Active analysis for SciBooNE
 - preliminary evidence for some CC coherent, but pions more forward than model predicts

The Interactions

• Other Channels

- With apologies, I have not shown recent results on:
 - NC elastic scattering
 - MiniBooNE
 - SciBooNE
 - CC inclusive measurements
 - MINOS
 - NOMAD
 - NuTeV

Some Intermediate Conclusions

- High statistics CCQE samples show discrepancies with present MC predictions
- We are just now beginning to make real comparisons for other channels between binned data and MC predictions
 - CC π^+/π^0 production
 - NC elastic and NC π^0 production
 - CC/NC coherent interactions off the nucleus as a whole
- Theorists are interested in this problem. Wonderful!!
- We must work with them directly or provide data they can use
- Event rates of exclusive <u>final states</u> off some target nucleus
 - not corrected back to the nucleon
 - nuclear effects (FSI) are part of this challenging theoretical problem

The Future

- MINERvA is a new experiment at Fermilab that will answer many of these questions
 - A strong collaboration of both experimentalists and theorists
 - neutrinos and antineutrinos
 - multiple nuclear targets in same detector
- The T2K ND280 at J-PARC includes a broad cross-section measurement agenda
- There are new LAr experiments at Fermilab which will measure interaction rates on argon at these energies for the first time
 - ArgoNeuT and MicroBooNE
 - very important for planning possible LArTPC detectors for DUSEL and elsewhere to make these measurements

Liquid Argon

ArgoNeuT

100 100

50-0 -50

-100--150

-200 2350 -200 -150 -10

- 0.3 ton vessel filled in May, 2009
- Took first data in the NuMI ν beam at FNAL

M. Antonello, NuFact 09, WG2 O. Palamara, NuFact 09, WG1-2

MicroBooNE

- 170 ton vessel to sit in Booster Beam at FNAL
- part of staged approach to testing feasibility of large LAr detectors
- rich physics program including x-sections on Ar Expected Event Rates for MicroBooNE.

	BNB	NuMI
Total Events	145k	60k
ν _μ CCQE	68k	25k
NC π°	8k	3k
Ve CCQE	0.4k	I.2k
POT	6x10 ²⁰	8x10 ²⁰

MINERvA

- MINERvA is a dedicated neutrinonucleus cross-section experiment
- Finely segmented, fully active scintillator tracking region surrounded by ECAL and HCAL
- make use of existing intense NuMI beam and MINOS near detector for muon spectrometer
- <u>range of nuclear targets</u> for study of **nuclear effects** in neutrino interactions (He, C, CH, Fe, Pb)

D. Schmitz, Fermilab

MINERvA Energy Range

MINERvA Status

- Phased installation in Fall/Winter
 2009-10 with completion in spring 2010
- Ran with a detector prototype in the NuMI beam for two months before the recent shutdown
- comprehensive tests of :
 - detector design
 - component production and assembly
 - calibration techniques and implementations
 - event reconstruction
 - physics performance and analysis

MINERvA Tracking Prototype

D. Schmitz, Fermilab

NuFact09 – IIT, Chicago – 07/24/2009

MINERvA Physics Data

• Current Run Plan, beginning in 2010

- 4e20 POT low energy beam
- 12e20 POT medium energy beam

		7
Quasi-elastic	0.8 M	
Resonance production	1.7 M	
Resonance to DIS transition	2.1 M	
DIS low Q ² and structure functions	4.3 M	
Coherent pion production	89k CC, 44k NC	T / ton
charm/strange production	230 k	
He target	0.6 M	at / Ve
C target	0.4 M	te / Gé
Fe target	2.0 M	C ever
Pb target	2.5 M	'

D. Schmitz, Fermilab

Summary

- An explosion of neutrino cross-section data in recent years
 - absolute cross-sections
 - differential cross-sections, most for the first time ever
- Intriguing differences to the Monte Carlos are being seen in several channels at various energies on multiple targets
- Most likely a combination of the interaction models and mismodeled nuclear effects – quite a puzzle!
- Important to solve
 - intellectually interesting
 - important for the next generation of precision neutrino physics experiments
- The dedicated experiment, MINERvA, will go a long way towards finding many answers starting next year, so stay tuned

Thank you!

NUFACT09

11 TH INTERNATIONAL WORKSHOP ON NEUTRINO FACTORIES, SUPERBEAMS AND BETA BEAMS JULY 20-25, 2009 – ILLINOIS INSTITUTE OF TECHNOLOGY – CHICAGO