NuFact 09 Perspectives

NuFact09

11th International Workshop on Neutrino Factories, Superbeams and Beta Beams July 20-25, 2009 — Illinois Institute of Technology — Chicago

Neutrinos: A fascinating Story

<u>• continuous β-decay spectrum</u>

energy-momentum conservation

- → theory: a new particle
- \rightarrow invisible, since Q=0, spin $\frac{1}{2}$, ...

Dec. 1930: Letter to DPG @ Tübingen ... will never be detected

W. Pauli

Manfred Lindner

- Cowen & Reines 1954-56
 → project ``poltergeist"
 → detection of reactor v's
- neutrino beams, DIS,
- SM**←→** BSM

- oscillations
- \rightarrow masses and mixings

European School of High Energy Physics

Success of the Standard Model

SM describes everything perfectly ... besides:

- missing Higgs particle -
- 3.7σ deviation in g-2
- no dark matter
- neutrinos are massless

<u>SM: 3 neutrinos</u> $\leftarrow \rightarrow$ Z line shape *a* LEP

Manfred Lindner

parameters of SM	add massive v's		
gauge bosons	3		
Higgs particle	<u>2</u> fermions: 22		
quarks (mass+mix)	6+4		
leptons	3 → +3+6		
strong CP problem	1		
total	19 28		

Physics Beyond the Standard Model

Theoretical arguments:

SM does not exist without cutoff (triviality) Higgs-doublett = only simplest extension Gauge hierarchy problem Gauge coupling unification Strong CP problem Why: 3 generations , fermion representations Many parameters (9+? Masses, 4+? Mixings) Charge quantisation, unification: GUTs, Gravity

Two main directions:

- Symmetry breaking **← →** LHC
- -Origin of generations/flavour $\bigstar \nu$'s

Experimental facts:

- Dark Matter & Dark Energy exist
- g-2 deviates from SM
- Neutrino masses have been detected
- **Baryon asymetry** of the universe $\leftarrow \rightarrow m_{v} > 0$

unification

Extending the Standard Model

→ success of renormalizable gauge field theories in d=4

QED \rightarrow QCD \rightarrow SM U(1)_{em} SU(3)_C SU(3)_C x SU(2)_L x U(1)_Y

→ symmetry, renormalizability, no anomalies

→ particle content (symmtery representations):

- gauge sector fixed by gauge group
- scalar sector must break EW symmetry, SB~2_L
- fermions anomaly free combinations (least understood sector!!!)

→ different levels of SM extension... Pavel Fileviez Perez

- add further SM representations: scalars, fermions
- extend the gauge symmetry
- add supersymmetry
- extend/modify basic concepts: quantum fields and/or space-time

Adding Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters → SM+

Note: Adding chiral fermion representations to SM non-trivial ←→ radiative corrections S,T, ...

Manfred Lindner

European School of High Energy Physics

Manfred Lindner

Suggestive Seesaw Features

QFT: natural value of mass operators ← → scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim L$ violation scale \Leftarrow ? \Rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ \Rightarrow smallness of $m_v \notin \Rightarrow$ high scale of I_{\prime} , symmetries of m_D , M_R

Manfred Lindner

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

- less hierarchy in m_D or correlated hierarchy in M_R ? \rightarrow theoretically connected!
- mixing patterns: not generically large, why almost maximal, θ_{13} small?

Other effective Operators Beyond the SM

→ effects beyond 3 flavours
 → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$
 f

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Interplay of Neutrino Mass Determinations

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

Beta Decay Energy Spectrum

Neutrino-less Double β-Decay

Claim of part of the original Heidelberg-Moscow experiment ←→ cosmology

aims of new experiments:

- test HM claim
- (∆m₃₁²)^{1/2} ~ 0.05eV ± errors
 → reach 0.01eV
 - → CUORE
 - → GERDA phases I, II, (III)

Comments:

- cosmology: systematical errors → ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation $\rightarrow 0\nu\beta\beta$ signal not guaranteed
- $0\nu\beta\beta$ signal from *some other* new BSM lepton number violating operator
 - → very promising interplay of cosmology, other mass determinations LHC, LVF and theoretical ideas

GERDA Construction

<u>alternatives:</u> LR, RPV-SUSY, ... → other *L* operators ← → NSI's

Schechter+Valle:

L violating operator \rightarrow radiative mass generation \rightarrow Majorana nature of v's However: This may only be a tiny correction to a much larger Dirac mass term

Lepton Flavour Violation

- Majorana neutrino mass terms
- •
- R-parity violating supersymmetry Hall+Kosteleck+Rabi, Borzumati+Masiero, Hisano+Tobe, Casas+Ibarra, Antusch +Arganda+Herrero+Teixeira, Joaquim+Rossi, ...

Deppisch+Kosmas+Valle

in the coming years

Cosmology and Neutrino Mass

Supernova Neutrinos

2 possibilities:

Supernovae & Gravitational Waves

Dimmelmeier, Font, Müller

- ➔ additional information about galactic SN
- → global fits: optical + neutrinos + gravitational waves
- → neutrino properties + SN explosion dynamics
- → SN1987A: strongest constraints on large extra dimensions

Oscillations: θ_{13} **Sensitivity Versus Time**

Update for next Generation

significant improvements

Things will move again soon...

Double Chooz far detector

Daya Bay components

+ NOvA ground breaking

→very promising,
 especially if hints for
 finite sin²θ₁₃ are correct...

T2K neutrino beamline started operation

Many Connections to other Fields

θ_{13} – just one small Number?

- ... why care about θ_{13}
- Good to know...
- Leptonic CP violation
- Theory models

- Is this enough? What else ???

Learning about Flavour

Next: Smallness of θ_{13} , θ_{23} **maximal**

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} predictions
 - $\rightarrow \theta_{13}$ expected close to ex. bound
 - → well motivated experiments

what if θ_{13} is very tiny? or if θ_{23} is very close to maximal?

numerical coincidence unlikely
special reasons (symmetry, ...)

➔ addressed by coming precision

The larger Picture: GUTs

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa couplings for given GUT multiplet
- \rightarrow ~ tension: small quark mixings $\leftarrow \rightarrow$ large leptonic mixings
- → this was in fact the reason for the `prediction' of small mixing angles (SMA) ruled out by data

Mechanisms to post-dict large mixings:

- → sequential dominance
- → type II see-saw
- → Dirac screening
- → ...

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetry not texture zeros

Examples:

GUT \otimes **Flavour Unification**

→ GUT group ⊗ flavour group

<u>example:</u> SO(10) \otimes SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB
- e.g. Z2, S3, D5, A4
- ➔ structures in flavour space
- ➔ compare with data

 $GUT \otimes flavour$ is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

→ only a few viable models; phenomenological success highly non-trivial

Adulpravitchai, Blum, ML:

no-go theorem: SU(2) or SU(3) + reasonably small representations \rightarrow only D'₂

→ alternatives: e.g. discrete flavor sym. from T^2/Z_N orbifolds, ... ???

→ aim: learn about the origin of flavour by future precision

Neutrinos = Potential for Surprises

- ... many untested assumptions: Majorana, 3 v's, mass mechanism
- → there may be more surprises
- light sterile neutrinos ←→ good theoretical reasons, keV DM
- ... > example: How NSI's can fool us in precision experiments:

	Source	⊗ Oscilla	tion	\otimes	Detector		
- neutrino energy E - flux and spectrum - flavour composition - contamination - symmetric $\nu/\overline{\nu}$ operation		- oscillation - realistic b - MSW ma - <mark>degenerac</mark> on - <mark>correlatio</mark>	 oscillation channels realistic baselines MSW matter profile degeneracies correlations 		 effective mass, material threshold, resolution particle ID (flavour, charge event reconstruction,) backgrounds x-sections (at low E) 		
precision experiments migh see							

NSI Operators

Good reasons for physics beyond the SM+ (with v's)
 → expect effects beyond 3 flavours in many models
 → effective 4f interactions

$$\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{L\beta} \ \gamma^{\rho} \ \nu_{L\alpha})(\bar{f}_L \gamma_{\rho} f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli +Romanino, Bueno et al., Kopp+ML+Ota, ...

NSIs interfere with Oscillations

<u>note</u>: interference in oscillations ~ $\epsilon \mid | \ FCNC \ effects ~ \epsilon^2$

NuFact 09 - IIT, Chicago

Physics Potential with NSIs included

Simulations

- full osciallation framework with NSIs included

→ 4 possibilities for flavour transition:

- Oscillation
- NSI operator at source
- NSI operator at detector
- NSI effects in propagation

no L/E dependence

Important: sensitivity limit from few events (small statistics)

- → no capability to distinguish different L/E dependence
- → potential misinterpretation of NSI flavour transition effects

Potential consequences:

- offsets in parameter determinations
- conflicting analyses

NSI: Offset and Mismatch in θ_{13}

NuFact 09 - IIT, Chicago

Where do we stand?

Enormous Progress made

- Experimental side:
 - super beams...
 - beta beams...
 - project X...
 - neutrino factory...
 - ...low and high energy
 - muon collider...
 - •••
- Important detector R&D ...
- Development of better beams ...

Crutial: timely R&D towards future options

Which Experimental Direction?

Progress continued

Phenomenology:

- interesting new ideas for improved / combined measurements
 - → which are realistic (backgrounds, technological requirements)?
- improved theoretical understanding (SN, QFT, ...)
- new analytical and numerical tools
- further improvements of GLoBES

Theory:

- many interesting ideas, concepts, developments (new symmetries, x-tra dim., new particles ...)
- models of masses and mixings
- ... the unexpected...

➔ progress requires future precison !

Development of Theory

Questions & Conclusions

- \$\$\$\$: Will there be enough funds for all R&D...?
- People: Will the community be large enough?
- Time: When could facility X,Y,Z fit in / be ready?
- New ideas: Maybe there exist other easier ways to measure neutrino properties...?

Conclusions:

- Double Chooz, Daya Bay, RENO, Gerda, Cuore, KATRIN, T2K, NOvA and others ... are coming
- R&D towards future machines is crutial...
 ←→ 2012 -2013 should be important

→ future v facilities are part of an exciting decade ahead!

Thanks to all!