The Emerging Picture of Neutrino Oscillation

Ed Kearns Boston University

11th International Workshop on Neutrino Factories, Superbeams and Beta Beams N u F a c t 0 9

Outline:

Our standard picture of neutrino oscillation physics

Some recent results

Approved experiments about to run

Future experiments that we dream about at night

Neutrinos Change Flavor in Flight

Implying that neutrinos have mass

Neutrinos Change Flavor in Flight

Implying that neutrinos have mass

Confirmations: MACRO, Soudan 2, K2K, MINOS, KamLAND, with high precision by MINOS and KamLAND

Confirming and Measuring Neutrino Mixing

plus an important constraint from the absence of (detected) effect:

No evidence for reactor neutrino disappearance over ~ 1 km

The Neutrino Matrix

Pontecorvo-Maki-Nakagawa-Sakata Matrix (PMNS or MNS)

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

flavor

mass

Mass-squared splittings. $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

The Neutrino Matrix -- Expanded

 $c_{ij} = \cos \theta_{ij}, \ s_{ij} = \sin \theta_{ij}$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Atmospheric

Solar

Global Fits to Neutrino Data

arXiv:0812.3161 Maltoni and Schwetz

What we know (and don't know) about masses:

$$\Delta m_{23}^2 = 2.4 \pm 0.3 \times 10^{-3} \text{ eV}^2$$

$$\Delta m_{12}^2 = 7.7 \pm 0.2 \times 10^{-5} \text{ eV}^2$$

$$m_2 > m_1$$

maybe ... Hierarchical normal ordering (2-3)

What we know (and don't know) about masses:

$$\Delta m_{23}^2 = 2.4 \pm 0.3 \times 10^{-3} \text{ eV}^2$$

$$\Delta m_{12}^2 = 7.7 \pm 0.2 \times 10^{-5} \text{ eV}^2$$

$$m_2 > m_1$$

maybe ... Hierarchical inverted ordering

What we know (and don't know) about masses:

$$\Delta m_{23}^2 = 2.4 \pm 0.3 \times 10^{-3} \text{ eV}^2$$

$$\Delta m_{12}^2 = 7.7 \pm 0.2 \times 10^{-5} \text{ eV}^2$$

$$m_2 > m_1$$

maybe ... Degenerate normal (or inverted) ordering

What we know (and don't know) about angles:

The Experimental Program for Neutrino Oscillation Physics

- Observe all predicted effects: oscillation pattern, tau appearance, matter effects ...
- Constrain non-standard effects: sterile neutrinos, neutrino decay, decoherence, MaVaNs, LIV, NSI, CPT violation...
- ♦ Refine measurements, especially: is $θ_{23} ≠ 45^\circ$?
- Measure θ_{13} is it greater than zero?

upcoming generation of experiments

- Determine the 2-3 mass hierarchy*
- ***** Measure phase δ **seek CP violation**

future generation being planned

^{*} possible with upcoming NOvA experiment under some circumstances

observe all effects!

The NuFACT Connection

magnetized

Observe all predicted effects:

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e$	detector
$\overline{ u}_{\mu} ightarrow ar{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)
$\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation)
$ u_e ightarrow u_e$	$ar{ u}_e ightarrow ar{ u}_e$	disappearance
$ u_e \rightarrow u_\mu $	$\bar{ u}_e ightarrow \bar{ u}_\mu$	appearance: "golden" channel
$ u_e \rightarrow u_{ au}$	$\bar{\nu}_e ightarrow \bar{ u}_ au$	appearance: "silver" channel

also, excellent at resolving degenerate solutions

neutrino-electron elastic scattering, goal is 862 keV ⁷Be line extremely low radioactive contamination 278 tons, 100 tons fiducial of scintillator doped mineral oil

Mini-BooNE

L = 540 m (10× LSND) E = 500 MeV (10× LSND)

no evidence for LSND-like oscillation at 1 GeV² scale

Neutrinos and Anti-Neutrinos

MINOS

• Fermilab-Soudan, 735 km

- 5.4 kton far detector, 1 kton near
- 2.54 cm thick steel plates (1.4X₀)
- 1.2 T solenoidal magnetic field

M. Sanchez

MINOS First v_e Appearance Search

Observed: 35 events Expected background: 27±5(stat)±2(sys) 1.5σ excess

Super-K Atmospheric Neutrinos

off and the state

in the second second second

and the second s

New Experiments

Precision Reactor Experiments

L. Mikaelyan, arXiv:hep-ex/0008046v2 (Krasnoyarsk)

build nearly identical detectors with nearly identical efficiency

Double Chooz and Daya Bay

Double Chooz (France):

- 2 x 4 GW reactor cores
- 50-300 mwe overburden
- 0.3/1 km baseline
- Existing infrastructure early start
- 2x10 ton modules fixed
- Goal of 0.6% systematics
- Reach $\sin^2 2\theta \approx 0.03$
- Start: early 2010 (far detector only)

Daya Bay (Hong Kong):

- 6 reactor cores, 17 GW total
- 200-1000 mwe overburden
- 0.3/1.8-2.2 km baseline
- Construct tunnels and labs (above)
- 8x20 ton modules moveable
- Goal of 0.36% systematics
- Reach $\sin^2 2\theta \sim 0.01$
- Start: 2011 (also 2 new cores then)

Off-Axis Super-Beams

Three Flavor Neutrino Oscillation in Matter

$$P(\nu_{\mu} \rightarrow \nu_{e}) \cong T_{1} \sin^{2} 2\theta_{13} - T_{2}\alpha \underline{\sin 2\theta_{13}} + T_{3}\alpha \underline{\sin 2\theta_{13}} + T_{4}\alpha^{2}$$

$$atmospheric \quad T_{1} = \sin^{2} \theta_{23} \frac{\sin^{2} \left[(1-x)\Delta \right] \right]}{(1-x)^{2}} \qquad \alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}$$

$$interference \begin{cases} T_{2} = \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin\left[(1-x)\Delta \right]}{(1-x)} \\ T_{3} = \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin\left[(1-x)\Delta \right]}{(1-x)} \\ T_{4} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \end{cases}$$

$$\Delta = \Delta m_{31}^2 L/4E \qquad x = 2\sqrt{2}G_F N_e E/\Delta m_{31}^2 \cong E/12 \text{ GeV}$$

matter effects: for anti-neutrinos, sign of x and sin δ_{cp} is changed hierarchy inversion also exchanges rol of anti-neutrinos and neutrinos

2.5 degrees off-axis from J-PARC beam295 km baselineE ~ 0.75 GeV narrow band

22.5 kton Super-Kamiokande far detector; hybrid magnetized near detector at 280m

0.8° off-axis from NuMI beam 810 km baseline E ~ 2.2 GeV narrow band

~15 kton totally active detector 222 ton matching near detector

Planes of liquid scintillator (mineral oil) read by WLS fiber

Surface detector with small

Sensitivity around 1% appearance probability.

Is θ_{23} Maximal?

Both experiments also excellent for Δm_{23}^2 and $\sin^2 2\theta_{23}$.

Resolving the Mass Hierarchy

Matter effect enhances v_e appearance for normal hierarchy Effect is reversed (enhanced anti- v_e) for inverted hierarchy

NOvA and Mass Hierarchy

NOvA and T2K: construction progress

-20 -15 -10 -5 0 5 10 15 X pos. (mm)

The quest for θ_{13} – circa 2012

Double Chooz adds second detector

- Daya Bay reactor experiment has early results
- T2K long baseline experiment is midway
- NOvA (U.S.) experiment will start data taking

If $\theta_{13} > 2.9^{\circ}$ (P_{appear} \geq 1%), we can contemplate going after δ . CP VIOLATION

$$P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

Thinking big...

next generation experiments

Three Flavor Neutrino Oscillation in Matter

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\cong T_{1} \sin^{2} 2\theta_{13} - T_{2} \alpha \sin 2\theta_{13} + T_{3} \alpha \sin 2\theta_{13} + T_{4} \alpha^{2} \\ T_{1} &= \sin^{2} \theta_{23} \frac{\sin^{2} \left[(1-x)\Delta \right] \right]}{(1-x)^{2}} & \alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \\ \\ \hline \text{CP violating} \quad T_{2} &= \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin\left[(1-x)\Delta \right]}{(1-x)} \\ \\ \text{CP conserving} \quad T_{3} &= \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin\left[(1-x)\Delta \right]}{(1-x)} \\ \\ T_{4} &= \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \\ \Delta &= \Delta m_{31}^{2} L/4E \qquad x = 2\sqrt{2}G_{F} N_{e} E/\Delta m_{31}^{2} \cong E/12 \text{ GeV} \end{split}$$

for anti-neutrinos, sign of x and sin $\delta_{\rm cp}$ is changed

CP Violating Neutrino Oscillation

Neutrinos and anti neutrinos reverse places with neutrino mass hierarchy.

Difference is greater for longer baselines (matter effects)

To measure these two probabilities, need large statistical sample

Upgrades in Japan

Hyper-Kamiokande

- Measure both first and second maximum
- 270 kton + 270 kton fiducial mass
- Eliminates many degeneracies
- Controls systematic uncertainty.

M. Ishitsuka et al., Phys.Rev.D72:033003,2005

Example Simulated Data from T2KK

 $Sin^{2}(2\theta_{13})=0.04$, neutrino, normal hierarchy

Narrow band, off axis semi Wide-band, more on axis

- In post-Tevatron era, Fermilab's long range plan is converging on the high intensity frontier.
- ◆ The flagship project would be a new 1-2 MW beam towards DUSEL .
- Unique feature is longest baseline being considered (1300 km).
- ♦ 60 120 GeV protons fed by Project X.
- ◆ 300-500 kton Water Cherenkov and/or 20 kton (or larger?) LAr TPC.

Water Cherenkov vs Liquid Argon

planning is getting underway

a lot of R&D is needed

there are good reasons to build both there is also invaluable non-accelerator physics: supernova and proton decay

Example: WC vs LAr (Background Event)

FNAL-DUSEL Water Cherenkov

Neutrino and antineutrino running

FNAL-DUSEL Liquid Argon

M. Dierckxsens, UDIG 08

It is assumed that NC BG is completely removed for LAr. Remains to be demonstrated!

FNAL-DUSEL Sensitivity

Sensitivity to CPV: > 50% δ -coverage (3 σ) for sin²2 θ_{13} > 0.015

- 3+3 years running

- BG uncertainty = 5%; assume perfect BG rejection for LAr (80% signal efficiency)

In summary:

A standard picture of 3-flavor neutrino oscillation exists.

Numerous experiments are poking and prodding at it now. More beyond are being built and proposed.

We should look for every feature we expect : ... and keep our eyes out for the unexpected.

The critical parameter is θ_{13} , which will be explored to an oscillation appearance level of 1% over the next 5 years.

If θ_{13} is large enough, the gateway is opened for CP violation.

Sensitivity to CPV: > 70% δ -coverage (3 σ) for sin²2 θ_{13} > 0.01

- 10 years running
- 15 systematic uncertainty terms, most = 5%; 20% in normalization > 1.2 GeV
- CPV reach insensitive to angle, but 1°OA quasi-WBB benefits hierarchy study

FNAL-DUSEL Precision

Degeneracies and CPV

$$P_{matt\pm}[\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})] = \pm \cos 2\theta_{13} \sin^{2} 2\theta_{13} s_{23}^{2} \left(\frac{2Ea(x)}{\Delta m_{13}^{2}}\right) \sin^{2} \left(\frac{\Delta m_{13}^{2}L}{4E}\right)$$
$$\mp \frac{a(x)L}{4} \sin^{2} 2\theta_{13} \cos 2\theta_{13} s_{23}^{2} \sin \left(\frac{\Delta m_{13}^{2}L}{2E}\right),$$

 $a(x) = \sqrt{2G_F N_e(x)}$