On the Origin of Neutrino Masses

Pavel Fileviez Perez

University of Wisconsin-Madison, USA

NuFacto9, IIT, Chicago

21/7/09

Pavel Fileviez Perez

Collaborators

In the US:

V. Barger (Madison)
S. Blanchet (Maryland)
L. Everett (Madison)
T. Han (Madison)
G. Y. Huan (UC-Davis)
S. Spinner (Madison)
M. B. Wise (Caltech)

In Asia: K. Wang (IPMU, Japan) T. Li (Pekin Univ., China) H. Iminniyaz (Pekin Univ., China) In Europe: I. Dorsner (Italy) R. Gonzalez-Felipe (Portugal) G. Rodrigo (Spain) G. Senjanovic (Italy)

In Latinamerica: M. A. Diaz (Chile)

Outline

Introduction

- Mechanisms for neutrino masses
- Grand unification and massive neutrinos
- Summary

FERMIONIC SPECTRUM IN THE SM

Neutrino Properties

The leptonic mixing matrix is given by:

$$\begin{array}{cccccccc} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -c_{12}s_{13}s_{23}e^{i\delta} - c_{23}s_{12} & c_{12}c_{23} - e^{i\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta}c_{12}c_{23}s_{13} & -c_{23}s_{12}s_{13}e^{i\delta} - c_{12}s_{23} & c_{13}c_{23} \end{array} \right)$$

$$K_M = diag(e^{i\Phi_1/2}, 1, e^{i\Phi_2/2})$$

The experimental constraints are:

$$\Delta m_{21}^2 = (7.2 - 8.9) \times 10^{-5} \text{eV}^2$$
$$|\Delta m_{23}^2| = (2.1 - 3.1) \times 10^{-3} \text{eV}^2$$
$$30^0 < \theta_{12} < 38^0, \quad 36^0 < \theta_{23} < 54^0, \quad \theta_{13} < 10^0$$

Neutrino Spectrum

<u>Neutrinos</u>

In the SM the lepton number (or B-L) is an accidental symmetry and the neutrinos are massless !

Today we know that the neutrinos are massive and they can be:

<u>Dirac Fermion</u>: $\nu^C \sim (1, 1, 0)$ (L is conserved by hand!)

$$-\mathcal{L}^D_{\nu} = Y_{\nu} \ l \ H \ \nu^C \ + \ h.c. \implies M^D_{\nu} = Y_{\nu} \ v/\sqrt{2}$$

If
$$Y_{\nu} \sim 10^{-11}$$
 one gets $M_{\nu} \sim 1$ eV.

 \sim Majorana Fermion: (L is broken) Weinberg'79

$$-\mathcal{L}_{\nu}^{M} = c_{\nu} \left(l H \right)^{2} / \Lambda_{\nu} + \text{h.c.}$$

$$\implies M_{\nu}^{M} = c_{\nu} v^{2}/2\Lambda_{\nu}$$

If
$$c_{
u} \sim 1$$
 and $\Lambda_{
u} \sim 10^{14-15}$ GeV one gets $M_{
u} \sim 1$ eV.

Mechanisms for Neutrino Masses

TYPE I SEESAW MECHANISM

Minkowski'77; Yanagida'79; Gell-Mann, Ramond, Slansky'79; Glashow'80; Mohapatra, Senjanovic'80

TYPE I SEESAW

Extra Fermions:

$$\nu^C \sim (1, 1, 0)$$

$$-\mathcal{L}^{I} = Y_{\nu} \ l \ H \ \nu^{C} + \frac{1}{2} M \nu^{C} \nu^{C} + \text{h.c.}$$

 $\mathcal{M}_{\nu}^{I} = \frac{v^{2}}{2} Y_{\nu} \ M^{-1} \ Y_{\nu}^{T}$

if $Y_{\nu} \sim 1$ and $M \sim 10^{14-15}$ GeV one has $\mathcal{M}_{\nu}^{I} \sim 1$ eV

M is defined by the U(1)_{B-L} breaking scale

TYPE II SEESAW MECHANISM

Konetschny, Kummer'77 Chen, Li'80; Lazarides, Shafi, Wetterich'81; Schechter, Valle'80; Mohapatra, Senjanovic'81

Extra Scalar: $\Delta \sim (1, 3, 1)$

 $\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$

 $\mathcal{L}_{\nu}^{II} = -Y_{\nu} \ l \ \Delta \ l \ + \ \mu \ H \Delta^{\dagger} H \ + \ \text{h.c.} \ + \ \dots$

 $\mathcal{M}^{II}_{\nu} = Y_{\nu} \ \mu \ v^2 / M_{\Lambda}^2$

 $Y_{\nu}? M_{\Delta}? \mu?$

if $Y_{\nu} \sim 1$ and $v_{\Delta} \sim 1$ eV one gets the natural neutrino scale

See Talk by F. de Aguila. See also Garayoa, Schwetz; F. de Aguila et al, and others 10/7/09 Pavel Fileviez Perez Mainz-09 17

TYPE III SEESAW MECHANISM

If $Y_{\nu} \sim 1$ and $M_{
ho} \sim 10^{14-15}$ GeV one has $M_{\nu}^{III} \sim 1$ eV.

Seesaw Mechanisms at Tree Level

21/7/09

R-Parity Violation in SUSY

In the MSSM:

$$R = (-1)^{3(B-L)+2S}$$

 $\mathcal{W}_{RpV} = \epsilon_i \hat{L}_i \hat{H}_u + \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_j^C + \lambda'_{ijk} \hat{Q}_i \hat{L}_j \hat{D}_k^C + \lambda''_{ijk} \hat{U}_i^C \hat{D}_j^C \hat{D}_k^C$

We need a mechanism for spontaneous R-parity violation !!!!

V. Barger, P.F.P., S. Spinner, Phys. Rev. Lett.102:181802,2009

Local B-L and Spontaneous R-Parity Violation

$$SU(3)_C \bigotimes SU(2)_L \bigotimes U(1)_Y \bigotimes U(1)_{B-L}$$

Matter:

 \hat{Q} \hat{L} \hat{U}^C \hat{D}^C \hat{E}^C

 $\hat{N}^C \sim (1, 1, 0, 1)$ (for anomaly cancellation)

-Some R-Parity Violating couplings

$$\frac{1}{2}g_{BL} v_R \nu^C \tilde{B}' \qquad \frac{1}{2}g_2 v_L \nu \tilde{W}^0 \qquad \frac{1}{2}g_1 v_L \nu \tilde{B}$$

Neutrino-Neutralino Mass Matrix

$$\begin{pmatrix} \nu, \nu^{c}, \tilde{\chi}^{0} \end{pmatrix} \longrightarrow \mathcal{M}_{N} = \begin{pmatrix} 0 & M_{\nu}^{D} & \Gamma \\ \left(M_{\nu}^{D}\right)^{T} & 0 & G \\ \Gamma^{T} & G^{T} & M_{\tilde{\chi}^{0}} \end{pmatrix}$$

Type I Seesaw and RpV: $M_{\nu} = (\tilde{M}_{\nu}^D) M_{\nu^C}^{-1} (\tilde{M}_{\nu}^D)^T + \Gamma M_{\tilde{\chi}^0}^{-1} \Gamma^T$

MECHANISMS AT ONE-LOOP LEVEL

The Zee-Wolfenstein model is ruled out !

The general model still alive. See He'03

Mainz-09

 $H_2 \sim (1, 2, 1/2)$ $h \sim (1, 1, 1)$ <u>Extra Higgses:</u>

 $-\mathcal{L}_{Zee} = Y \ l \ l \ h \ + \ \mu \ H_1 \ H_2 \ h^{\dagger} \ + \ Y_1 \ e^C \ H_1^{\dagger} \ l \ + \ Y_2 \ e^C \ H_2^{\dagger} \ l \ + \ \text{h.c.}$

$$Y = -Y^T$$

$\mathcal{O}_5^{\nu} = c_{11} \ l \ l \ H_1^2 \ + \ c_{12} \ l \ l \ H_1 \ H_2 \ + \ c_{22} \ l \ l \ H_2^2$

P.F.P., M. B. Wise, arXiv:0906.2950

COLORED MECHANISM

P.F.P., M. B. Wise, arXiv:0906.2950

COLORED MECHANISM

 $-\mathcal{L} = Y_2 \ l \ S_1 \ \rho_1 \ + \ M_{\rho_1} \operatorname{Tr} \ \rho_1^2 \ + \ \lambda_2 \operatorname{Tr} \left(\mathbf{S}_1^{\dagger} \mathbf{H} \right)^2 \ + \ \text{h.c.}$

1) $\rho_1 \sim (8, 1, 0), \quad S_1 \sim (8, 2, 1/2)$

$$\mathcal{M}_{\nu}^{ij} = Y_2^{i\alpha} Y_2^{j\alpha} \frac{\lambda_2}{4\pi^2} v^2 \frac{M_{\rho_1^{\alpha}}}{M_{S_1}^2}.$$

 $M_{\rho_1} = 200 \text{ GeV}, v = 246 \text{ GeV} \text{ and } M_{S_1} = 2 \text{ TeV}$ $Y_2^2 \lambda_2 \sim 10^{-8}$

21/7/09

Neutrino Masses and Renormalizable SU(5)

Georgi-Glashow Model
 Georgi, Glashow'74

 Symmetry:

$$SU(5)$$

Gauge Bosons:
$$A_{\mu} = (G_{\mu}, W_{\mu}, B_{\mu}, V_{\mu}, \bar{V}_{\mu})$$

Fermions:

$$\mathbf{10} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_3^C & -u_2^C & u_1 & d_1 \\ -u_3^C & 0 & u_1^C & u_2 & d_2 \\ u_2^C & -u_1^C & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^C \\ -d_1 & -d_2 & -d_3 & -e^C & 0 \end{pmatrix}, \ \overline{\mathbf{5}} = \begin{pmatrix} d_1^C \\ d_2^C \\ d_3^C \\ e \\ -\nu \end{pmatrix}$$

21/7/09

Higgs Sector:

$$5_{\rm H} = \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ H^+ \\ H^0 \end{pmatrix}, 24_{\rm H} = \begin{pmatrix} \Sigma_8 & \Sigma_{(3,2)} \\ \Sigma_{(\bar{3},2)} & \Sigma_3 \end{pmatrix} + \frac{1}{2\sqrt{15}} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \Sigma_{24}$$

Ruled out by unification and/or fermion masses !

Why the Georgi-Glashow model is ruled out ?

- Unification of gauge couplings in disagreement with the values of α_s , $\sin \theta_W$ and α_{em} at the electroweak scale
- $M_E = M_D^T$ at the GUT scale

•
$$M_{\nu} = 0$$

$$M_D = M_E^T$$

$$-45_{H}$$

Type II Seesaw

21/7/09

I. Dorsner, P. Fileviez Pérez Nucl.Phys.B723:53-76,2005

$$\begin{aligned}
\mathbf{Type II} - \mathbf{SU}(5) \\
\text{Higgs Sector: } 5_H, 24_H, 15_H \\
15_H = \underbrace{(1,3,1)}_{\Phi_a} \bigoplus \underbrace{(3,2,1/6)}_{\Phi_b} \bigoplus \underbrace{(6,1,-2/3)}_{\Phi_c} \\
\mathbf{M}_a = i\sigma_2 \Delta \\
\end{aligned}$$
Neutrino Masses: Type II seesaw mechanism

$$V_{\nu} = Y_{\nu} \ \overline{5} \ \overline{5} \ 15_H + \mu \ 5_H^* \ 5_H^* \ 15_H + hc. \\
\end{aligned}$$

$$\begin{aligned}
\mathcal{M}_{\nu} = Y_{\nu} \ \mu \ v^2 / M_{\Delta}^2 \\
\end{aligned}$$

Type I plus Type III Seesaw

21/7/09

Adjoint
$$SU(5)$$

P. Fileviez Pérez, PLB 654 (2007) 189.

Matter:
$$\overline{5} = (d^C, e, \nu)$$
, $10 = (u^C, Q, e^C)$, 24

Higgs Sector: 5_H , 24_H , 45_H

$$24 = \underbrace{(8,1)}_{\rho_8} \oplus \underbrace{(1,3)}_{\rho_3} \oplus \underbrace{(3,2)}_{\rho_{(3,2)}} \oplus \underbrace{(\bar{3},2)}_{\rho_{(\bar{3},2)}} \oplus \underbrace{(1,1)}_{\rho_0}$$

Neutrino Mass: Type I and Type III seesaw

 $V_{\nu} = \alpha_i \, \bar{5}_i \, 24 \, 5_H \, + \, p_i \, \bar{5}_i \, 24 \, 45_H$

See also: P. Fileviez Pérez, PRD 76 (2007) 071701.

P. Fileviez Pérez, PLB 654 (2007) 189.

Neutrino Masses in Adjoint SU(5)

 $V = c_{\alpha} \, \bar{\mathbf{5}}_{\alpha} \, \mathbf{24} \, \mathbf{5}_{H} + p_{\alpha} \, \bar{\mathbf{5}}_{\alpha} \, \mathbf{24} \, \mathbf{45}_{H} + M \, \mathrm{Tr} \, \mathbf{24}^{2} + \lambda \, \mathrm{Tr} \, \left(\mathbf{24}^{2} \mathbf{24}_{H}\right) + \mathrm{h.c.}$

$$\rho_3 = \frac{1}{2} \begin{pmatrix} T^0 & \sqrt{2}T^+ \\ \sqrt{2}T^- & -T^0 \end{pmatrix}$$

$$M^{\nu}_{\alpha\beta} = \left(\frac{h_{\alpha1} h_{\beta1}}{M_{\rho_3}} + \frac{h_{\alpha2} h_{\beta2}}{M_{\rho_0}}\right) v_0^2.$$

Pavel Fileviez Perez

One Massless Neutrino !

See also Bajc, Senjanovic'07

Unification at the one-loop level.

21/7/09

Neutrino Masses and Renormalizable SO(10)

$$Georgi'ry, Fritzsch, Minkowski'ry
SO(10) Unification
Gauge Symmetry: $SO(10)$
Matter: $16 = (Q, L, u^C, d^C, e^C, \nu^C)$
Higgs Sector: $10_H = 5_H \bigoplus \overline{5}_H = (H, T) \bigoplus (\overline{H}, \overline{T})$
 $45_H, \dots$$$

Naïve SO(10)

$$\mathcal{L}_{Y} = Y_{10} \ 16 \ 16 \ 10_{H} + \text{h.c.}$$

 $M_{U} = M_{\nu}^{D} = v_{10}^{u} \ Y_{10} \ (wrong!)$
 $M_{D} = M_{E} = v_{10}^{d} \ Y_{10} \ (wrong!)$
 $Y_{10} = Y_{10}^{T}$

Realistic Renormalizable SO(10)

$-\mathcal{L}_Y = Y_{10} \ 16 \ 16 \ 10_H \ + \ Y_{126} \ 16 \ 16 \ \overline{126}_H \ + \ \text{h.c.}$

$$M_U = v_{10}^u Y_{10} + v_{126}^u Y_{126}$$

$$M_{\nu}^D = v_{10}^u Y_{10} - 3 v_{126}^u Y_{126}$$

$$M_{\nu R} = Y_{126} v_R$$

$$M_D = v_{10}^d Y_{10} + v_{126}^d Y_{126}$$

$$M_{\nu} = -M_{\nu}^{D} M_{\nu_{R}}^{-1} M_{\nu}^{D} + Y_{126} v_{L}$$

21/7/09

Type I plus Type II Seesaw

For the study of neutrino masses in this context see:

Babu, Mohapatra'93

Bajc, Senjanovic, Vissani'o2, '04

Goh, Mohapatra, Ng'03

Fukuyama, Okada'o3

Bertolini, Frigerio, Malinsky'04

Aulakh, Bajc, Melfo, Senjanovic, Vissani'04,'05'06

Bertolini, Schwetz, Malinsky'o6

Bajc, Dorsner, Nemedev'o8

	type-II		mixed'		mixed		type-I	
$ \xi $	0		10^{-4}		0.3587		3.59×10^{6}	
$\arg(\xi)$	_		0.866π		1.018π		1.318π	
r	0.3278		1.9977		0.47896		0.3551	
$\arg(r)$	0.408π		1.849π		0.0013π		0.0057π	
f_u	16.62		11.51		18.77		19.23	
$f_{ u}$	1.671×10^{-10}		4.519×10^{-10}		8.732×10^{-10}		3.613×10^{-17}	
observable	pred.	pull	pred.	pull	pred.	pull	pred.	pull
$m_d [{ m MeV}]$	0.7662	-1.16	0.4956	-1.82	1.122	-0.29	0.4719	-1.87
$m_s [{ m MeV}]$	31.33	1.85	22.46	0.15	22.85	0.22	19.99	-0.33
$m_b [{ m MeV}]$	1147	0.61	1096	0.25	1078	0.13	1029	-0.35
m_u [MeV]	0.5543	0.02	0.5576	0.03	0.5512	0.00	0.5538	0.02
$m_c [{ m MeV}]$	213.1	0.17	213.5	0.18	210.6	0.03	213.1	0.16
$m_t [{ m MeV}]$	78030	-0.29	77411	-0.34	81659	-0.05	78117	-0.29
$\sin \phi_{23}^{ m CKM}$	0.0345	-0.43	0.0352	0.08	0.0351	0.03	0.0349	-0.13
$\sin \phi_{13}^{ m CKM}$	0.00331	0.23	0.00319	-0.02	0.00319	-0.01	0.00323	0.06
$\sin\phi_{12}^{ m CKM}$	0.2245	0.11	0.2243	0.02	0.2243	0.01	0.2243	0.01
$\delta_{ m CKM}$ [°]	79.35	1.38	59.47	-0.04	61.41	0.10	61.11	0.08
$\sin^2 heta_{23}^{ m PMNS}$	0.3586	-2.17	0.5126	0.19	0.5027	0.04	0.4944	-0.09
$\sin^2 heta_{13}^{ m PMNS}$	0.0145	0.93	0.0106	0.68	0.0066	0.43	0.0095	0.61
$\sin^2 heta_{12}^{ m PMNS}$	0.2829	-1.08	0.3078	-0.09	0.3094	-0.02	0.3078	-0.09
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.863	-0.12	7.894	-0.02	7.898	-0.01	7.896	-0.01
$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	2.385	0.50	2.232	0.09	2.210	0.03	2.223	0.06
$m_1/\sqrt{\Delta m_{21}^2}$	0.279		0.478		0.382		0.361	
$\delta_{ m PMNS}$ [°]	-0.70		-59		-0.70		4.9	
$lpha_1 \left[^\circ ight]$	1.1		30		1.8		-2.1	
$\alpha_2 [\circ]$	91		126		-84		90	
χ^2		14.5		4.1		0.35		4.3

TABLE II: Parameter values and predictions in four example solutions corresponding to different terms dominating the neutrino mass matrix: type-I, type-II, or both contributions of comparable size (mixed and mixed'). In the column "pred." the predicted values P_i for the observables are given, the column "pull" shows the number of standard deviations from the observations, $(P_i - O_i)/\sigma_i$, using the data and errors from Tab. I. Deviations of more than 1σ are highlighted in boldface. The final χ^2 is the sum of the squares of the numbers in the "pull" column. See the text for comments on the values of the leptonic

Summary

- We have presented a new mechanism for neutrino masses at one-loop level called " Colored Mechanism ".
- It has been shown that if the seesaw scale is low one could learn about the neutrino spectrum at the LHC in the case of Type II seesaw.
- We have discussed how to realize the different seesaw mechanisms in the simplest grand unified theories pointing out the possible predictions.
- In the context of SO(10) theories we have seen the possibility to make some predictions without assuming extra symmetries.
- All the experimental efforts will be of great importance to undertstand how to prove the mechanism for neutrino masses.

THANKS !!!!

