Hadronic B decays

M. Beneke (RWTH Aachen)
BEAUTY 2006, Oxford, September 26, 2006

Theory of hadronic decays

- Summary and comparison of different frameworks
- New higher-order calculations
- Power corrections

Confronting data

Global comparison
7, mK after ICHEPQO6

PP vs. PV and the usefulness of S
B— VV: polarization and a QED surprise

— Hadronic B decays—



!‘i /\_rj-_-‘iﬁﬁ"i x F %‘n-‘-_%’\_‘.f.- - F — ?'h' '. )~ bo !‘., e S0, Iﬁ B " Ch(lﬁ‘i;;(f’ N

o farge variely of transitions : Chatlinge of strong interaction

favour

irac structwe (vsA,...) -
(MM, | O, I B>

/ 0\ /  \

Determine CKM Nes thystcs SUR) [ tsespin )

2ation
parameters outd be’ = ‘ . Fg}c{cmzo.
Lavour- speet {ic = hical amgli- (Vi op-)
§ pecc e : b
e Bauer, Stedh,
e SM: [ deppenfld (1330, \Jlrbd (1985),
Chan (1931), ‘rom QCh: MB,
Ie - - G Z kM- O, Gronaun etal. (4394) Buchabla , Neubert ,
3 T : ] Sachvajda (4939)
weak inferactions for p« My . ; )
+ QCD+QED

— Hadronic B decays—



Theory of hadronic decays
(factorization)
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Factori2otton works ( at feading power \n 1/0’15) , because ...
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Comparcson of defferent approaches / imptamentations
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The charming penauin soqa.
Cluchind et ab. (2004)

Large 1/“15 cowections {mm —__/Si'g/: or % (amchitation) $o P€
No theorthical argquments given.
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New higher-order calculations
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QCDF: NLO («?) spectator scattering

T = ' %

o 1-loop J
(Becher, Hill, Lee, Neubert 2004; MB, Yang 2005; Kirillin 2005)

1-loop HY tree amplitudes
(MB, Jager 2005; Kivel 2006 [error?])

1-loop HI penguin amplitudes
(MB, Jager 2006) [QCD penguin also: Li, Yang, 2005, but errors|

e Main results:

— Perturbation theory well-behaved

— Sizeable enhancement of the colour-suppressed tree
amplitude (good!)

— Negligible correction to QCD penguin amplitude (dis-
appointing!)
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Tree amplitudes and 77 branching fractions with NLO spectator scattering

0.15
Requires smallish 01|
Br —4
V, 0) =8.1-10 0.05 |
Vil ££7(0) E »
0: LO
and larger fB/(ffW(O))\B) than $
expected. A g small? -0.05 | c"
-0.1 ¢ A
C/T = as/a; = 0.55 + 0.074 ~0.15 - \ \ \ \ \ \
0 0.2 0.4 0.6 0.8 1 1.2
(MB, Jager, 2005)
7'('_7'('0, a7 are ok, 7070 still
somewhat low
6
_ 10~ Br Theory (NLO Exp.
Acp(rTn™) = 0.39 &+ 0.19 re- Av y (NLOsp) L
mains a problem (see below) 7~ 70 5. 5"'0 3(CKM)+ (hadr.)i_o'g(pow.) 5.7+£0.5
ot~ 5.070: 8(CKM)+0 2 (hadr.) 732 (pow.) 5.2+ 0.2
2 2
7070 0.737 027 (ckM) T 052 (hadr.) T0-32 (pow.) | 1.31+0.21
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PQCD: (partial) NLO (i mishima, Sanda, 2005)

First NLO corrections (partially) included using vertex and penguin kernels from BBNS (1999).

Same diagrams, but very different numbers.

Consider colour-suppressed tree amplitude: large negative correction in BBNS, but huge enhancement in LMS:

o 0.8¢200 _, g 3e— 1L

What is going on?
Ch
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N/

NLO correction (asymptotic LCDA)

Wilson coefficients are evaluated at scales down to 500
MeV. This is conceptually incorrect. Running stops around

mb.

Correction is evaluated at scales, where perturbation theo-
ry breaks down. Numerics is unstable against including
higher-order corrections. No scale variations are included

in theoretical errors.

| believe this is a general problem of the PQCD approach
and therefore — despite its phenomenological successes —
do not consider it as a theoretical framework on the same

footing as QCDF/SCET.
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Most [HIPOT{OIL{ ‘!/m_h effect :  scalor QCD penguin:
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Probably not , bat the effect may be small (M8, Subut)
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Weak annthitatien.
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Confronting data: global comparison
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Results for many modes available from the BBNS (BBNS, 2001; Du, Yang, Zhu, 2002; MB,
Neubert, 2003), PQCD (Li and collaborators, 2000ff) and the BPRS approach. (Bauer, Rothstein,
Stewart, 2005; Williamson, Zupan, 2006)

Apologies for not collecting all (too difficult — scattered over many papers
[PQCD] or output changes with new data [BPRS]).

Here show QCDF results and focus on global features which | believe are

common to all.

Br, Acp and some S-parameters calculated for all 96 B, 4 — PP, PV
decays at NLO. (MB, Neubert, 2003)

Noted that smaller B — m form factor, small Ap and some penguin
annihilation contribution to P¢ provided a globally better description of the
data — defines ‘scenario’ S4.

Not a fit.
Still very successful. No update since 2003, but many new data points.
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Summary of the global comparison

o Hierarchy of branching fractions ranging from 1 - 107° to 70 - 107° (n'K) is well
predicted /reproduced.

e Direct CP asymmetries are generally found small in agreement with expectations.
Some predictions are quantitatively very good (mwp, pK, K" vs K, n' K*), but
there are also serious discrepancies (7 7™, 7T K~, n7n, nK).

Expect all kinds of corrections to be more important for direct CP asymmetries,
because leading terms starts with a.

o Devil is in details difficult to see in the global comparison: the w’x" rate, the

7t K~ and 77~ CP asymmetry, ...

Also required annihilation with strong phase to improve the comparison — some
model-dependence!
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Confronting data: selected topics
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The B — 7TK pUZZle (Yoshikawa; Gronau, Rosner; MB, Neubert; Schwab et al. 2003) — after ICHEPO6

Construct ratios with little dependence on -y, but sensitive to electroweak penguins.

" or(BY — 7VK0) 1 2, Rer &
= — = — T COS er e
00 I'(B— — »—K0) EW TRETC

R 2F(BO—>WOI_(O)+2F(B_ —>71'OK_) 4 |2 Re( R
= — — = T — COSs er T e
L (B~ — 7~ K0) + (B0 — 7t K—) EW THVTTEW

0Acp = ACP(WOKi) — ACP(W:FK:*:) = —2 sin’y(lm(rc) — Im(rp T‘EW)) 4+ ...

theory: rpyw =~ 0.12 — 0.01%, rc ~ 0.03[x27] — 0.021, rp ~ 0.18 — 0.022

e JAcp seems to require large enhancement of the colour-

theory data [old] suppressed tree amplitude (7).
Rgp | 0.79£0.08 | 0.93 4 0.07 [1.04] The required enhancement is out of reach in factorization.
Ry, |1.01£0.02]1.06+ 0.05 [1.12] e Ratios now closer to expectations. Enhancement of EW b — s
JAcp | 0.03 £0.03 | 0.14 £ 0.03 [0.15] penguin amplitude no longer compelling.

o Smaller Br(wYK°) would make the R-ratios fit better.
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The 7 final states ...

... pose problems to the factorization approaches.

Direct CP asymmetry Acp(mm~) = 0.39 £ 0.19

Magntiude of P/T appears to be in good agreement with data.
Phase too small to be near the experimental value.
But recall Babar measures 0.16 4= 0.11 £ 0.03 vs. Belle 0.55 4+ 0.08 4= 0.05.

Br(w’7") = (1.31 £ 0.21) - 10°°

Indicates large C'/T.

LO (naive factorization): 0.1-107°

NLOsp with small Ag:  ~ 0.7-10"%

but 1.3 - 1076 only by pushing parameters to the extreme.

C ~ ag(mm) = 0.184 — [0.153 + 0.077i ]y, + [07225} {[0-122]Lo + [0.050 + 0.053i |NL,O + [0.071]tw3}

=027 —0.02i — 0.52+0.03i (if 2 X rsp) [rsp — 9f7TfB/(mbff“(0),\B)]

Spectator-scattering is essential.

— Hadronic B decays—
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What do we learn (about factorization) from PV?

No helicity information (— VV)
Main difference is hierarchy of QCD penguin amplitudes

0.15 015
o1f” 01 e PV
s o
/ \
005} 0.05 /'/ A \ PP ~ a4 + ryag
| M) VA S0
0 0 ,’ J ‘J VFA S+P
\ | .
- 005 - 0,05}, \\K i 7 P
A / PV ~ay ~ — VP ~ ay—ryag ~ —PV
-01 -01f - 4 3 4776
-015 e - 015
-015-01-005 0 005 01 015 =015 -01-005 0 005 01 015

Good agreement of the calculated QCD penguin amplitudes. (Figure shows m K vs. mK™.)
Interference of V' A and S + P as predicted by factorization.
Similar inteference explains hierarchies of B — n(/)K(*) rates. (MB, Neubert 2002)

=> | consider this as the strongest evidence that factorization is at work for the penguin amplitudes.

Smaller P in B — PV is good for o determination from time-dependent CP asymmetry S

— Hadronic B decays—
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v [a] from time-dependent CP asymmetries S in b — d transitions

S 2R . 5 2R { 5 <2Sin2a + sin(26 + ))
= sin 2a0 — cos ———— cos sin
14+ R2 “Tirrz” “\1yrr2"7 K
2R? sin 2
_bcos5b( 1_51;2acosv—l—sin(26—|—’y))}—I—... (a=7m—08—17)

ApnTpr /(ArpTrp) = Re“T R =0.917028 s, ~0

Prp/Trp = ae®®, Ppr/Tor = —be', ambr0.1, cosdyy ~ 1

e S parameters have large sensitivity to v if 7 is near 70°.
e Theoretical uncertainties enter only in the sub-leading correction term, which is especially small for

7p and pp. Strong phases enter only as cos.
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= v =(657%°

Srp = 0.03 £ 0.09

= 4= (6975)°

= 4 =(697%)°

Mutually consistent
v = (68 £4)°

and consistent with
the standard mixing-
based fit (from UTfit):

v = (61+5)°

— Hadronic B decays—
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Polarization in B — V'V

Interesting because helicity information probes tensor structure of flavour-changing interactions.
For V-A interactions expect

Ao > A_[1/my] > Ay [1/m])]

— Transverse polarization is a power correction and f;, = |Ag|?/ > 0+ 14,12 ~ 1

e Observations:
Confirmed for tree-dominated decays. Not for pen-
guin-dominated decays, for which

Ag ~ A_ (no suppression!) I data theory
ptp™ | 0.967+0.024 | 0.937003
But A} < A_ seems to be ok. — 0 +0.04 +0.03
p P 0.92_0.05 0.95_8.8§
e Theoretical calculation: The transverse VV penguin PK*T 0.50 £ 0.07 0~81J_r0:44
amplitude may receive a large contribution from weak »K*0 0.48 4 0.04 O.81J_r8'ig

annihilation, which precludes a reliable prediction of
f1,- (Kagan, 2004)

No contradiction (but also no prediction).

To my knowledge this is the only plausible standard
model “explanation”.

[“theory” from (MB, Rohrer, Yang; unpublished)]
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Parametric hierarchy not true for electromagnetic interactions. (MB, Rohrer, Yang, 2005)

Instead
my

Ag: A_: A, =1 1

Enhancement of transverse polarization by (m;/A)?.

e v nearly on-shell, q2 = m%/2 ~ A?

* Vo longitudinal = photon propagator is cancelled =
effective local four-quark interaction
* for V5 transverse no cancellation = local b — D~

transition followed by long-distance v — V&5 transition
=> enhanced by large photon propagator

e Largest contribution to the transverse electroweak penguin

amplitudes!

2aem eff mme

EW 1
P ViVe) =C C —(C Cio) — C
— " (1V2) 7+ 9+NC( 8+ C10) — ——C7y 3

e Magntiude of this amplitude is related to B — K™~.

A
\

Ty
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Check this for the B — pK™ system

Ap(p” K™ = B,
VZAR(PKTT) = [Pt Py e [T+ O

Ap(pTK*) = P+ e Ty, (T},, Cj, CKM suppressed)
V24K = (PP e [0,

Compare leading QCD penguin to EW penguin amplitude (in some units)
P_(pK*) ~ —1 PEW(pK*) ~ —0.3 4+ 0.7 [new]

A very large effect.

Consider CP-averaged negative helicity decay rate ratio (ng = P}];JW/Ph)

EW 1.5 4+ 0.2 without dipole operator

2
1+ pEW 0.4 +0.1
_JL_‘+A:{
1 —p=

(Fit P_ to data, use QCDF for the other amplitudes)

— Hadronic B decays—
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Available data:

| Bray/107° Acp fr
p K*0 9.24+1.6 —0.01+0.16 0.48 +0.08
07r-*— +3.8 +0.32 +0.06
VK 10.6735°3 0.2010-52 0.9610-99

05  pth [ 04401
- 0.7 £ 0.1  without dipole operator

Detecting physics beyond the Standard Model
* New Physics could enhance chirlaity-flipped electromagnetic dipole operator

* Q% contribution to A is suppressed only by C%/C%, while other contributions have
additional A /my, suppression = Sensitivity to C’;rv ~ 0.1 may be possible.

% An alternative to studies of photon polarization in B — K*~y. Here the p meson (decay)
acts as the polarization analyzer.

— Hadronic B decays—
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Summary

Too much to summarize for one talk.

Apologies to the many people whose work | have not presented. Especially work on
strategies that are more data-driven (SU(3) fits, BPRS-WZ fits).

| have naturally focussed on what | understand and on what | think is correct.

Instead of a summary three messages:

1 We have learned a lot about hadronic dynamics but | think we also
know =y very well from charmless hadronic final states. There should
be some way to include this information in the CKM fit beyond the
few standard methods!

2 The subject has been an extremely fertile ground for developing new
theoretical concepts.

3 There is much more to learn: experimentalists should keep on
collecting as many measurements as possible.

— Hadronic B decays—
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