Lattice QCD on Clusters

James N. Simone

simone@fnal.gov

Fermilab
Lattice QCD

- Lattice QCD is the study of quark and gluons in discretized space and time.
Lattice QCD

- Lattice QCD is the study of quark and gluons in discretized space and time.
- Goal is to determine properties of hadrons and compute their decay matrix elements.
Lattice QCD

- Lattice QCD is the study of quark and gluons in discretized space and time.
- Goal is to determine properties of hadrons and compute their decay matrix elements.
- Challenge is to achieve the level of precision needed by new experiments.
Lattice QCD

- Lattice QCD is the study of quark and gluons in discretized space and time.
- Goal is to determine properties of hadrons and compute their decay matrix elements.
- Challenge is to achieve the level of precision needed by new experiments.
- Requires more powerful computers and better algorithms.
Parallelism: Domain Decomposition

- Partition spacetime lattice into smaller volumes and distribute them among parallel processes.
Parallelism: Domain Decomposition

- Partition spacetime lattice into smaller volumes and distribute them among parallel processes.
- Local interactions: quark, $\Psi(x)$, depends upon $\Psi(x + ar)$ and local gluon fields.
Parallelism: Domain Decomposition

- Partition spacetime lattice into smaller volumes and distribute them among parallel processes.

- Local interactions: quark, $\Psi(x)$, depends upon $\Psi(x + ar)$ and local gluon fields.

- Each processor communicates only boundary sites with neighboring processors.
Parallel Supercomputers

Computations traditionally performed on commercial or specially built supercomputers.

ACPMAPS

Scale from 8Gflop/s to >800Gflop/s? ...
Lattice QCD National Infrastructure

Long-range plan to meet US computing needs proposed to the DOE (SciDAC) and NSF

- Three \(~ 10\) TFlop/s facilities by FY2005
- Cluster investigations by Fermilab and Jefferson Lab
- 300 cluster nodes/yr over three years for FNAL and JLAB
- Design/deploy custom computer based on highly integrated systems on a chip at Brookhaven/Columbia.
Cluster Advantages

- Very good to excellent performance to price.
Cluster Advantages

- Very good to excellent performance to price.
- Rapid hardware upgrades to take advantage of Moore’s Law.
Cluster Advantages

- Very good to excellent performance to price.
- Rapid hardware upgrades to take advantage of Moore’s Law.
- Open source software provides adaptable, familiar and easy to use environment.
Cluster Advantages

- Very good to excellent performance to price.
- Rapid hardware upgrades to take advantage of innovations and Moore’s Law.
- Open source software provides adaptable, familiar and easy to use environment.

Rapid algorithm prototyping and test result turnaround times within a few days has been key to advances in LQCD.
Eighty Node PIII Cluster

Installed September-October 2000.
Features of Eighty Node Cluster

- L440GX+ motherboard, 100MHz FSB, dual 700MHz PIII, 256MB SDRAM and 18GB disk
- BIOS and EMP redirect to COM serial ports, monitor via Cyclades
- Remote boot via PXE capable ethernet BIOS
- 100mbps ethernet
- Myrinet-2000 NICS and 80-port switch
- Linux 2.2; PBS(maui); MPI mpich/vmi (NCSA)
MPI Over Myrinet and Ethernet
Fermilab has received $0.6M to fund cluster investigations in the current year.

- Hire one systems/applications software specialist
- RFP’s mid-June to July…
- Add 130 to 180 compute nodes (dual P4, Athlon, Alpha, PPC, G4…)
- Expand high-performance networking (Myrinet, SCI, GigE…)