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1. SSC project 

In order to study TeV region physics, several new colliders have been pro­

posed: high energy p-p colliders with high luminosity, such as LHC and SSC, 

and high energy e+e- linear colliders, such as JLC. Among those proposals, 

Superconducting Super Collider (SSC) project has been approved and started 

first and foremost. The SSC collider with a circumference of eighty-seven kilom­

eters is being designed to be constructed around Waxahachie, which town is 

situated about forty kilometers south of Dallas in Texas (fig.1). Head-on colli­

sions of proton beams whirling around the tunnel in opposite directions are sup­

posed to produce 1.7 interactions every 16 ns in the case of the maximum lumi­

nosity of l033cm-2s-1 at ,.f;-40TeV. Fig.2 shows a schematic for the SSC complex 

consisting of five accelerators: LINAC, LEB (low energy booster), MEB (medium 

energy booster), HEB (high energy booster), and the 20TeV-20TeV SSC collider. 

A schedule for the SSC construction is shown in fig.3, where the first beam colli­

sions are expected at the beginning of 1999. The SSC parametersl are summar­

ized in table 1. 

2. Comparison between SSC and other coming colliders 

Physics interests at the SSC are listed in table 2,2 where the expected 

event rates and their observabilities are also shown. Another future p-p collider, 

LHC3 of CERN, is expected to be approved In a few years and to come into 

operation in 1997. The designed luminosity of the LHC, although the maximum 

energy is low, is much higher than that of the SSC as shown in table 1. 

On the other hand, electron-positron linear colliders such as JLC could effi­

ciently produce clean events in the TeV region. Comparing4 effective center-of­

mass energies of e+e- and p-p collisions, one can clearly see a merit of those 

hadron colliders (fig.4). Figure 5, summarized by U.Amaldi,5 shows the 

discovery limits for 12 different processes at hadron and e+e- colliders. One of 

the most important studies to confirm the standard model is certainly the Higgs 

particle search, but the discovery limit is not so high at the SSC in comparison 

with at the other colliders because of the mass width growing as Mf and of the 

QCD backgrounds. From the point of view of the standard theory, the Higgs 
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mass should be below 1 TeV/ c2• If the mass does not exist in the region, the 

WW interactions are expected to be strong in TeV region and hence new physics 

will show up. 

Among various physics interests in the TeV region, the discovery limits for 

heavy gauge bosons at the sse are extremely high in comparison with the pro­

posed electron-positron colliders, as shown in fig.5. Therefore the new gauge 

boson search at the sse is one of the most interesting themes. 

s. Gauge Boson Physics 

(a) Why gauge boson ? 

To confirm the standard model, we have to test gauge couplings in the ver­

tices of WWZ, WW-y, and four vector-bosons (fig.6).6 If the Higgs particle does 

not exist below 1 TeV, the perturbative WW scattering amplitude violates unitar­

ityat ,.[;?:.1.7TeV and thus the interaction becomes strong. Fig.7 shows an invari­

ant mass distribution for pp -+ w+w-x in the case of M,,-lTeV.7 Recently 

M.Chanowitz has reviewed WW scattering at Mww>lTeV, and has estimated the 

event rates and their backgrounds. In addition, he suggested attractive scatter­

ing processes of W+W+ and W-W- which have no qq annihilation background.8 

Therefore gauge boson detections at the SSC are essential to study the 

symmetry-breaking mechanism in the TeV region. 

(d) Extra W 

In the standard model based on SU(2)L x U(l), w* couples to only doublets 

of left-handed quarks or leptons. If we extend the frame of the standard model 

to SU(2)L x SU(2)R X U(l)L_Bt new right-handed WR will be required in the left­

right symmetric model. An estimated PT distribution of single electrons/pions 

decayed from lOOOGeV w±s is shown in fig.B.9 

(e) W Polarization 

If the new w* existsin the TeV region, the helicity has to be investigated 

by using charge asymmetry of pions from T in the process of W'/R-+1'1Ir (fig.9). 
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(f) Extra Z 

We do not know the reason why the number of generations is only 

three, and how the generations appear. If horizontal gauge bosons or superstring 

gauge bosons exist, the new particles are detectable with an electromagnetic 

calorimeter or a muon tracker (fig.I0). 10 

(g) Determination of the Mixing Angle a 

If new Z particles exist in the TeV region, the mixing angle can be meas­

ured by the method shown in fig.I1. 

4. Detectors 

Muons as well as electrons are the most important signals at SSC experi­

ments, because those are expected to uncover the existence of neutral Higgs, 

sequential heavy quarks, heavy leptons, leptoquarks, extra/ordinary Z, W, etc. 

Solenoid 411' detectors11 (fig.12), a non-magnetic detector12 (EMPACT: 

fig.13), and a large magnetic detector13,14 (L*: fig.14) have been proposed. Their 

expected momentum resolutions for electrons and muons are shown in the above 

table, where the resolutions of electrons are expected to be much better than 

those of muons. But the practical resolution of electrons may become worse 

because of the systematic error, electronics noise, event noise (minimum bias 

events), signal pile-up and/or pedestal variation, track overlap, etc. Those effects 

may be serious below a few hundred GeV/c for rare events which we are 

interested in. 

For muons, two kinds of detection schemes, so far, are proposed for SSC 

experiments. The solenoid 411' detectors measure produced muon momenta inside 

the magnet, identify muons with the filter, and could measure their momenta 

outside the calorimeter if the iron filters are magnetized. On the other hand 

EMPACT and L* precisely measure muon momenta outside the calorimeters, 

correct the momenta using the information of energy deposit in the calorimeters, 

and determine the production angles with the inner trackers. 

EMPACT intends to precisely measure muons as well as electrons and jets 

over the large solid angle with the air-core toroids, which generate a purely 

azimuthal field always perpendicular to the trajectories. The detector is shown in 

fig.13. 
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L., based on the L3, consists of a large solenoid, calorimeters, and an excel­

lent muon chamber system. The group is also investigating other choices, 

namely radially distributed toroidal coils (fig.14) and "magnetic bottlen • A typi­

cal Higgs event and a minimum bias event in a solenoid detector are shown in 

fig.15. 

5. Summary 

It is extremely interesting to investigate the symmetry-breaking mechanism 

in TeV region, with the coming high energy colliders. To perform those studies, 

we have to carefully design the detectors most suitable to the processes. 
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Collider parameter SSC LHC(low) LHC(high) 

E(TeV) 20( for 6.55 T) 8(for lOT) 8(for lOT) 

Circumference 87,120m 26,659m 26,659m 

N(lOI0 protons/bunch) 0.75 2.9 10 

N(bunches/ring) 17,424 3,120 4,810 

BN(lOI3 protons/ring) 13 9.1 48.1 

FROTATION 3.4 kHz 11.246 kHz 11.246 kHz 

F COLLISIONS 60MHz 35MHz 54MHz 

Transv. Emitt.(lO~radmm) 1 25 15 

SBUNCH-SEPARATION 5.0 m 8.5 m 5.5 m 

TBUNCH-SEPARATION 16 ns 29 ns 18 ns 

Bunch Length 6-7 .3cm( 0') 31cm(40') 31cm(40') 

p*(m) 0.5 0.25 0.25 

Luminosity (lo33cm-2a-l) 1-(5) 6.2 37.9 

Luminosity/hit (1025cm-2a-1) 1.6 

Table 1. P-P Collider Parameters 

Ref.l. Ref.3. 
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class process physics observability event rate 

L .... l033cm-2s-t, lOTs/year 

QeD 

PP~jets QeD test 

compositeness 

luminosity monitor 

high PT jet 

detectable with 

calorimeters 

1 event/sec 

at PT....2TeV 

standard 

Electro-

Weak 

Theory 

pp~z+r QeD study 

heavy quark search 

e+e-, p.+p.­

T+T- ? 
10 events/year 

at m,,>3TeV 

W±x prod. mechanism 

P T depencences 

rare decay modes 

QeD test 

W~lll (16%x2) 

W~hadrons ? 

2xl09 w± /year 

ZOx z~Z+r (3%x2) 

Z~hadrons ? 

6xl08 ZO /year 

W±W± trilinear coupling 

non-standard intr. 

bkgd for Higgs search 

WW~(h)(lll) ? 108 WW/year 

W±ZO WZ~(1v(32%))(z+r(6%)) 5xl05WZ/year 

ZOZO ZZ~(Z+I-(6%))(Z+I-(6%)) 2xl05ZZ/year 

~700 Z+rl' +1' ­

W±1' mag. moment 0/ W W±1'~(111)(isolated 1') 104 W±1'(>200GeV)/year 

Z01' anomalous intr. Z01'~( z+r)(isolated 1') 105Z01'(> 200 Ge V)/ year 

prompt l' QeD test(high P~) 

G(X, Q2) determ. 

1'/7r°>1 for XT~.02-.03 

isolated l' 

1051'/year 

for P~>0.5 Te V 

lfl Higgs search 

.2TeV/c2-l TeV/c2 

H~W±W±~( ell) (jet) 

S/N ....0.l-0.3 

400/year 

jet + III at MH -400GeV 

H~ZOZO~ IIII 

S/~4 

10/year 

Ill' I' at MH .... 400Ge V 

lflW± 

lflZO 

Higgs search with 

less bkgd 

HW~(WW)W 

siz jets detect. ? 

103HV pairs/year 

at MH .... 400Ge V 
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class process physics o bservability event rate 

L-1033cm-2s-\ lOTs/year 

Q7.1 heavy quark search Q7.1-'(qW)(jets) 100/year 

-.(jets lv)(jets), high p, I at MQ-2.5TeV 

L%L% heavy lepton search L+L - -.( w+~)( w-~) 

P T imbalance 

100/year 

at MQ-600GeV 

New L%~ heavy lepton search L%~-'(W±~)~ 

P T imbalance 

x10 01 L%L% 

W' 

new Electro - Weak 

W' -.eve, p.v". 

or -. jet jet ? 

10" /year 

at 4TeV 

Z' bosom ZO' -.e+e-, 1'+1'­ 10" /year 

or -.jet jet ? at 4TeV 

gg SUSY search missing PT 2000 99 / year 

qg hard photon at M,-2TeV 

SUSY qq 

gt SUSY search missing PT 100gt/year 

gZO hard photon at M,=lTeV 

glF 

Techni­

color 

pg. 

p~ 

.. 

technicolor search p~%-. w+W-, WZ 

enhancement in 

jet pair mass ? 

240/year 

at M pr -1.8TeV 

composite q. e:z;cited quark search q.-'7q, inv. mass meas. 10" /year 

at M.,-lTeV 

Table 2. Hard Scattering at .{;- 40TeV 

Ref.2. 
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