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Abstract 

Physical quantities accompanying the dynamical chiral symmetry breaking in 
QeD like theories are examined. Expression for the decay constant (usually 
called 11() is given exactly to the ladder approximation by solving the Bethe­
Salpeter equation. Numerical calculation is done for E{self energy function of 
fermion), 11(, ({;"p )R' with various ,a-function of the gauge coupling constant. 

We find that 11(/ (1ii"p)R' 11(/AQcD are rather stable against the infrared 
cutoff parameter, while E-function itself depends strongly on the infrared 
cutoff. In this talk, I will describe very basic points of our framework and 
present some numerical results. 

The spontaneous breaking of chiral symmetry plays essential role in many aspects 
of elementary particle physics. We have learned much in the strong interaction regime, 
that is, asymptotically free non-Abelian gauge theory (QeD) breaks chiral symmetry 
spontaneously. The electroweak theory must spontaneously break some sort of chiral 
symmetry, and there are various approaches where this symmetry breaking is assumed 

to occur in a dynamical way like QeD via another strong interactions. Furthermore, 
unified gauge theories of elementary particles require more fundamental understanding 
of the chiral symmetry breaking. Here we describe our recent work of calculating the 
decay constant exactly to the ladder approximation without additional assumptions~) 

Basic Framework 

Our framework here is summarized as follows. We take a non-trivial solution of the 

Schwinger-Dyson equation so as to define a vacuum which spontaneously breaks the 
symmetry. To the ladder approximation in the Landau gauge, the Schwinger-Dyson 
equation is written as 2) 

~ A2 

E{z) = A{Z) J yE{y)dy + JA{y)E{y)dy (I) 
4z y + E2{y) 4{y + E2{y)) , 

o ~ 

where E{z)-function is the self-energy function of fermion, and z is the momentum 
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squared. This is defined by a ratio, B(z)/A(z), where the fermion two point function 

is defined by 
(2)

(T1/J{J) = 1I'PI'A(:) - B(z) . 

The running coupling constant .,\(z) is normalized as 

3 (3)"\(z) = 41r2C2(F)g2(z) , 

where C2 (F) is the second order Casimir of the fermion representation and g( z) is the 

standard gauge coupling constant. 

In the leading logarithmic approximation, "\(x) can be parametrized as 


"\0 2

.,\( z) = 1 + At' t = In z / p, . (4) 

Here we define a parameter B, 

(5) 


where {30 is the lowest order coefficient of the (3-function. For example, in QCD with 
three color triplet quarks, B is 9/16. With this parameter B we can deal with various 

QCD-like theories in a unified way, even including the so-called fixed coupling theories 

as a 1Inn 0 vaniS Ing . · 't f . h' B 3) 

Inclusion of 'running' of the coupling constant is some sort of 'improvement' of the 
original ladder approximation, although the validity is not clear. Furthermore there is 
some freedom of how we define the renormalization point of the coupling constant in the 
Schwinger-Dyson kernel. The above method2) is known to make high energy behavior 
of E(x--+oo) consistent with the leading renormalization group analysis, which is rea­

sonable if one notes that the leading logarithmic approximation sums up all ladder-type 

diagrams. Actually, the integral equation (1) is equivalent to the following differential 
equation with appropriate boundary conditions, 

[ 
E'(z) ]' 

("\(z)/4z)' 
_ zE(z) 

z + E2(z) . 
(6) 

The asymptotic behavior of the solution takes a form, 

E(z ___ 00) '" ; (In ;2 ) nr­1 
, (7) 

and it is consistent with the operator product expansion result :) 

1 

EOPE(z --+ 00) I'V "\(z) (ln~) 4H . (8)z p,2 

The Schwinger-Dyson equation is equivalent to the stationary condition of the ef­
fective potential for the bilocal operator T1fi(z)"p(O), and its solution E(z) (a function) 
defines a vacuum. In the auxiliary filed method, it is regarded as condensation of a 
bilocal auxiliary field representing composite states~-7) 
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On the vacuum, there are massless modes, the N ambu-Goldstone modes. These 
modes are excited by applying the bilinear operator 1fjt/J and are considered to be com­
posite states of the fermion and the anti-fermion. The wave-function of a composite 
state 

x(p + q/2, p - q/2) '" (OITt/J(z)1fj(y)IPs) , (9) 
satisfies the Bethe-Salpeter equation. When solving this equation, information on the 
vacuum is included via E(z) function in the equation. The Bethe-Salpeter equation is 

a linear integral equation with inhomogeneous terms supplied by E(z), and there must 

be a unique solution for function X, otherwise there are infinitely many massless modes 
in this channel on the vacuum. 

Physical Quantities 

The spontaneous chiral symmetry breaking is argued with the following physical 
parameters. 

1. p-function of the gauge coupling constant. This is determined by the gauge group 
and matter contents of the theory. p-function is the only parameter which discriminates 
the dynamics of theories and controls the running of the coupling constant. 

2. In the literature, E(p = 0) is often referred to as a spontaneously generated mass 
parameter. Non-vanishing E-function definitely indicates the spontaneous breaking, and 

so it can be used as an order parameter of the symmetry breakdown. However, there is 

no way of directly observing E(O). 

3. 11r, the decay constant. We generically call the N ambu-Goldstone bosons as 1r-on 
and their decay constants as 11r' 11r is directly related to physical quantities. When the 

symmetry is gauged, 11r determines the mass of gauge bosons, 

M = gl1r/2 . (10) 

The decay constant is defined as 

1fjipi5t/J(Z) = 11r{}p1r(z) + ... , (11) 

where 1r(z) is the renormalized 1r-on fields. By sandwiching the above equation with 

the vacuum and the 1r-on state, we have 

f d4p
11rqp = - i(21r)4 Tr [ipi5X(p + q/2,p - q/2)] . (12) 

Thus we can evaluate 11r exactly from the Bethe-Salpeter solution X. 

4. (1fjt/J). This vacuum expectation value is the most straightforward order parameter 
of the symmetry. When one consider a small explicit breaking of the initial chiral 
symmetry, the N ambu-Goldstone boson gets a mass, 

2 (-) 2 (13)m1r OC m(J-t)breaking t/Jt/J p / J1r , 

to the first order approximation. Thus, (1fjt/J) is a directly observable quantity. It also 
determines the size of E(z) at high momentum, which is evaluated with the renormal­
ization group and the operator product expansion technique. (ifit/J) is an amplitude of 
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a composite operator, and it needs an additional renormalization, and thus the above 
formula contains a renormalization point p.. Actually the p.-dependence cancels out each 
other between the explicit breaking mass parameter and the composite operator. When 
we evaluate (1/J1/J) independently, we have to specify a renormalization point p. for it. 

There are basically two equivalent ways of evaluating (1iJ1/J) from a solution E(x) of 

the Schwinger-Dyson equation. One is that fitting the high energy behavior of E(x -+ 

00) to the operator product expansion result, and extract the proportionality coefficient, 

which gives (1/J1/J). This method is not appropriate in the numerical calculation with 
effective 'explicit breaking' mass terms, where the 'explicit breaking' terms takes the 
leading asymptotic behavior overwhelming the (1iJ1/J) dependent term. 

The other way, which we take here, is to directly evaluate the matrix element (1/J1/J) , 
A'J 

(- ) __1_JdX xE(x) (14)1/J1/J - 16.,..2 x + E2(x) , 
o 

and take the value as (1iJ1/J) renormalized at p.=A. Then renormalize it by the leading 

renormalization group formula, 
1 

(-) (-) [A(A)] 4B (15)1/J1/J # = 1/J1/J A A(P.) . 

All these renormalization procedures for (i/i1/J) are totally consistent due to Eq.(7) 

Parameters in Theory 

We will investigate the above 'physical' quantities in an asymptotically free gauge 
theory, where the ,B-function determines the dynamics. At the infrared, the coupling 
constant diverges. Physically, due to the confinement, such divergence is regarded as 
irrelevant. To take into account of this, we need some 'infrared' cutoff when calculating 
quantum loops with the effective coupling constant. There is no definite way of deter­
mining this infrared cutoff. However we may claim that if an approximation method is 

to be reliable, the physical results should depend little on the way of the infrared cutoff. 
Hence, we rather use the infrared cutoff dependence of various parameters to examine 
which quantity is 'good', or is properly evaluated in the specific approximation. 

Characteristics of chiral symmetry breaking depend on the representation of fermion 
as well as the ,B-function. We expect that this dependence of fermion representation may 
explain hierarchies in various interactions and masses to some extent. We will adopt 
some different representations for the fermion~) 

The decay constant J1r is the central object of chiral symmetry breaking. So far, 
an approximated formula relying on the so-called dynamical perturbation theory9) has 
been used. Some variations have been proposed for SU(2) breaking case (see below).lO-l'J) 

However, to the ladder approximation (the leading approximation in the large-N like 
expansion), J1r can be exactly evaluated by solving the Bethe-Salpeter equation to ~his 
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order without any additional approximations.l) 

Symmetry structures 

In QCD, chiral symmetry breaking occurs like (take SU(2) for simplicity), 

SU(2)L x SU(2)R -+ SU(2)L+R , 

that is, conserving the 'vector' part. In this case, we have a common I 1r for all triplet 
N ambu-Goldstone particles. 

On the other hand, in models for dynamical electroweak symmetry breaking,lO,}3,U) 
the symmetry structure takes the following form, 

SU(2)L x U(l)y -+ U(l)QED . 

The corresponding N ambu-Goldstone particles form two irreducible representations of 
the remaining symmetry group, X±, XO . Therefore there are two independent decay 

constants I;', 12, in this pattern of symmetry breaking. This fact that there are two 
independent mass scales, If, I~, is the very reason why we have the famous parameter 
p, which is a ratio of these two. As is well established experimentally, p is very close to 
unity. 

In the standard Weinberg-Salam model of the electroweak theory (with an SU(2) 
doublet Higgs condensation), p is exactly unity to the tree approximation. Hence, if the 
doublet Higgs scheme is true, the quantum corrections to p mainly due to the heaviest 

quark loop is severely limited, and it gives an upper bound of the top quark mass; some 
200 Ge V typically. Note that this bound comes out because we assume the electroweak 
theory with p=l (at the tree), without allowing p to be an additional free parameter. 
Up to the analyses with low energy parameters averaged among various processes, the 
upper limit of the top quark mass seems to disappear, if we add another Higgs structure 
to cancel out the loop effects. However, more detailed analyses on process by process 
may not allow a large top quark mass even with a free Ptree. This type of free p analyses 
are to be done more elaborately. 

Recent models for the electroweak symmetry breaking with four fermion interactions, 
where the Higgs mode is supplied by a bound state of the top anti-top, give effectively 
almost the same low energy structure as that of the doublet Higgs standard model. In 
those models, however, the p= 1 constraint should be argued carefully, since it is not 
easy to correctly evaluate the quantum corrections to it. Thus, it is quite important to 

evaluate If, I~ exactly to the ladder approximation. 

Formula for 11r 

Here we describe only the case of QCD-like theories. The case with four-fermion 
interactions generating SU(2) breaking goes similarly, and will be published elsewhere. 

According to the previous discussion, 11r is evaluated, by definition, as Eq.(12). We 
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define invariant amplitudes for the Bethe-Salpeter wave-function as follows: 

X(p + q/2,p - q/2) =/SS(p, q) + II'/S(P(P, q)(p. q)pl' + Q(p, q)ql') 

+ O'I'II/ST (P, q)(ql'pll - pl'qll) . (16) 

We also define the same form of invariant functions for the amputated Bethe-Salpeter 

wave-function: 

x(p, q) = (11" - E(p2))X(p, q)(J(' - E(q2)) , (17) 

X(p + q/2,p - q/2) =/SS(p, q) + II'/SCP(P, q)(p. q)pl' + Q(p, q)ql') 

+ O'I'III{i(p, q)(ql'pll - pl'qll) . (18) 

All invariant functions can be taken as even-functions of (p . q). By substituting the 

above expression into the definition of 11r (12), we get 
00 

NJ zdz11r=2 161r2(4Q(z)-zP(z)) , (19) 

o 
w here factor N comes from SU(N) of the gauge interactions. 

The Bethe-Salpeter equation is a homogeneous equation for x, and we needs an 
additional normalization condition. Taking a limit of q -+ 0 in the Ward-Takahashi 

identity, 

we have the normalization condition, 

(21) 

For simplicity of equations, we rescale the Bethe-Salpeter equation with a factor of 11r/2, 
that is, we normalize S(z) to be E(z). Under this normalization condition, we finally 
get the ladder exact formula for I1r: 

00 

1 2 N Jzdz"i11r = 2 161r2(4Q(z) - zP(z)) , (22) 

o 
and the ladder Bethe-Salpeter equation as follows: 

2Q(Z)) ( rx dyy(2x+y) + fA2 dy2 rY dy _y (3x+y) + fA2 dy5x-9Y) (Q(Y)) _ -A Jo 2x2 x 2 Jo 12x2 x 12 

( p(z) - J; dy 2Y(;S-X) J; dy!l(~:;2Y) + JxA2 dyl P(y) 


(23) 
Definition (17) gives relations between invariant amplitudes, 

Q(y) = (y + ~2(y))2 [(E2(y) - y)Q(y) + E2(y)] , (24) 

P(y) = (y + ~2(y))2 [-2Q(Y) + (y + E2(y))P(y) + 2E(Y)E'(Y)]. (25) 

The Bethe-Salpeter equation derived above is a linear integral equation for Q(z) 
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and p(x), 

(1+ K['\, E)) (~) = 0['\, E] , (26) 

where the kernel and the inhomogeneous term are local functional.s of E(x). Thus, 

given a E(x) (which determines a vacuum), we have a unique solution for Q(x) and 
P(x). Then, with Eq.(22), we evaluate I..:. 

If we take a vanishing A in the above equation, leaving E unchanged, K[A, E] and 
erA, E] both vanish, and we have a trivial solution, 

Q(x) =0, p(x) =0 . (27) 

Then I..: is evaluated as, 
00 

f2 . N jxdxE(x)(E(X) - xE'(x)/2) 
(28)

11" 41r2 (x + E2(x»2 . 
o 

This formula is nothing but the Pagels-Stoker approximation. Thus we understand that 
the approximation might be applicable in the weak Aregime. As we see later, due to the 
asymptotic freedom of QeD-like theories, the Pagels-Stoker approximation gives rather 
good estimates. 

Evaluating I..: 

In numerical calculations, we discretize the Bethe-Salpeter equation, and it is now 
equivalent to a multi-dimensional linear equation. Inverting a coefficient matrix, we get 

a solution. Note that the convergence of I..: defined by Eq.(22) is not trivial. Analyzing 

the asymptotic behavior of solutions, we have 

A AC -2c 
Q(x ~ 00) ~ -, P(x ~ 00) ~ -2-' c: constant , (29)

x x 

and this assures the ultraviolet convergence of the integral(22) for 111" to this order of 

approximation. 

Actual calculations are in progress, and here we will present only some preliminary 
results. As is described before, we introduce an infrared cutoff, tIF, below which the 
coupling constant ceases to grow. With this running coupling constant A(X), we solve 
the Schwinger-Dyson equation, and get solution E(x) for each set of parameters Band 
tIF' We have to calculate the ultraviolet behavior of E(x ~ 00) precisely so that our 
renormalization procedure for ({;"p) might work. 

The number of discretization points for Bethe-Salpeter equation is taken as 150, 
that is, 150 for Q(x) and p(x) each. Thus we solve 300-dimensional linear equation. 
Here we should be careful to get high precision, since the kernel is a rapidly varying 

function, which results in a rather peaked integrand for 111"< 

In the following, we show some preliminary results of numerical calculations. We 
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set the ultraviolet cutoff to be 

In (A2 /A~CD) = 21, In (A2/,,£2(0)) = 30 for B = 0 , (30) 

where AQCD represents the scale parameter of the leading logarithmic running cou­
pling constant, that is, at AQCD the coupling constant diverges. The infrared cutoff is 
parametrized by tIF, below which the coupling constant stops diverging, and tends to 
be a constant. Avoiding possible discontinuity in E'(x), we set A'(x) continuously goes 
down towards 0, linearly in In x, up to a fixed point 1'0 defined by 

In (1'5/A~CD) = -2 . (31) 

Below this point 1'0, the coupling constant does not run at alL 

A schematic view of the Bethe-Salpeter kernel is in Fig. 1, where we show two cases 

of B = 9/16 (three triplets QCD) and B = 0 (non-running coupling constant). The 

corresponding E(x), solutions Q(z), P(x) and the integrands for 11r' and ({;1j;), are 
shown in Fig. 2a and 2b. As for the integrand for 11r, we plot both our ladder exact 
integrand and the Pagels-Stoker integrand (11r-PS), Both are strongly peaked at near 

the peak of IE'(x)1· 

Changing the infrared cutoff tIF, we get Fig. 3a, where we take cases of B = 9/16 
(three triplets QCD) and B = 23/120 (single sextet QCD). Fig. 3b is a zoom-up of 
B = 9/16 case. Lower tIF drives the infrared coupling constant larger. In any case, we 

set a renomalization condition, 11r (ladder exact) = 94MeV, which is shown as a thick 
line of every plots. The reason of taking a specific value of 94Me V is simply for us to 
easily catch relative scales of various parameters. One sees the following results of our 

ladder exact calculation. 

1. 	The Pagels-Stoker approximation is not so bad. We understand that it is due 
to the asymptotic freedom of the theory, that is, after the most essential part of 

dynamics is taken as a solution of the Schwinger-Dyson equation E(x), the rest is 
controlled by the rather 'weak' coupling A, as is seen in Eq.(26). 

2. 	 However, the ladder exact results give some corrections to the Pagels-Stoker for­
mula, and its amount can be very important when used in case of electroweak 
symmetry breaking where p parameter is strongly constrained. It might cause 
larger deviation of p from unity, which is under calculation. 

3. 	The renormalization of ({;1j;) works excellently. We get an almost stable valu~ of 
the renormalized ({;1j; )R' stable against change of the infrared cutoff parameter 
tIF, while the unrenormalized counter part ({;1j;)u depends much on tIF' 

4. On the other hand, E(O) depends quite a lot on tIF' In many articles, E(O) is used 
as a mass scale of the spontaneous symmetry breaking. One should note that it 
does depend on the infrared structure of the running coupling constant, and thus 
it is not a good measure of physics. 

5. As for 	AQCD, it depends on tIF' However, the dependence is' negligible for lower 
tIF region, while in such region, E(O) diverges. 
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6. 	 The case with a sextet, B = 23/120, gives more stable results against the infrared 
cutoff. This is because the running of the coupling constant is slower than the 
three triplet case (B = 9/16). Thus, the dynamical structure is controlled by the 
B parameter. 

7. 	 Case with a sextet shows another differences. For example, take a ratio of f 1(; or 

(~"p)R to AQCD, 


(11(; / AQCD )sextet I'V 2.5 , 

(32)

(11(; / AQCD )triplet 

((i{;"p)R / AQCD )sextet 2.8I'V 

(33)
(("p"p)R / AQCD )triplet 

This is a reasonable enhancement of the symmetry breaking mass scale in case of 

higher (larger C2(F)) representation fermion, although quantitative comparison 
with other calculations needs more analyses. Furthermore, the difference of the 
above two ratios, 2.5 vs 2.8 might have some physical significance. 
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