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1. INTRODUCTION 
This paper presents results of the comparison of three-jet and two-jet cross-sections in pp collisions 

measured in the VAl apparatus at the CERN Super Proton Synchrotron (SPS) pp Collider. The 
motivation for this study stems from the need for a better understanding of general multijet production 
(~ 3 jets) in high-energy pp collisions. In quantum chromodynamics (QCD), multijet events can occur 
as a result of strong radiative corrections to elastic parton-parton scattering processes. At sufficiently 
high subprocess c.m.s. energies, single QCD bremsstrahlung should become the dominant mechanism 
for the production of three-jet events. In this paper the bremsstrahlung hypothesis is tested by 
comparing the measured three-jet differential cross-section, at the highest available energies, with the 
predictions of the single bremsstrahlung formulae. The observed relative rate of three-jet and two-jet 
events is used to obtain information on the value of the strong interaction coupling constant as. 

Results on the two-jet cross-section measured in high-energy PI> collisions have been given 
previouslyl.2). It has been found that the measured subprocess cross-sections follow closely the 
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lead~ng-Order QCD predictions for (massless) final-state partons3) which, neglecting constant and slowly 
varymg factors, may be written: 

do/d cos fJ == (a;/s) (1- cos fJ) - 2 , (1) 

where sis the subprocess c.m.s. energy squared and cos fJ is the c.m.s. scattering angle. In particular, the 
characteristic (Rutherford) angular dependence [(l - cos fJ) - 2] has been checked directly by plotting the 
c.m.s. angular distribution of the jet pairs. 

For three final-state (massless) partons the final-state parton configuration, at fIXed subprocess 
c.m.s. energy, is specified by four independent variables. The leading-order QCD predictions for the 
subprocess cross-sections are given by: 

(2) 

where, neglecting constant and slowly varying factors, the spin- and colour-averaged matrix element 
squared /M12 may be written: 

(3) 

In Eqs. (2) and (3) the Xi (i = 3,4, 5) are the energies (or momenta) of the outgoing partons, ordered so 
that X3 > X4 > Xs and scaled to the total subprocess c.m.s. energy such that X3 + X4 + Xs = 2; fJi is the 
angle between the parton i and the beam direction (XT. = Xi sin fJi), and 1/; is the angle between the plane 

1 

defined by partons 4 and 5 and the plane" defined by the beam direction and parton 3 (see Fig. 1). The 
exact (leading-order) expressions for IMI2 for the various incoming and outgoing parton combinations 
(e.g. gg -+ ggg, qg -+ qgg, etc.) have been given in a simple form by Berends et a1.4

). An important 
feature of the three-parton cross-sections is that for three-parton configurations which approach 
two-parton configurations, i.e. X3, X4 -+ 1 or XTi -+ 0, the cross-sections become large as a result of 
final- (or initial-) state bremsstrahlung processes. Naturally the comparison of theory with experiment 
must be restricted to a region of phase space where all the jets are well separated from each other and 
from the beams, and in which the theoretical cross-sections are finite and relatively slowly varying. 

2. TWO-JET CROSS-SECTION 
The present analysis is based on data from the 1983 Collider run. The initial data sample comprised 

all jet triggers corresponding to an integrated luminosity of == 100 nb - 1. The 1983 jet trigger required 

~ 1 localized transverse energy deposition anywhere in the central calorimetry (pseudorapidity 1171 < 
3). The trigger ET threshold was set at 15, 20, or 25 GeV, depending on the running conditions. For this 
analysis the data were passed through a filter program which duplicated the trigger algorithm selecting 
all events with localized transverse energy ET > 30 GeV. Events involving two interactions in the same 
SPS bunch crossing and events with associated beam-halo hits are removed from the sample by 
imposing requirements on the total energy (Etol < 600 Ge V) and on the magnitude of the missing 
ET vector (E.!piss < 2.5 s1. dev.). The jet 4-momenta are computed by combining the calorimeter hits, 

using the UAI jet algorithm, and correcting for various apparatus effects and losses as discussed 
previouslyl). As a function of the corrected transverse momentum (PT ) of the highest transverse 
momentum jet, the efficiency of the filter selection, per event, is ;::: 900/0 for PT > 45 GeV. 
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All events with ~ 2 jets defined by the jet algorithm are considered as two-jet candidates. 
Additional jets apart from the two highest PT jets are simply ignored. For two-jet events the subprocess 

c.m.S. energy is taken to be the two-jet mass ('iff = m2J) computed using the full (corrected) 4-vectors 

(Le. including the jet masses) of the two highest-PT jets. The c.m.s. scattering angle 8 is defined relative 

to the incoming parton axis, taken to be the average beam direction in the two-jet rest frame. To ensure 

good trigger/filter efficiency for the two-jet sample, we require cos 8 < 0.8 and m2J > 150 GeV. 
The final two-jet sample comprises 1142 events, satisfying the two-jet cuts. The angular 

distribution for these events, plotted as a function of cos 8, is consistent with previous data
l 
,2) and is 

shown in Fig. 2a. In Fig. 2b the same angular distribution has been plotted as a function of the variable 
X [x = (1 +cos 8)/(I-cos 8)]6). This variable has the property that if Eq. (1) holds exactly, then the 

x-distribution will be essentially flat for X ~ 2. In Fig. 2 the theoretical curves, which have been 
3

normalized to the data, have been calculated using the exact (leading-order) QCD formulae ), averaging 

appropriately over the contributing subprocesses. The relative importance of the various incoming 
parton combinations has been inferred on the basis of quark (and gluon) structure functions measured 

in deep-inelastic scattering experiments 7) • Averaged over the mass range 150 to 250 Ge V, the proportion 

of two-jet events corresponding to the incoming parton combinations gg:qg:qq is estimated to be 

:::: 12010: 52010: 36010, respectively. Since the dominant subprocesses have very similar angular 

distributions, in practice this averaging has a rather small effect. 
In Fig. 2 the broken curves represent the theoretical prediction assuming exact scaling, and the 

solid curves indicate the effect of various scale-breaking corrections. The scale-breaking corrections 
include the Q2-dependence of as, through the factor a; in Eq. (1) and the Q2-dependence of the effective 

structure function calculated assuming Q2 = - t and taking the QCD scale parameter A = 0.2 Ge V. As 

a consequence of the large values of Q2 (Q2 ~ 4000 GeV2) the value of A is poorly constrained by the 

present data. Assuming Q2 = -t we obtain -3.7 < In(A/m) < +0.1 with 90010 confidence (where m 

is the mass of the proton). We conclude that sC3:le-breaking corrections are required to fit the data, and 

furthermore that the effective Q2-scale, which is not known theoretically a priori 8), is dependent on the 
scattering angle and consistent with Q2 = - L A similar observation has previously been made in an 

ISR experiment9) • 

3. THREE-JET CROSS-SECTION 
The three-jet sample is selected from all events with ~ 3 jets defined by the jet algorithm. For each 

event the full (corrected) jet 4-vectors are transformed into the rest frame of the three highest-py jets. 
Additional jets, apart from the three highest py jets, are ignored. The energies of the jets in the three-jet 

rest frame are used to compute the Xi and to define the jet ordering (jet-3, jet-4, etc.). The angles 83 and 
tit are computed using the jet directions and the direction of the incoming parton axis, taken to be the 
average beam direction, in the three-jet rest frame. 

To ensure that all three jets are well separated from each other and from the beams, the following 
cuts are applied to define the three-jet sample: 

i) X3 < 0.9. This cut guarantees that jet-4 and jet-5 are well separated in angle in the subprocess 

c.m.S. frame. It is made to ensure that jet-4 and jet-5 will be resolved as separate jets, with full 

efficiency, by the jet algorithm. Note that some misassignment of energy between jet-4 and jet-5 is 

tolerable, to the extent that X3 (and the subprocess c.m.s.energy) are left unaffected. 

ii) Icos 831 < 0.6, 300 < 1titI < 1500 These cuts guarantee that all three jets are well separated in • 

angle from the incoming parton axis in the subprocess c.m.s. frame. 
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For three-jet events the total subprocess c.m.s. energy is taken to be the three-jet mass (Yf = mn), 
computed using the full corrected 4-vectors of the three highest PT jets. To ensure good trigger/filter 
efficiency for the three-jet events and to make a comparison with the corresponding two-jet sample, we 

require mn > 150 GeV. 
The final three-jet sample comprises 173 three-jet events. For events in the sample, the mean 

separation (dRmin) between the two closest jets in pseudorapidity azimuth space [dR = .J(dr/ + dq,2) , 

where dTJ is the separation in pseudorapidity and dq, is the separation in azimuthal angle measured 

around the beams] is given by (dRmin) .= 1.7 rad. The mean transverse momentum of the highest PT jet 

in each event (typically jet-3) is ~ 55 GeV. The mean transverse momentum of the third highest PT jet 
(typically jet-5) is ~ 25 GeV. 

As a cross-check on the performance of the jet algorithm and on the efficacy of the cuts, all events 
in the three-jet sample were scanned by physicists using the interactive graphics facility. A typical 
three-jet event is shown in Fig. 3. On the basis of purely subjective criteria, 143 events (83070 of the 
three-jet sample) were classified as having a clear three-jet topology with all three-jets completely 

resolved from each other and from the beams. In fact the majority of the remaining events were also 

fully consistent with a three-jet topology but were described as partially resolved, implying that some 

algorithm dependence might reasonably be expected to enter with respect to the assignment of the 

detected energy to the parent jets. A total of nine events in the three-jet sample also satisfy the selection 
criteria for two-jet events, and appear in the two-jet sample at a lower mass (mn < mn). Note that 
four-jet events are not actively antiselected: several clear four-jet events were identified in the scan and 
have been retained in the three-jet sample. 

The three-jet Dalitz plot (X3 versus X4) for events in the three-jet sample is shown in Fig. 4. The 
density of events on the Dalitz plot is significantly non-uniform over the range explored. In particular 
the density of events increases visibly with increasing X4, for fixed X3 (X3 ~ 0.85), as the two-jet region 
(X3 -. 1, X4 -. 1) is approached. Less apparent, but also significant, is the increase in density of events 

with X3 for fixed X4 (X4 ~ 0.6-0.8). This effect signals the contribution of quasi-collinear final-state 
bremsstrahlung processes in the data, which are expected to dominate for X3 -. 1. The projections of the 
Dalitz plot onto the X3 and X4 axes are also shown. The solid curves, which have been normaHzed to the 
data, show the predicted distributions in X3 and X4 based on the single QCD brems1:trehlung form!..!1ae. 
The dominant subprocesses are predicted to have a very similar X3, X4 dependence oyer this ran3e, 3.:1d 
the curves shown have been suitably averaged over the contributing subproces~es. The broken ~:lr~/es 

show the corresponding phase-space distributions computed assuming a constant matrix element. The 
data are clearly consistent with the predictions of the single QCD bremsstrahlung formulae, and are 

inconsistent with the phase-space distributions. 
The three-jet angular distribution (tJ; versus cos 83 ) is shown in Fig. 5. The sign of cos fh has been 

defined with reference to the direction of the 'fast' and 'slow' incoming partons. Since, in general, the 
magnitudes of the longitudinal momenta of the incoming partons are not equal in the laboratory frame, 
the direction of the longitudinal motion of the three-jet system in the laboratory frame uniquely 
identifies the 'fast' and 'slow' incoming partons. The sign of cos fh has been defined to be positive 
when, in the c.m.s. frame, jet-3 points along the direction of the 'fast' incoming parton. Similarly, tJ; is 
defined such that tJ; 0° when jet-4 lies in the plane defined by jet-3 and the incoming parton axis, and 

points along the direction of the 'fast' incoming parton. Note that the distribution in the angle tJ; is 
symmetric (tJ; -J. - tJ; ) and has been folded and plotted from 1tJ;1 = 0° to 1tJ;1 = 1800 The advantage of• 

these definitions is that the distributions are then potentially sensitive to forward-backward 
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asymmetries, which are expected to be present for 2 -+ 3 processes involving qg (or qg) initial states as 
discussed by Comb ridge and Maxwell 10) • For the present choice of cuts the predicted asymmetry 

A(cos ( 3) [== - A(I1/I' - 90°)] is very small, == + 1070. In Figs. 4 and 5 the projections have been 
corrected for acceptance losses due to a vertical gap in the calorimetry. The theoretical curves, which 
have been normalized to the data, show the scaling predictions of the single QCD bremsstrahlung 
formulae. 

The distribution in cos 63 shows a pronounced forward-backward peaking which is similar to the 
behaviour of the two-jet angular distribution (Fig. 2a) and is in agreement with the predictions of the 
QCD bremsstrahlung formulae. No significant forward-backward asymmetry is observed [A(cos ( 3) = 
0.11 ± 0.07]. The data also show a distinct 1/1 dependence. Configurations for which jet-4 and jet-5 lie 
close to the plane defined by jet-3 and the beams (11/1' == 30°, 150°) are preferred relative to 
configurations for which ,1/1, == 90°. This effect signals the contribution of initial-state bremsstrahlung 

processes and is in agreement with the predictions of the QCD bremsstrahlung formulae. Again, no 
significant forward-backward asymmetry is observed [A(I1/I1 - 90°) = 0.11 ± 0.07]. Finally, we note 

that the agreement between the data and the theoretical curves (Fig. 5) is only qualitative. In particular 
the measured angular distribution have a tendency to be steeper than the scaling curves. It is perhaps 
not unreasonable to suppose that, as in the two-jet case, the inclusion of scale-breaking corrections in 
the theoretical curves would improve the agreement between theory and experiment. 

4. THE THREE-JET/TWO-JET RATIO AND THE DETERMINATION OF as 

In QCD the relative yield of three-jet and two-jet events is directly related to the value of as. 

Integrating the differential cross-sections [Eqs. (1) and (2)] over the dimensionless variables, taking into 
account the cuts (i) and (ii) above, gives 

(4) 

(5) 

where C2,J and C3J are dimensionless coefficients which depend on the subprocess, e.g. gg -+ gg, 
gg -+ ggg, etc., and on the choice of cuts. The numerical values of C2J and C3J appropriate to the above 
(loose) cuts and to an alternative set of (tight) cuts, corresponding to a reduced angular acceptance, are 
listed in Table 1 for the various possible incoming parton combinations. The values given in Table 1 
refer to the dominant elastic and single-gluon production subprocesses only (see footnote to Table 1) 
but have been calculated using the exact (leading-order) theoretical expressions for the subprocess 
cross-sections3

,4) • 

As may be seen from Table 1, the two-jet cross-sections follow the wel1~known rule: u(gg):u(qg): 
u(qij) = 1:(4/9):(4/9)2, depending on the incoming parton combination. Remarkably the corresponding 
three-jet cross-sections are seen to be in essentially the same proportions (to within ± 25070). This has the 
important consequence that the three-jet to two-jet ratio is predicted to be almost independent of the 
incoming parton combination, and ensures that to a first approximation the same effective structure 
function is relevant for three-jet and two-jet production 10, 

1
1). 

From Eqs. (4) and (5), averaging over the possible incoming parton combinations, the 
three-jet/two-jet ratio may be written: 

U3JIU2J = (C3J/C2J) as. (6) 



- 73 ­

The relative weights of the different incoming parton combinations are given in Section 2 above. As a 

function of mass the proportion of gg events falls slowly, whilst the proportion of qq events rises to 

compensate. The proportion of qg events is expected to be rather constant over this mass range. 

Although the exact values of the above relative weights depend somewhat on the parametrization (and 

on the value of A) used to extrapolate the structure function measurements, the value of (C3]/Cu) is 

clearly insensitive to such effects. In the subsequent comparison of theory with experiment, we use the 
values of the relative weights given above together with the values of C3J/Cu listed in Table 1 to 

compute (C3J/Cu). It has been verified that the error in (C3J/Cu) introduced by taking into account 
only the dominant subprocesses, and due to the uncertainties in the relative weights discussed above, is 
at the level of a few percent only12). 

The ratio of three-jet and two-jet cross-sections measured in this experiment is plotted in Fig. 6a as 

a function of the laboratory rapidity y of the three-jet (or two-jet) system. The same ratio is plotted in 
Fig. 6b as a function of the subprocess c.m.s. energy ({f m3J,mu). The cross-section ratio has been 

calculated from the raw event-rate ratio, incorporating a correction (== + 20070) to account for the 

difference in tP-acceptance for three-jet and two-jet events. 

The ratio of three-jet and two-jet cross-sections measured in this experiment is plotted in Fig. 6a as 

a function of the laboratory rapidity y of the three-jet (or two-jet) system. The same ratio is plotted in 
Fig. 6b as a function of the subprocess c.m.s. energy ({f m3],mu). The cross-section ratio has been 

calculated from the raw event-rate ratio, incorporating a correction (== + 20070) to account for the 

difference in tP-acceptance for three-jet and two-jet events. In Fig. 6 the errors plotted are entirely 

statistical. Systematic effects tend to cancel in the calculation of the ratio (e.g. luminosity, trigger/filter 

efficiencies, etc.). In particular, uncertainties in the calibration of the jet energy scale and in the effects 

of energy resolution smearing, lead to large uncertainties in the individual event rates, but have a much 
smaller effect on the event-rate ratio. The estimated systematic error in the three-jet/two-jet ratio, due 

to possible residual differences in the energy scale and in the resolution for three-jet and two-jet events, 

is ± 15070. Systematic errors due to ambiguities in the sample definitions (e.g. treatment of four-jet 

events) and algorithm-dependent effects (see Section 3) are believed to be somewhat !ess important, 

amounting to == ± 10070. 

On the basis of the data shown in Fig. 6, we conclude that the three-jetltwo-jet ratio S110\VS ;:IO 

significant dependence on rapidity or on subprocess c.m.s. energy over this range. 

Further comparison between theory and experiment is somewhat complicated by the :!":~o;~ti~al 

uncertainty related to the freedom of choice of Q2-scale appropriate to three-jet and t·,vo-jet prcd:!ct:on. 

If the relevant Q2-scale for two-jet production (Q1J) is taken to be i, as is consictent \vith t~e data on 

the two-jet angular distribution (see Section 2), then for the two-jet sample defined by the !coce cuts 
above we find (Q2J) =: 0.45 mu (Q = -{Q2). Assuming that. the Q2-~cales for the three-jet and t·,vo-jet 
samples are identical, Le. (Q3J) = 0.45 m3J, then Eq. (6) may be applied directly to predict the 

three-jet/two-jet ratio. In Fig. 6 the solid curve shows the expected value of the ratio calculated from 
Eq. (6) assuming as(Q2) = 12 ?r/[21 In (Q21A2)] , i.e. assuming six effective quark flavours and taking 

A = 0.2 GeV. If the Q2-scales for three-jet and two-jet production are not identical, then Eq. (6) will 

acquire a correction due to the non-cancellation of the common factor a; in Eqs. (4) and (5) (and due to 

the non-cancellation of the effective structure function) as a result of the scaling deviations. By way of 
example, in Fig. 6 the broken curve represents the expected modification of the prediction Eq. (6), 

assuming (Q3J) 0.30 m3J. On the basis of these comparisons, and assuming the validity of the 
expression for a~(Q2) given above, we conclude that the three-jet sample is probably characterized by a 
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lower Q2-scale than the corresponding two-jet sample at the same subprocess c.m.s. energy. This result 

should perhaps not be considered surprising: indeed one might argue a priori that, for comparable 

angular acceptance, the Q2-scale is naturally lower in the case where the available energy is shared 
among a larger number of final-state quanta. 

Finally, the data are used to obtain information on the value of as. Table 2 summarizes the 

measured event rates and the corresponding event rate ratios for the loose cuts and for the tight cuts 
defined in Table 1. The mean value of Q2J/m2J for the two-jet sample is also given on the assumption 
that QIJ = - t. In the final column we give the values of as computed from Eq. (6), Le. on the 

assumption that the Q2-scales for the three-jet and two-jet samples are identical. The values of as 

obtained by comparing the three-jet and two-jet samples within the loose and the tight cuts are 

consistent with each other, but are somewhat higher than might be expected by extrapolating 

measurements of as from lower energies13.14). Since, as we have seen, there may be (and probably are) 

substantial scale-breaking corrections (quite possibly:::: - 30070) to be applied to the values given here, 

this discrepancy is not pursued further at this time. 

In Table 2 a third comparison is made in which the three-jet sample satisfying the tight cuts is 
compared with a two-jet sample consisting of those two-jet events which satisfy the loose cuts but fail 
the tight cuts (i.e. two-jet events with cos 8 in the range 0.6 to 0.8). By deliberately comparing the 

'softer' (lower-Q2) subset of the two-jet sample with what is presumably the 'harder' subset of the 

three-jet sample, we hope to match the Q2-scales of the three-jet and two-jet samples to minimize the 

magnitude of the scale-breaking correction discussed above. On the basis of this comparison, we obtain 

a significantly lower value for as. From Table 2 we have 

as (K3J/K2J) = 0.16 ± 0.02 ± 0.03. (7) 

The corresponding value of Q2 (Q2 == Q~J == t) is ~ 4000 OeV2. In Eq. (7) the systematic error quoted 

includes only the experimental systematic uncertainty in the measured three-jetltwo-jet ratio discussed 

above. The unknown residual scale-breaking (and/or higher-order) correction to the theoretical 

three-jetltwo-jet ratio, appropriate to this comparison, is represented by the factor Ku/K2J which has 
been inserted in the left-hand side of Eq. (7) (and in Table 2). Clearly this factor cannot be eliminated 

until the next-to-Ieading-order corrections to the two-jet and three-jet cross-sections have been 

calculated theoretically. 
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Table 1 

Summary of three-jet and two-jet cross-section coefficients [Eqs. (3) and (4)], 
calculated from the formulae of Berends et al.4

) and Combridgeet al,3) 

Loose cuts Tight cuts 

3-jet: X3 < 0.9, Icos 831 < 0.6 

300 < 1"'1 < 1500 

2-jet: cos 8 < 0.8 

3-jet: X3 < 0.9, Icos 831 < 0.6 

55 0 <1"'1 < 1250 

2-jet: cos 8 < 0.6 

Parton 
combination a) 

ClJ ClJ C3J/ClJ ClJ ClJ C3J/C2J 

gg 
qg 

qqb) 

111.5 

38.1 
16.4 

110.5 
48.2 
21.4 

1.01 
0.79 
0.76 

45.3 
14.8 
6.7 

45.2 
19.1 
8.4 

1.00 

0.78 
0.80 

a) The cross-sections given refer to the elastic and single-gluon .production processes only, e.g. 
gg. ~ gg, gg ~ ggg, etc. 

b) Calculated for identical flavours, e.g. uil ~\1U, dd ~ dd, etc. 

Table 2 

Summary of three-jet and two-jet event rates and determination of as 

Samples 
compared 

Number of 
3-jets a) 

Number of 
2-jets 

(QlJ/mlJ) 

(J3J/(JlJ (ClJ/ClJ) as(KlJ/KlJ) 

(JlJ(loose) 
(JlJ (loose) 

209.2 (173) 1142 
0.45 

0.183 ± 0.015 0.81 0.226 ± 0.018 

(J3J(tight) 
(J2J(tight) 

66.6 (54) 370 
0.56 

0.180 ± 0.026 0.81 0.222 ± 0.032 

(J3J(tight) 
(J2J(loose)-(J2J(tight) 

66.6 (54) 772 
0.38 

0.086 ± 0.012 0.53 0.162 ± 0.024 

a) The number of three-jet events has been corrected by = + 20070 to account for the difference in 
<p-acceptance for three-jet and two-jet events. The raw number of three-jet events is given in 
parenthesis. 
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Fig. 1 The three-jet variables defined in the subprocess c.m.s. frame. 
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Fig. 2 a) The two-jet angular distribution plotted versus cos O. b) The two-jet angular distribution 
plotted versus X (1 + cos 0)1(1- cos 0). The broken curves show the leading-order QeD predictions 
suitably averaged over the contributing subprocesses, and the solid curves include scale-breaking 
corrections (see text). 
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Fig. 3 A typical three-jet event as displayed on the interactive graphics facility. 
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Fig. 4 The Dalitz plot (X3 versus X4) for the three-jet 
sample. The solid curves represent the predictions of the 
leading-order QCD bremsstrahlung formulae4
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Fig. 6 a) The three-jetltwo-jet ratio plotted versus the laboratory rapidity of the three-jet (two-jet) 
system. b) The three-jetltwo-jet ratio plotted versus subprocess c.m.s. energy (mass). The theoretical 
curves have been calculated assuming six effective quark flavours and taking A = 0.2 GeV. The solid 
curves correspond to the choice of identical Q2-scales for the three-jet and two-jet samples: (Qu) = 0.45 
mu, (Q3J) = 0.45 m3J. The broken curves correspond to the choice of a lower Q2-scale for the three-jet 
sample: (Q3J) = 0.30 m3J. 


