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ABSTRACT 

We show at the leading order of lIN expansion that composite gauge 

fields in a supersymmetric U(4n+2)/U(4n)xSU(2) non-linear sigma model 

become dynamical in some range of parameters. Since the hidden local 

symmetry in this sigma model is identifiable with a weak SU(2) of the 

standard electroweak model, we suggest that the observed weak bosons W-
+ 

and 

zO are indeed the dynamical gauge fields in the non-linear sigma model. 

Some phenomenological difficulies in identifing such composite fields with 
+ 0

Wi and Z are discussed. We also give a brief review on a supersymmetric 

preon model which generates our non-linear sigma model as a low-energy 

effective theory. 

I. Introduction 

In spite of the excellent success of the standard electroweak gauge 

theory [1], it is still unclear to us what the origin of the spontaneous 

breakdown of the SU(2)xU(1) symmetry is. In the standard scheme, an 

elementary Higgs scalar ~ is assumed to have a vacuum-expectation value 

<~> \0 which induces the breaking of the electroweak symmetry. The Fermi 
-1/2scale G is thus related basically to the undetermined, free parameter,
F 

<~>. 

Motivated by dynamical understanding of the SU(2)xU(1) breaking, a 

technicolor theory has been proposed, in which the electroweak symmetry is 

supposed to be broken by a condensate of techni-fermions [2]. The needed 

Higgs scalar ~ is, here, not a fundamental particle but a composite state 

of a pair of techni-fermions which are bound by the technicolor confining 

forces. This is a natural and very beautiful theory for generating the 

Fermi scale in a dynamical way. However, no compelling mechanism has been 

found for giving masses to quarks and leptons without phenomenological 
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difficulties (e.g. a flavour-changing neutral current problem [3]), unfor­

tunately.*) 

One alternative option for the dynamical generation of Fermi scale 
l / 2G-F 1S a . mo e 0 f quar s, eptons an weak b osons, 1n. h'. compos1te d 1 kId w 1Ch 

the weak interactions are no longer fundamental gauge interactions but 

rather residual ones originating in the compositeness [5]. The weak bosons 

are assumed to be spin-one bound states of more elementary particles (say 

preons) and hence their masses, i.e. Fermi scale, are in principle calculable 

by the underlying preon dynamics, (similarly to ~-meson masses in QCD). 

Some departures from the standard scenario are expected. However, the 

masses of the weak bosons W-+ and Z ° discovered at the CERN p-p - collider [6] 

are in good agreement with the prediction of the standard model. Therefore, 

there might exist a dynamical reason for why such composite objects look 

like elementary gauge fields and why the standard description of electro­

weak interactions is an excellent success. 

Kugo, Uehara and the present author [7] have recently found that the 

supersymmetric U(4n+2)/U(4n)xSU(2) non-linear sigma model possesses a hidden 
*"()

local symmetry which is identifiable with the standard electroweak SU(2). 

In this talk, I will show that the hidden local symmetry becomes indeed 

physical at quantum level and hence the dynamical gauge fields in our non­

linear sigma model may be identified with the observed weak bosons W± and ZOo 

In sec. TI I will review briefly a supersymmetric preon model which 

generates, as a low-energy effective field theory, the U(4n+2)/U(4n)xSU(2) 

non-linear sigma model that will concern us. A particular importance of 

supersyrnmetry in a composite model will be stressed also. In sec. ][ I will 

give a detailed discussion on the dynamical generation of physical poles 

of the hidden gauge fields in our effective Lagrangian. Problems for 

identifing such composite states with W± and zO are also noted. The last 

section will be devoted to conclusions. 

*) An alternative scenario, called "composite Higgs model", has been 

proposed to solve this neutral-current problem by raising the technicolor 

scale [4]. 

**) It has been recently pointed out that the chiral Lagrangian on SU(2)Lx 

SU(2)R/SU(2)v in QeD also possesses a hidden local SU(2) [8]. The frncsons 

may be considered as composite gauge fields of the hidden symmetry. 
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IT. A supersymmetric composite model 

An advantage of supersymmetry is that it always provides us with natural 

mechanisms to guarantee light composite fermions. If a global symmetry G in 

a preon theory remains unbroken, certain massless composite fermions are 

required to satisfy the 't Hooft consistency condition [9]. On the other 

hand if G is broken, for instance by a preon-preon condensate, there will 

necessarily appear massless fermion bound-states as superpartners of Nambu­

Goldstone bosons (quasi N-G fermions) [10] in the presence of supersymmetry. 

We discuss some interesting aspect of the latter case by using an example. 

Our example [11] is bas:d on an SU(2)H supersymmetric confining theory 

with (4n+2) doublet preons Xl (i =1 'V4n+2 and a =1, 2). The classical globala . 

symmetry is 
(1 ) 

where the last U(l)R refers to R symmetry. However, both two U(l)'s, U(l) 

and U(l)R' have strong-S!1(2)H anomalies arid hence only a linear combination 

of these two U(l)'s is anomaly free and conserved. The global symmetry is 

reduced to at quantum level 

(2 ) 

The G-invariance is most likely broken, since we find no solution of the 

't Hooft consistency condition about [G]3 anomalies, except for n =1 [12]. 

Let us suppose the simplest condensate 

E o/p < X~ ~r> - q; (3 ) 
which causes the breaking 

Corresponding to this breakdown there arise 8n+l massless N-G chiral­

multiplets which are bound states of preons, 

(4 ) 

tcci(3 Xcja Xro (5) 
cif.J. 1 2­£, 1- ;td Xra - V-

It is easy to see that fermion components of the first chiral-multiplets ~~ 
1 

are identifiable with n families of left-handed quarks and leptons, by 

assigning the suitable SU(3) xU(l) charges to preons [11]. The ~ corre­
c em 

sponds to the physical Higgs field in the supersyrnmetric standard model. 
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The quasi N-G fermions (i.e. the left-handed quarks and leptons) are 

supersymmetric partners of N-G bosons arising from the U(4n+2)+U(4n)xSU(2) 

breaking. Besides this the quasi N-G fermions in (5) have another important 

role, because the massless fermions in (5) are complex with respect to the 

unbroken group. The 8n+l massless fermions are precisely the states needed 

for the 't Hooft consistency condition. No other fermions are required to 

satisfy the chiral anomaly matching. Therefore, as long as the H =U(4n)x 

SU(2) in kept unbroken, the quasi N-G fermions in (5) remain massless even 

after the supersymmetry breaking is switched on [10,11,13]. 

Introducing n families of right-handed quarks and leptons f which are a 
elementary fields here, the mass term of quarks and leptons is engendered by 

Yukawa couplings of f to preons as 
a 

,P r (.i) C 0113 tv a. X i r -t ~. C. (6)
~ - \:1a..b C /\-0( (3 Tb 


a '" 
The masses of quarks and leptons, $i m ab f b , are proportional to the Yukawa 

coupling G~!) (similarly to those in the standard model) and hence there 

arise no flavour-changing neutral current problem. This is a nice point of 

this model, although the way to produce quark and lepton masses may not be 

necessarily the whole story of elementary particle physics. 

The low-energy effective Lagrangian of the N-G chiralmultiplets $.
a 

and <f>
1 

is obtained by the method of supersymmetric U(4n+2)/U(4n)xSU(2) non-linear 

realization [7,14] as ; 

L= f d4-e F ( dit [ goi~ (7 )1J~ !~J) ) 

ekct> 6'« 

g~ ( ¢~' ) (8) 

Here, i = 1,2, ex =1 rv 4n+2 and a = 3 rv 4n+2 with the normalization constant v and 

K determined by 

\ ¢>~ =¢ == a 
1 

) 

(10) 


The parameter v is a dimension-one constant which corresponds to the energy 

scale of the preon-preon condensate (3). F(x} is an arbitrary function and 
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it's arbitrariness is basically due to the presence of one extra quasi N-G 

bosons [11,14]. However, it should be noted that the choice F(x) = IX which 

we will assume later, has a special geometrical meaning. In this case, our 

non-compact manifold GL(4n+2)/GL(4n)xSL(2) has a asymptotic flat metric gij, 

i.e •.· gij -+1 for cp~ and cp -+00. 
1 

As pointed out in Ref.[6], the residual interactions (7) among quarks 

and leptons have a hidden local SU(2) invariance in addition to the global 

U(4n+2). This hidden SU(2) symmetry is made manifest by introducing 

redundant non-abelian gauge supermultiplets V~(x,e) (i,j =1~2) and rewriting
J 

the Lagrangian (7) as 

(11 )L = Id4e V4 G[ ~r(e V)t s~ J 
) 

(~2 ) 

G(x) satisfies the relation G(2rx) = F(x) • The gauge multiplets Vi are just
j 

redundant variables since there is no kinetic term of V~. By integrating 

over Vi
j 

we easily see that. the Lagrangian (11) is ~quiValent to the 

original one (7) [7]. 

If G(x) = c+x, the effective interactions of (11) have precisely the same 

form as those in the standard Weinberg-Salam model including even Higgs 

sectors. Therefore, our main question is whether the kinetic term of V~ is 
J 

dynamically generated. If the answer is "yes", there arises an interesting 
+ 0

possibility that the observed weak bosons W- and Z may not be elementary but 

dynamical gauge fields of our hidden symmetry. In the next section we will 

discuss a possible dynamics to produce physical poles of the hidden gauge 

fields V~ . 
J 

II. A dynamical generation of hidden gauge fields 

The lIN expansion is known powerful for analysing the dynamical aspects 

of non-linear sigma models. In fact it has been proved at the leading order 
Nof lIN expansion that redundant gauge fields of CP model become physical 

in two and three dimensional space-time [15]. We discuss, in this section, 

quantum effects in the non-linear sigma model on U(4n+2)/U(4n)xSU(2), 

using the l/4n expansion, and show a generation of physical poles of the 

hidden gauge fields V~ . 
J 

We addopt an ultraviolet cutoff at the U(4n+2) chiral symmetry breaking 

scale, AxB to remove all divergencies, since the non-linear Lagrangian (11) 

is unrenormalizable in the four dimentional space-time. It is, however, 
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quite natural to use the ultraviolet cutoff at the momentum ~A in evaluating
XB 

the quantum effects of our non-linear sigma model, because our effective 

theory is valid only at distances larger than 11A .
XB 

We choose the function F{x) in (7) to be the asymptotic flat form 

F{x) = rx, that is G{x) =x in equ. (II). To see massive poles of the gauge 

field V~, we introduce the following explicit breaking term of U{4n+2)
J 

invariance; 

(13) 

with fb and f~b being the elementary right-handed quarks and leptons. The 

equ.(13) gives the mass term of quarks and leptons in the broken phase of the 

hidden SU(2), <~i> = <~~> =1. We assume, for simplicity, the common mass m 

for quarks and leptons; 

Q{..2)~ (1) V-
ab = a..b V - dab m (j 4) 

Now our effective Lagrangian is 

L:= SJIte fs~ (eV) f ~: + fbtb-t ~/bd/b J 

Here, the scale factor v has been absorbed in ~~ by redefining ~~ =v·~~ (old)
1 1 1 

and as a consequence the Lagrangian (15) has no scale. Notice that we should 

not add any constraint with a Lagrange multiplier unlike in the case of non­

supersymmetry. In our case the constraints are obtained from the equation 
iof motion for D-components of the vector multiplets V.{x,6) as 
J

Cf; ::: Cf~ ~ 0 ) 

(1G) 
~~ - ~~ 

with ~ ~ being the scalar components of ~~ (i,j =1~2). However, it is clear 

that the magnitude of vacuum-expectation ;a1ue <~i> = <~;> = v/2 is not deter­

mined by the constraints (16). This situation remains unchanged even at the 

quantum level, because there is no tadpole diagram for the D-components of 

V.
i 

due to the SU(2) symmetry. Therefore, we consider that the scale v is 
J 

already fixed by the underlying preon dynamics and hence taken of the order 

of the composite scale. 

Let us first integrate over the 2x4n ~~ fields. Using 1/4n expansion of 
1 
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-1
the effective action Seff' we obtain the inversed propagator D~v(p) for the 

hidden SU(2) gauge bosons Wi (i =1~3) in the leading order approximation; 

-1 
~ 

~ 

lfou (p~) = 	%~J} - 4n (fc¢.v -'tfv) r{fV ;J 

I J-l rd1j.. p1.-..2­
nf~ ,: "2 	 -1. rJ~ j ~;p~ (32.- f~7 ~4" - ",,2) . (f1-) . 

- .t. 

"1 ff 2 A2 " hI" h' 11 d" . 1The u1trav10 et cuto at q ~ XB 1n t e ogar1t m1ca y 1vergent 1ntegra 

(17) yields 

(1 J» 

We find, in a 	 range of parameters (mass of quarks and leptons m, the number 
2of generation 	n and A B)' that the propagator D (p) has a pole on a

X ~v 

physical sheet of complex momentum plane [16]. Parameter regions where the 

physical pole 	appears are shown in Fig. (1) for m = 100 GeV with v =250 GeV. 

The gauge coupling constant Cl 2 , equivalently to the mass of the SU(2) 
i 2 1 2 2 . gauge bosons W~ (~=7; g v ), 1S also given by 

1 1 
0/2 - 4~ 	 411 r(1/J'; ) (1 q ) 

Introducing fundamental U(l) gauge interactions in the Lagrangian (15) we 

find the Weinberg mixing in the standard form, since our effective Higgs ~~ 
J 

transform as the SU(2) doublets. Thus, we have the Weinberg formula 

1 	 (JO) 

(.21 ) 

For n =5~10 and A = 1~10 TeV, we get
XB 

(22)~2()W = aol,t. """ aop 
It is quite difficult to obtain the observed value, sin2aw ~0.22, unless the 

numher of generations n is very large or A »1 TeV. However, we should not 
XB 
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take the result (21) at face value, since we have completely neglected the 

short-distance contributions (q2 > A ) in our calculation.
XB 

It should be finally noted that the mass mw=100~200 GeV derived from 

the result (21) is rather small relatively to the preon-condensate scale 

<XX> 'V 250 GeV (compared with QCD; that is m ~ 700 MeV with <qq> 'V 100 MeV).
p 

The main reson for this is the presence of the large number of quarks and 

leptons (4n = 20~40) • 

IV. Concluding remarks 

In our analysis, we have found that the composite gauge fields of hidden 

SU(2) symmetry in the supersymmetric U(4n+2)/U(4n)xSU(2) model become 

dynamical in some range of parameters. Because of the similarity of the 

effective Lagrangian (11) to those of the Weinberg Salam model, the composite 

gauge bosons may be identified with the weak bosons ~ and zO discovered at 

the CERN pp collider. In our scheme, the non-linear sigma model is a low­

energy approximation of the underlying preon theory and hence the appearance 

of W± and zO bosons is regarded as a dynamical consequence of the preon 

theory. 

However, it turns out that it is quite difficult to obtain sin2 ew ~0.22 
within the framework of the non-linear sigma model. Perhaps, we should not 

be, however, too critical here, since we have neglected, for example, the 

short-distance effects which may be dominated by preon-loop diagrams. 

In fact the short-range forces in our preon theory will be more important 

than in the case of QCD, since the SU(2)H-confining hypercolor interactions 

are not asymptotic free for n :: 3. 

Furthermore, 	if the chiral symmetry breaking scale A is grater than the 
XB 

confining scale A f as suggested in QCD by Manohar and Georgi [17], we have con 
the effective field theory in the intermediate region between AXB and A ' conf 
in which constituent preons are also interacting with the Nambu-Goldstone 

imodes. Contributions to the kinetic term of V. from the preon-loop diagrams
J 

may have the same sign as those from the ~-loop diagrams (although the 

calculation is practically beyond the scope of this talk because of the non­

perterbative effects of the hypercolor interactions). If it is the case, 

the effective gauge coupling u of the composite weak bosons becomes smaller.2 
In any case, SOme unconventional dynamics is required to explain the 

small gauge coupling constant u rvl/25 if the weak 	bosons W± and zO are2 
indeed the composite gauge fields as we suggested. This may be the most 
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crucial difficulty for identifing our dynamical gauge fields with ~ andZO. 

However, we should keep in our mind an intriguing possibility that the short­

distant part of the hypercolor forces may dominantly contribute to forming 

composite states because of the asymptotic non-freedom of the confining 

forces. The preons inside the quarks and leptons are, therefore, very 

tightly bound, that will be, perhaps, a physical reson for the small coupling 

constant of composite weak bosons. Although the dynamical situation of our 

preon theory is not obvious to us, we hope that the observation of the hidden 

gauge fields generated dynamically will give a new clue on the Fermi scale 

problem. 
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Figure captions 

Fig.(l): Regions where V-poles appear on a physical sheet of the complex 

momentum plane. 
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