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FOREWORD 

The Symposium on Recent Developments in Computing, Proces-
sor, and Software Research for High Energy Physics was held in 
early May 1984 in Guanajuato, Mexico. The Symposium brought 
together many of the experts in the field who have been addres-
sing the problems of handling huge data samples and gargantuan 
computational tasks. 

In these proceedings, we have tried to capture not only the 
details of the technical papers, but also the intensity of the 
give-and-take in the questions and answers. The Symposium was 
extremely exciting as the many different groups hotly debated the 
relative merits of various proposed solutions. The active par-
ticipation of computer industry representatives gave the 
Symposium an added flair. We hope we have been successful in 
capturing that intensity. 

In addition to thanking the sponsors of the Symposium, a 
special note of appreciation must go to Governor Velazco Ibarra, 
the Govenor of the State of Guanajuato. In addition to being the 
gracious host of our international gathering, he is to be thanked 
once again for a spectacular conference banquet and the 
callejoneada which followed. 

The Symposium was organized by C. Avilez, Universidad 
Nacional Autonoma de Mexico; A. Garcia, Universidad de Guana-
juato; M. Kreisler, University of Massachusetts at Amherst; and 
T. Nash, Fermi lab. The Symposium Secretariat was R. Donaldson, 
Fermilab, and I. Menocal, Universidad Nacional Autonoma 
de Mexico. 

We would also like to thank several people who made the 
editing of these proceedings possible. Angela Gonzales of 
Fermilab has done a stellar job on the artwork; Susan Winchester 
of Fermilab and Nellie Bristol and Judy Ksieniewicz of the 
University of Massachusetts have suffered under many revisions. 
The ?hotograph of the Teatro Juarez on page 456 was taken by 
Joaquin Escalona, Universidad Nacional Autonoma de Mexico. 
Thanks to all. 

R. Donaldson 
M. Kreisler 
August 1984 
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Photograph by Anthony R. Donaldson.] 
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DISCURSO PRONUNUADO 

Nestor Raul Luna Hernandez 
Rector, University of Guanajuato 

Guanajuato, Gto., Mexico 

[Editor's' Note: We pPesent heT'e Rector' Luna's talk in Spanish as it uxis 
given. The Symposium was officiaUy opened by DT'. Jopge F'loPes, the Unde'Y'-
secPetaT'y of Education of Mexico.] 

Si el saber te6rico permite llegar al conocimiento en el 
campo de la ciencia pura, esta a su vez deriva a lo que 
denominado actualmente tecnologia, es el saber practico 
proyectado hacia la construcci6n y el progreso. 

Mucho se objecta la practica de la episteme por la 
inmitaci6n que impone de la realidad hasta llegar a su exclusion 
y son por ello afectados los cientificos que dedicados a 
la teoria, de ella parten para forjar otra realidad. 

La realidad que de la ciencia deriva no puede ser si no 
producto del saber puro, mas no por esto debe permanecer en el 
estrato de lo ideal sino plasmarse en su consecuente concreto y 
aprovechable por la experiencia sensible. 

Este simposio sobre desarrollos recientes 
computaci6n e investigaci6n en el campo de la 
energias, concede la oportunidad de confirmarlo. 
teneciente al mas puro y elevado saber, avanza 
para el desarrollo de la tecnologia indispensable 
de la realidad futura. 

de procesadores, 
fisica de altas 

Su ambito, per-
en importancia 

a la evoluci6n 

Su concresi6n se aprecia en tecnicas desarrolladas y 
aplicadas a la soluci6n de problemas en diversas areas de la 
ciencia y manejo de datos esenciales para la informatica. 

El porvenir de la humanidad precisa cada vez mas de la 
ciencia y sus proyecciones, el deber del cientifico es conocerla 
y transformarla para beneficio de un universo dia a dia 
mas complicado, alejado de la naturaleza y dependiente de 
la tecnologia. 

En estas reuniones cientificas, que permiten el intercambio 
de experiencias en problemas de investigadores se afirmaran las 
relaciones entre expertos del campo de la ciencia pura y 
se estableceran contactos entre especialistas que expresaran el 
saber mas alto aplicado en la soluci6n de una amplia gama de 
complejas situaciones, cuya clarificaci6n deje ver el avance en 
el uso creciente de estos recursos. 

El pais requiere de tecnologia propia y la esta produciendo, 
solo necesita que sea dada a conocer y evaluada debidamente. 
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Identificar necesidades tecnologicas y dar difusion a los avances 
de su conocimiento deben ser preocupaciones fundamentales de 
quienes se ocupan de servir a la sociedad a traves del mas eleva-
do conocimiento. Bien venidos seffores congresistas. Muchas 
gracias. 
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INTRODUCTORY REMARKS 

Michael N. Kreisler 
University of Massachusetts, Amherst, Massachusetts 

Governor Velazco Ibarra, Subsecretary Flores, Dr. Jaime 
Tacher, the representative of the Director General of CoNaCyt, 
Rector Luna, other honored guests, and my fellow scientists: On 
behalf of the Organizing Committee, I take great pleasure in 
welcoming you to Guanajuato and to the Symposium on Recent 
Developments in Computing, Processor, and Software Research for 
High Energy Physics. 

Let me take this opportunity at the beginning of the Sympos-
ium both to thank and to congratulate our Guanajuato hosts for 
their cooperation and extremely hard work in preparing for and 
holding this international gathering. Without the diligent 
efforts of the Universidad de Guanajuato, the Symposium would not 
have been possible. Thank you, Rector Luna. 

In addition to the enthusiastic support of our colleagues in 
Guanajuato and the Universidad de Guanajuato, we have been for-
tunate enough to recieve the support of the Governor of Guana-
juato, the Subsecretary of Education, and the Director General of 
CoNaCyt. Our hosts have done and are doing an excellent job--one 
that speaks extremely well as an indication to the international 
scientific community of the wisdom of holding future conferences 
in Mexico. 

They've done their job very well--we now have to get on with 
ours. 

As most of us realize, the problem that has caused us to 
gather in this charming city is extremely pressing. Despite the 
rapid growth in computers and related technology, we are pain-
fully aware that there are many crucial questions which cannot be 
addressed with either current technology or with that technology 
one could reasonable expect to exist in the commercial sector in 
a few years. Those problems involve either the analysis of huge 
complex data banks or laborious multidimensional calculations as 
in gauge theories or weather simulation. Most laboratories and 
universities making projections of computer needs for the near 
term future recognize that demand for access to even the most 
advanced current computers will outrun the financial ability of 
those institutions in a few years--at some, the current facil-
ities are already inadequate. 

One could question whether such a demand for computation is 
necessary--are the problems sufficiently important? The demand 
is not limited to the field of pure research in high-energy 
physics but rather represents a broad, growing awareness by all 
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sectors of the economy--led, as usual, by extremely intelligent 
scientists--that one con obtain crucial answers to vitally 
important questions if one only had sufficient computation power. 

Some of us like to view the importance of the questions in 
another related manner. In searching for the answers to the 
riddles of the structures and secrets of matter, we have been use 
to searching through a small handful of hay or straw looking for 
a needle of truth. Such searches have been extremely difficult, 
time consuming, and, of course, occasionally very rewarding. 
Those of us here realize that not only could a breakthrough in 
technology allow us to sift through those handfuls of hay much, 
much quicker, but we even might be able to begin attacking the 
large haystack against which we have been leaning. There are 
even visionaries among us who have taken the time to walk up a 
nearby hill and notice that the countryside is dotted with 
thousands of haystacks. 

Our collective goal is to be able to make those break-
throughs yielding either new technological approaches and/or more 
efficient uses of existing resources. We would then be able to 
explore the new scientific problems lying so temptingly just 
outside our grasp. Obviously we are driven by the problems in 
high-energy physics. Our solutions will have a very wide impact 
throughout the technological community. 

During the Symposium, we'll hear from spokesmen from many of 
the approaches which are being developed and tried. We look 
forward to learning lots of new things and to participating in 
lively debates about the virtues of competing ideas. Coupling 
such important, exciting technical problems with the charm of 
Mexico in general and Guanajuato in particular seems to promise a 
busy, enjoyable time for us all. 

Again--welcome to Guanajuato. 





[Collage by Max Ernst, 1891-1976, from "Une Semaine de Bonte," first published 
in 1934,) 
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A REVIEW OF TRIGGER AND 
ON-LINE PROCESSORS AT SLAC* 

A. J. LANKFORD 

Stanford Linear Accelerator Center 
Stanford Univeraity, Stanford, California, 94905 

1. INTRODUCTION 

The role of trigger and on-line processors in reducing data rates to manageable 
proportions in e+e- physics experiments is defined not by high physics or background 
rates, but by the large event sizes of the general-purpose detectors employed. The rate 
of e+e- annihilation is low, and backgrounds are not high; yet the number of physics 
processes which can be studied is vast and varied. 

This paper begins in Section 2 by briefly describing the role of trigger processors 
in the e+e- context. The usual flow of the trigger decision process is illustrated with 
selected examples of SLAC trigger processing. The examples discussed are the energy 
trigger of the ASP detector and the charged particle triggers of the Mark III and Mark 
II detectors. Section 3 sketches the features of triggering at the SLC and the trigger 
processing plans of the two SLC detectors: The Mark II and the SLD. In Section 4, the 
most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, 
the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses 
of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in 
which these processors are interfaced and the function they serve on line are described. 
Finally, Section 5 outlines the accelerator control system for the SLC. This paper is 
a survey in nature, and hence, relies heavily upon references to previous publications 
for detailed description of work mentioned here. In addition, apologies are deserved 
by all the experimenters whose work is overlooked or improperly acknowledged by this 
overview. 

• Work supported by the Department of Energy, contract DE-AC03-76SF00515. 



-6-

2. TRIGGER PROCESSING FOR e+ e- ANNIHILATIONS 

e+ e- collisions are provided by bunched beams of electrons and positrons which 
cross with frequency set by the physical scale of the accelerator. Trigger decisions can 
be made without deadtime during the period between crossings. This period is shown 
for the accelerators SPEAR, PEP, and SLC in Table I. The time between crossings 
at SPEAR and at PEP is sufficiently short that trigger decisions are normally made 
by multi-level hardware processors. The first-level trigger, made between crossings, 
reduces the beam-crossing frequency ( 1.3 MHz at SPEAR and 420 KHz at PEP) to a 
rate set by its allowed deadtime fraction. First-level trigger rates are typically about 
a kilo-Hertz. The second-level trigger rate is set by the readout time until an event is 
buffered. Rates are typically 2 - 5 Hz and deadtimes less than 10% . Some experiments 
also employ third-level triggers for long decision times on small numbers of events. The 
MAC experiment at PEP, for instance, reduces its trigger rate by about a factor of two 
with a software trigger decision requiring 10 to 20 msec on its VAX. 

Table I. Beam crossing and interaction rates at SLAC e+ e- accelerators 

Accelerator Period between Rate (up1) Rate (u1ot) 
beam crossings 

SPEAR 780 nsec ,... 2 x 10-2 Hz ;:;; 1 Hz 

PEP 2.3 µsec ,... 2 x 10-3 Hz ,... 0.01 Hz 

SW 5.5 msec ,... 7 x 10-s Hz ;:;; 0.25 Hz 

The rate of e+ e- annihilations is parameterized as: 

rate = Riot x O'J14 x f, , 
87nb 

where O'pt = (2 Ebeam>2 (1) 

is the point-like cross-section for e+ e- -+ µ+ µ-. Rtot is the ratio of the total anni-
hilation cross-section to O'pt· Rtot is in the range 4 to 8 in continuum regions, and is 
itself an indication of the onset of new physics processes. On resonances, Rtot can be 
much greater. lltot is ,... 2500 and ,... 25 on the t/1(3100) and T(9460) respectively, and is 
expected to be about 4000 on the Z 0 resonance. f, is the luminosity, and is characteris-
tically within about a factor of two of 1031 cm-2 sec-1• Typical physics rates are shown 
in Table I for SPEAR, PEP, and SW. The total physics rates are quite manageable; 
consequently, most detectors for e+e- physics are general purpose in nature and try to 
record all physics events. The detectors generally consist of cylindrical drift chambers 
in solenoidal magnet fields surrounded by calorimetry. Typical event sizes range from 
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a couple of kBytes to about a hundred kBytes. Similar detector geometries result in 
similar trigger problems and generic solutions. 

The general purpose nature of e+ e- experiments require that triggers include a 
broad range of physics topologies, from multiparticle hadronic events to two-track lep-
tonic events, single electron events, two-photon or one-photon final states, and decays 
of possible long-lived particles. These events generally fall into two broad categories: 
events with two or more charged tracks and events with one or more energetic showers. 
Trigger designs generally consist of parallel logic to identify these event types. Charged 
particle triggers define a track as a set of tracking chamber hits in a trigger road. The 
numbers of planes of tracking available to and required by the trigger processor vary 
among experiments, as do the precision with which roads are defined and the momen-
tum range covered. Neutral energy triggers discriminate on local or global sums of 
energy from calorimeter channels. The thresholds accessible and chosen depend on 
the type of calorimeter and the way in which the sums are formed. Information from 
charged particle and neutral energy triggers may be combined in other triggers. Ad-
ditional parallelism at all decision levels provides redundancy helpful for determining 
trigger efficiency. 

The backgrounds to the physics triggers arise from cosmic rays, beam-gas collisions, 
beam-pipe collisions of off-energy electrons, synchrotron radiation, and electronic pick-
up. The sources of background can generally be reduced to quite manageable magni-
tudes by careful masking and shielding. Residual background is reduced by limiting 
acceptance in the radial and longitudinal position of and in the time of the interaction. 
Ability to reject random hits can also be important. Most trigger processors require 
that the projection of candidate tracks in the plane perpendicular to the beam axis ( r-4' 
plane) pass through a fiducial area surrounding the beam-crossing point (r = O, z = 0). 
In addition, the track must be in time with the beam-crossing. Few experiments are 
able to project track candidates longitudinally along the beam-direction (z); so ex-
periments commonly have inner trigger chambers or vertex detectors which restrict 
the acceptance in this dimension. The TPC detector(!) at PEP, however, uses its drift 
time measurement along the beam direction to project tracks toward the beam-crossing 
point in r - z planes instead of the r - 4' plane. 

The following sections describe examples of SLAC trigger processors which illustrate 
solutions to the problems of trigger efficiency and background rejection. The examples 
discussed are the energy trigger of the ASP detector and the charged particle triggers 
of the Mark III and Mark II detectors. 
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2.1 THE ASP ENERGY TRlGGER 

The trigger logic of the ASP Detector(2) provides an example of an energy trigger 
accomplished between PEP beam crossings so as to have no deadtime. This new 
detector, designed for the detection of anomalous single photons, consists of four walls 
of lead-glass shower counters, called quadrants, which surround the interaction point. 
Each quadrant consists. of five layers of glass separated by proportional chambers. The 
ASP trigger, with several thresholds and programmable logic, provides simple and 
general logic for triggering on both localized and overall energy deposit. 

The flow of the trigger decision is shown schematically in Fig. 1. The 632 photo-
multiplier signals from the lead glass are each split to a digitizing system and to the 
trigger. The trigger signals are summed to eighty sums of eight and then summed 
again to twenty sums, each corresponding to a layer. These twenty layer sums (five 
per quadrant) each go to integration circuits and then are discriminated to define hit 
layers. 

640 
PMT 

Signals 

20X 32pr 
to SHAMI Vs 

4X 
Loyer Sums 5-Fold Quadrant Sums 

1--...-~~-.jSums.__~-+-~_..... 

Toto I Energy Sum 
Splitter 

171 _ N Channels of l.&J ·Integration (Gated) 

n>l N Channels of 
~ = 01scr1m1notion 

Wire Chambers 

~ • Memory Logic Un it 

Fig. 1. ASP Energy Trigger block diagram. 

ET I 
ET 2 
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The hit layers address a memory look-up which in turn defines allowed combinations 
of hits; for example, the first two layers of a quadrant but not the last two. The layer 
sums are also summed in turn into four quadrant sums, which are integrated and each 
discriminated against three levels defining three energy thresholds for deposit within 
a quadrant. The resulting twelve signals address a memory look-up that counts and 
defines combinations of quadrant hits. The quadrant sums are also summed to form 
a total energy sum, which is also integrated and discriminated against two thresholds. 
The resulting two total energy sum signals, four-bit combinations of quadrant sums, 
and four-bit combinations of layer sums, along with signals from PWC's and low-angle 
shower counters, address a final memory look-up which forms a four-bit output used 
by the global control module, which issues the trigger interrupt to the data acquisition 
computer and controls the overall system timing. 

INPUT 
20 

TEST 

Fig. 2. Memory Logic Unit (MLU) block diagram. 

The memory look-up is performed by Memory Logic Units (MLU's) with twenty 
inputs which address RAM's to provide five outputs, as shown in Fig. 2. To reduce the 
size of the RAM needed, the latched information from the twenty inputs is passed to 
an "association" board with forty outputs. This association board is simply a plug-in 
piggyback card which allows the twenty inputs to be patched in arbitrary fashion to 
four sets of ten outputs which address four IK x 4-bit RAM's on the main board. 
One output from each of these RAM's is ORed with a bit from each of the others to 
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produce an OR output from the MLU. The remaining three bits from all four RAM's 
are combined to address each of four 4K x I-bit RAM's in parallel. These RAM's 
provide four additional MLU outputs. The RAM's are all read/write, and test inputs 
to the MLU exist for diagnostics. 

2.2 THE MARK III CHARGED PARTICLE TRIGGER 

The Mark III charged particle trigger is another example of a fast trigger decision 
that could be made between beam crossings. In fact, since the Mark III drift chamber 
has maximum drift times longer than the available decision time at SPEAR, the Mark 
III trigger has multilevels. The first-level decision is made between crossings, the two 
second-level decisions are made before the second subsequent crossing, and the third-
level is made in the following 100 µsec. Only levels 1 and 2b are described here. All 
levels of the charged particle trigger are described in Ref. 3. 

For Each Pair 
of Sense Wires: Gate Timing 

Controlled by VAX 

Fromla aoD Sense Wire To 

L"mpod El~moo•! T'''"" Delay Line Control 
with 10 Taps__........ 
From Ib 
Sense Wire 

Fig. 3. Mark III Inner Drift Chamber, 
showing delay line logic for Level 1 trigger. 

The Level 1 trigger utilizes the inner drift chamber of the Mark III. This one-
meter-long chamber, located 10 cm from the interaction point, has two overlapping 
layers with 1-cm drift, as shown in Fig. 3. The Level 1 decision is based on the 
fact that the sum of the drift times in the two overlapping layers is a constant for 
tracks originating at the interaction point. It uses a chronotron composed of a lumped 
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element delay line with 10 taps to define a hit. Level 1 reduces the rate to about 
300 Hz on the ,P resonance, by restricting the longitudinal acceptance to the length of 
the chamber and by restricting the radial acceptance and time acceptance using the 
chronotron. No scintillation counters are used; however, time-of-flight scintillators can 
also be incorporated if desired. A similar technique is used by the TPC experiment(•) 
as a first-level trigger. 

The Level 2b trigger is based upon fast circle finding using programmed logic arrays. 
Three drift chamber layers, with radii at 10, 40, and 65 cm, are used as shown in Fig. 
4. Since each of the outer layers consists of three sense wires among which only two hits 
are required, the track-finding efficiency remains at about 95% . The logic searches in 
parallel for tracks through any of the eighty cells in the outer layer. Through any one 
outer cell and the interaction point, there exist less than sixteen possible trajectories 
with momentum greater than 50 MeV. A PAL is associated with each outer cell. Its 
inputs are that cell, the cells which lie on possible trajectories through the other two 
layers, and control lines to select a momentum cutoff. The PAL is programmed as an 
OR of up to 16 AND's such that satisfying any possible trajectory identifies a track. 
Demanding two or more tracks reduces the trigger rate on the ,P resonance to 3.5 
Hz, composed roughly equally of physics, cosmics, and beam-gas. Level 2b decision 
time requires 25 nsec after the maximum drift time. Searching 80 sets of conditions in 
parallel provides this speed. Having only 80 sets of conditions by using only three layers 
to define a trajectory allows the parallel search for tracks. Although this approach has 
worked effectively, it is potentially susceptible to inefficiency or noise should a chamber 
layer not operate correctly. 
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Fig. 4. Mark m Drift Chamber Layers I, III, and V, 
showing circle combinations and PAL logic for Level 
2b trigger. 
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2.3 THE MARK II CHARGED PARTICLE TRIGGER 

The Mark II charged particle secondary trigger, described in detail in Ref. 5, is an 
example of a second-level trigger processor which utilizes more complete drift chamber 
information in a flexible manner. The HRS Curvature Processor<6l is essentially iden-
tical, with some minor extensions. The DELCO secondary trigger<7> is also somewhat 
similar except that only one road pattern is defined. The Mark II processor reads out 
the cells serially in each of twelve drift chamber layers. This serial readout, which is via 
shift registers, translates the polar angle of a hit wire into a time t. By shifting twelve 
layers in parallel at a constant angular velocity, a straight track at an angle 1h gives a 
coincidence among layers at readout time t;. Curved tracks are found by appropriately 
varying the relative delay of the readout of the various layers. This process effectively 
rotates a set of curved masks through azimuth (see Fig. 5), searching for tracks which 
match a mask. 

Shift Register Direction 

Effective Mask Rotation 

Fig. 5. Mark II Charged Track Finding Principle. 
The trigger processor is shown schematically in Fig. 6. Hits in the drift chamber 

cells are recorded by time-to-amplitude or time-to-digital converters and registered 
in shift registers in those modules. The shift registers of twelve layers of cells are 
simultaneously shifted under the control of the Master Clock through a Test and Pickoff 
module, which places the shift register output onto the auxiliary bus of three CAMAC 
crates. In these crates, 24 Curvature Modules, operating in parallel, search the data 
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on the bus for tracks in 24 different curvature ranges. A complete set of curvature 
"masks" is shown in Fig. 7. Identified tracks of three types are signalled to three Track 
Counter modules which count tracks and record their angles and curvatures. At the 
end of the process, the track counts are sent to the master interrupt controller where 
the trigger decision is made. 
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Fig. 6. Mark II Charged Particle Trigger Processor block diagram. 

The Test and Pickoff module shifts circularly through 490° in order to find tra.cks 
of all curvatures and of both signs at the </> = 0 boundary. It also allows the injection 
of patterns to test the integrity of the shift registers and of the rest of the logic. The 
Curvature Modules contain programmable logic to define a momentum bite (curvature) 
and a road width. Hits in the twelve layers address a 4K x 2-bit RAM which is 
programmed to identify three exclusive track types (seven types in the HRS logic). 
The programmed parameters are chosen for optimal efficiency using off-line simulation 
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of the hardware interfaced to a physics Monte Carlo. Efficiency is measured using real 
tracks. The Master Clock module provides twelve separate "burped" clocks for the 
twelve layers. All clocks are based on the same frequency of 10 MHz; however, clock 
transitions are periodically skipped for each layer in order to shift all layers at a constant 
angular velocity. Twelve such clocks are necessary because each drift chamber layer 
has a different number of cells. The Master Clock is programmable to allow choice of 
the twelve layers used in the trigger. The Track Counter modules contain logic to avoid 
double counting of tracks from the same or different Curvature Modules. They also 
permit CAMAC readout of information about tracks found. This information is used for 
diagnostics and to aid track reconstruction. In addition, the trigger processor includes 
a Display Generator, which serves as an invaluable diagnostic tool, and a Colinear 
Track Finder, which identifies back-to-back track combinations such as small-angle 
Bhabha events. The master interrupt controller MICKEY manages the multi-level 
decision process, including gates, resets, and interrupts. It also has memory look-up 
to trigger on programmable combinations of signals from various trigger processors, 
including the count of each track type, a count of hit calorimeter modules, and an 
overall energy threshold. A complete package of diagnostics perform routine tests of 
the entire processor and identify failing modules. 

\ Beam 
Line 

TOF radius 
(1.59 m) 

Fig. 7. Mark II Curvature Masks for a given azimuth 
The charged-particle trigger decision using this processor requires 35 µsec. A com-

promise between serial and parallel processing is achieved which economizes on the 
number of connections and on speed. Much drift chamber information is available 
to the processor, permitting tight roads pointing to the origin which are effective at 
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rejecting background but efficient for finding tracks. Programmability has enabled the 
processor to function effectively at SPEAR and at PEP with various inner drift cham-
bers and despite the inefficiencies of an aging central drift chamber. This processor 
will also be used with a new drift chamber at PEP and at SLC. 

3. TRIGGERING AT THE SLC 

The unique features of the SLC with respect to trigger processing are the long, 
5.5-msec interval between beam crossings, the high luminosity without high beam cur-
rent, and the high event rate provided by the Z 0 resonance. The long interval between 
beam crossings allows complex, hierarchal trigger processing, including software pro-
cessing. Such triggers would allow maximum flexibility through programmability, use 
existing data paths, and allow uniform treatment of all detector subsystems. The lower 
beam-crossing rate also limits background. Beam-gas rates, with similar vacuums and 
numbers of electrons per bunch at PEP and SLC, are reduced by more than 103 at 
SLC by the lower crossing rate. Cosmic rates are similarly reduced. Synchrotron ra-
diation, beamstrahlung, and radiation from the beam dump can all be masked, except 
very near the beam-pipe; however, synchrotron radiation could be a surprise. It could 
slow trigger processing times and data acquisition times, as well as increasing the back-
ground rate. Ability to recognize and reject synchrotron radiation hits could prove to 
be important. 

3.1 THE MARK II TRIGGER AT SLC 

Trigger processing for the Mark II detector at the SLC is shaped also by the need 
to trigger the upgraded detector during checkout at PEP. Consequently, the existing 
trigger processor (see Section 2.3) will continue to be used. Information from the new 
central drift chamber will be processed first by trigger cards which interface FASTBUS 
TDC modules(8) to the existing trigger. These trigger cards connect and are addressed 
through the FASTBUS auxiliary connector. They latch hits on and do majority logic 
on the six wires in ea.ch drift chamber cell. The results of the majority logic, performed 
by addressing programmable RAM for all 972 cells in parallel, are then shifted through 
the existing logic. The ability to do majority logic at the cell level will allow a tighter 
majority requirement at the road level, which could help reject random background 
hits. Other new detector elements will be incorporated into the trigger in the fashion 
of the elements which they replace. 

The Mark II at SLC will also be prepared to do software trigger processing if 
required by severe backgrounds. Synchrotron radiation hits could be rejected, based 
on pulse height, before shifting drift chamber hits through the existing logic. Beam-
gas tracks could be rejected by determining the event vertex position by fitting tracks 
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found by the hardware trigger processor. Such processing would be performed by the 
SLAC Scanner Processors (SSP's; see Section 4.2) and 3081/E processors (see Section 
4.4) which are part of the data acquisition system. The 3081/E's will have available to 
them the entire event record for trigger considerations. 

3.2 THE SLD TRIGGER 

Trigger processing for the SLD detectorC10) will use data paths similar to the event 
acquisition paths. Input data for the trigger will be derived in the data acquisition 
modules. Chamber data, acquired in Waveform Sampling Modules, will be reduced 
to one bit per wire. Calorimeter data, acquired in Calorimetry Data Modules, will be 
the digitized energies. This trigger input data will be read out by the same crate-level 
SLAC Scanner Processors (SSP's; see Section 4.2) used in event acquisition. At the 
crate level the trigger data will be tested for evidence of tracks and further compressed. 
For instance, five out of eight drift chamber wires hit in a cell will define a hit cell, and 
one bit per cell will indicate whether a cell was hit. For calorimeters, the digitizations 
within a tower will be checked for consistency and compressed to one bit per tower 
and to a total energy per tower. The crate-level SSP's will send the compressed trigger 
data to dedicated Trigger Processors. All Trigger Processors and their programs will 
be identical. The program will perform pattern recognition by table look-up and will 
result in simple numeric descriptions of recognized patterns. Pattern recognition will 
be done by separate Trigger Processors for each of the three stereo views of the drift 
chamber and for each of four calorimeter units. SSP's may serve as these processors. 
Finally, the recognized patterns will be read by a Trigger Master which makes the 
final trigger decision. The Trigger Master will also be the event acquisition master, 
controlling detector resets, waits, etc., data flow, and the running environment. It may 
be an SSP or a FASTBUS VAX (see Section 4.4). The trigger decision will be complete 
in time to reset the detector before the next beam crossing. 

4. ON-LINE PROCESSING AT SLAC 

Large, general-purpose e+ e- detectors require on-line processors for data acquisi-
tion, calibration, monitor, and diagnostic tasks. In order to reduce readout times and 
to simplify downstream processing, event and calibration data is typically compressed 
by the data acquisition modules or by crate-level processors such as the BADC and the 
SSP. Some monitoring and control may be provided by microprocessors, such as the 
SFC. Thorough monitoring and diagnostics, which frequently involve studying sampled 
events, sometimes after complete event reconstruction, is usually done by host comput-
ers, which at SLAC are VAX's. The host generally writes the data to tape for transfer 
to off-line processing; however, the MAC experiment at PEP transfers data directly 
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from disk on their VAX to disk on the SLAC IBM facility via a Long Line Adapter. 
For the complex SLC detectors, processors such as the 3081/E or the FASTBUS VAX 
will supplement the hosts at the system level in monitor and diagnostic tasks. Mi-
crocomputers will manage the flow of data among the on-line processors. The on-line 
processing systems for the Mark II and SLD detectors at SLC are described in Refs. 
9 and 10, respectively. The following sections describe some of the on-line processors 
commonly used at SLAC. 

4.1 THE BADC 

The BADC{ll) is a microprocessor-based semi-autonomous controller for CAMAC. 
It was designed to control readout of a CAMAC crate of data acquisition modules, 
such as sample-and-hold and time-to-amplitude converters. It controls the multiplex-
ing of data onto an analog bus, digitizes the analog data, compresses and processes 
the data, and buffers results until CAMAC readout. The algorithm most often used 
for processing of event data discards data below some threshold, corrects data by a 
quadratic polynomial, and relabels data by function, such as by drift chamber layer 
number and wire number. Threshold and correction constants for each channel and 
labeling information are stored in local RAM. This algorithm requires about 3 µsec 
per channel for data below threshold and 10 µsec per channel for data above thresh-
old. Another algorithm streamlines calibration procedures by calculating an updated 
mean and variance for each channel after each event and thereby reducing the amount 
of CAMAC readout and of host computation. Certain diagnostic algorithms are also 
implemented. 

The BADC economizes on cost, by amortizing the cost of digitizing hardware over 
hundreds of channels and by allowing higher channel densities. It economizes on readout 
time, by allowing several crates of electronics to be sparse scanned in parallel followed 
by block transfer from a small number of BADC's. It economizes on host processing 
time by correcting and relabeling data at high execution speeds and in parallel, and it 
simplifies host program structure by handling many thousands of constants. 

The architecture of the BADC is described in Ref. 11. Its features are only high-
lighted here in order to illuminate how it fits into a data acquisition system. The BADC 
is a triple-width CAMAC module with CPU, RAM, and ADC boards. The ALU is 
four AMD 2901 four-bit slices controlled by an AMD 2909 microprogram sequencer. 
Program memory is two 256-word pages of 48-bit PROM. In practice, the second page 
has never been used in an application. Memory is either 4K or 12K 16-bit RAM with 
220-nsec read access. The RAM is used to contain control tables, correction constants, 
and data buffer. Three clock cycles are defined; short (200 nsec) for most operations, 
long (360 nsec) for conditional branches, and pause for operations such as CAMAC 1/0 
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which require acknowledgement from another execution unit of the BADC. Interrupts 
are not implemented. CAMAC commands to the BADC, as well as front-panel signals, 
force branches to predefined locations in PROM. 

The BADC addresses modules within a crate by transmitting an encoded station 
number N to a SLAC type- U crate controller. The BADC directly accesses the F, A, 
SI, and S2 lines. Handling of contention on the CAMAC lines is limited. If contention 
occurs during BADC execution, an error breakpoint is set. A software timer allows a 
CAMAC cycle which starts BADC execution to complete before the BADC commences 
CAMAC operation. Control of CAMAC scans is provided by the ADC board which 
receives the analog data into a three-step pipeline, consisting of address data module, 
sample-and-hold, and digitize. All CAMAC data is routed through the RAM board, 
where the D and Y busses of the ALU are interfaced by buffers to the CAMAC Wand 
R Lines. The output buffer from Y to R is gated by a READ from CAMAC. The input 
buffer from W to D is loaded by a WRITE from CAMAC and gated onto the D bus by 
microcode which moves data from the buffer, onto the D bus, through the ALU, onto 
the Y bus, and into RAM in a single CAMAC cycle. Interconnection of the RAM and 
ADC boards to the CPU and CAMAC are shown in Fig. 8. The modular construction 
of the BADC has allowed easy modification of the basic design, for instance for 12K 
RAM boards and for replacement of ADC boards by interfaces for alternate hardware. 

Microcode for the BADC is now generated using a machine-independent meta-
assembler written in FORTRAN named MAMIC. MAMIC consists of two passes: the 
first defining the machine and instructions in terms of microcode fields and operations, 
and the second assembling the user code. It was also used for the SLAC Scanner 
Processor microcode PROM's and microcode for various other devices such as the 
VAX CAMAC Channel. In the case of the BADC, the generated microcode can be 
tested using a debugging RAM in a separate CAMAC module before burning PROM's. 

Since its first use in 1977 with the Mark II detector at SPEAR, the BADC has been 
a central element in the data acquisition systems of many SLAC experiments. Seven 
different SLAC detectors<12l have used more than fifty of these units (which are now 
commercially available<13l) for a variety of detector types: MWPC, drift, lead glass, 
and liquid argon shower counters, drift chambers, MWPC cathode and charge division 
readouts, time-of-flight counters, muon detectors, and luminosity monitors. Associated 
data acquisition modules developed for use with BADC's include: four types of sample-
and-hold circuits, single-hit and multi-hit time-to-analog converters, and a time-of-flight 
module containing time and pulse-height measurements. In addition, BADC units have 
been adapted to alternate hardware configurations, including readout of a second crate, 
a remote crate, and separate hardware. In the Mark II experiment, BADC's have 
performed the readout of every detector component except the proportional tubes of 
the muon system. At SLC, the Mark II will use twenty-two BADC's; however, SLAC 
Scanner Processors will be used for readout of FASTBUS electronics for the new drift 
chambers. 
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4.2 THE SLAC SCANNER PROCESSOR 
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The SLAC Scanner Processor (or SSP), which is described more completely in 
Ref. 14, is a general-purpose, high-speed, programmable FASTBUS module. It has 
been designed for the Mark II Upgrade to provide crate-level processing of data from 
FASTBUS modules similar to that provided in CAMAC by BADC's. The SSP, however, 
provides a more general, and, hence, more powerful means of moving and processing 
data in a FASTBUS system. Consequently, SSP's can also be used for various system-
level tasks. 

From the FASTBUS point of view the SSP can be attached as either a master or 
a slave to either a crate segment or a cable segment, while being physically connected 
to both. As a slave, SSP memories can be read and written. The program memory 
of the SSP maps into CSR space, and data memory maps both into data space and 
CSR space. Host control of SSP operation as a master is exercised through CSR# 0. 
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As a slave, the SSP operates without CPU involvement. DS-to-DK response times are 
about 100 nsec. 

As a master, the SSP implements a large number of FASTBUS operations. FAST-
BUS primitives, such as primary address cycle, are implemented as single SSP instruc-
tions which include a pointer to an argument list. Other FASTBUS operations, such a 
read data block, are implemented as single SSP instructions which execute a sequence of 
FASTBUS primitives at the microcode level. Finally, other FASTBUS operations, such 
as write random data with pattern select, are implemented as macros of SSP instruc-
tions at Assembler level. Instructions which terminate a block transfer normally upon 
an end-of-block response (SS=2) from a slave and instructions which terminate block 
transfers upon exhausting a word count are both implemented. Block transfers involve 
a DK-to-DS delay of about 100 nsec. All IBM integer and many byte instructions are 
implemented for control and data processing. 

The SSP consists of two FASTBUS boards, control and processor. The control 
board contains the interface and 1/0 logic, which are symmetric with respect to the 
crate and cable segments, instruction logic, address calculation logic, branch logic, and 
word count logic. The instruction logic consists of 4K words of program memory, 
PROM address logic, and microcode PROM's in a three-level instruction pipeline. 
Instructions have IBM format. They are decoded in the microcode PROM's to 56 
bits which control the instruction logic and 1/0 logic and to 48 bits which control the 
processor. As many as 256 instructions can be defined in the microcode proms. The 
processor board contains a 32-bit CPU (eight AMD 2901C bit-slices), dedicated input 
and output shifters to expedite multiple shifts, 32K x 32-bit words of data memory, two 
registers, and condition code logic. The data memory is byte-addressed. It is composed 
of 16K static RAM's and will be easily expandable when 64K RAM's become available. 

The SSP is designed to be easily programmed. Source code can be written in 
IBM Assembler or in FORTRAN. Code is then assembled or compiled, translated into 
separate program and data, optimized, and linked into an image by a translator/linker 
program on a host computer. This program produces a single file comprised of program 
and data memory images and of a header which contains information on program siz.e, 
locations of COMMON blocks, etc. The program and data memories are down-loaded 
to the SSP over FASTBUS. The initial program status word is loaded into data memory 
location O, and execution is started via CSR# 0 or by a hardware signal. Completion 
of execution can be signalled by a service request or by a front panel output. Execution 
can be interrupted between instructions if the SSP is so enabled. Instructions can be 
executed in single-step mode, and a cross-debugger can be implemented via FASTBUS. 

The initial application of the SSP is in the drift chamber readout system for 
the Mark II, where SSP's will scan, process, and buffer data from commercial TDC 
modules(8) and from SLAC-designed FADC modules. At the crate level, these SSP's 



-21-

will also process calibration data and perform crate initialization, data acquisition mod-
ule testing, self-testing, and crate segment verification. In addition, SSP's will serve at 
the system level as cable segment masters and buffers for the cable segments linking 
the TDC and FADC crates and as data block movers and buffers to and from on-line 
3081/E processors. More than 25 SSP's will be used by the Mark II. The SLD detector 
also plans to use SSP's at the crate level for all detector subsystems (,.,, 80 units) to 
readout and process data from Waveform Sampling Modules and Calorimeter Digiti-
zation Modules. The crate-level SSP's also preprocess data for the event trigger, and 
additional SSP's act as Trigger Processors for each subsystem and as a Trigger Master 
to complete the trigger decision. 

4.3 THE SLAC FASTBUS CONTROLLER 

The SLAC FASTBUS Controller (or SFC), which is described more completely in 
Ref. IS, is a single-card FASTBUS microcomputer suitable for real-time monitoring 
and control applications. In fact, an SFC can transfer blocks of data at rates of about 
S µsec per 32-bit word (800 KB/sec), which is faster than effective UNIBUS rates 
(SOO KB/sec) and within a factor of about two of fastest CAMAC speeds. It can 
also implement all possible F ASTBUS operations as both a master and a slave and can 
serve as a host for a FASTBUS system. Moreover, it can be programmed in higher-level 
languages such as FORTRAN. 

The SFC consists of an interface between FASTBUS and MULTIBUS and of a.ny 
MULTIBUS single-board computer, such as Motorola 68000, Intel 8086, or National 
16032, which mounts in the FASTBUS module. The interface connects the 8- or 16-
bit MULTIBUS data bus to the FASTBUS AD lines and maps an 8-bit MULTIBUS 
1/0 address onto FASTBUS AS, DS, RD, MS lines. As a master, the SFC executes 
a FASTBUS cycle by performing a read/write to MULTIBUS 1/0 space. Processors, 
such as the 68000 and 16032, which can move a 32-bit longword on the data bus with 
one instruction are able to execute a FASTBUS cycle, either address or data, in a 
single instruction. The interface hardware is designed to reduce software overhead by 
arbitrating for the FASTBUS and by issuing the strobes AS and DS and waiting for 
acknowledge signals AK and DK while managing a timeout counter, checking parity, 
and checking for non-zero SS responses. The interface signals cycle completion with 
the XACK* signal and indicates a FASTBUS error with BERR, thus eliminating soft-
ware status checking. Interrupts from FASTBUS, such as incoming service request, 
mastership granted, or selected as slave, are signalled to the processor via GINTR. 
Three different modes of mastership are supported to enhance execution speed. All 
FASTBUS operations are supported. 

As a slave, the SFC responds in hardware to all types of address cycles and em-
ulates data cycles in software. When the SFC is attached as a slave, the processor is 
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interrupted by GINTR. Then it polls 1/0 space for DS, reads command bits (RD, MS), 
and branches to the appropriate command handler which responds to the command 
and causes the interface to produce DK and SS responses. During the DS-DK interval, 
the interface normally asserts WT to avoid timeouts. After response is complete, the 
processor returns to polling DS until the AS-AK lock to the SFC is removed. 

As implemented for monitor and control of the Mark II cryogenic system, the SFC 
is equipped with an Intel iSBC 86/30<16) (8086, 8087 Numeric Data Processor, 256K 
RAM, and 64K EPROM). FASTBUS standard routines are implemented in ROM, 
along with a boot program which allows the SFC to be addressed via FASTBUS. Since 
this SFC uses the same SBC as used in the SLC control system (see Section 5), it 
can also use the sophisticated software tools developed for the SLC. Applications code 
can be written in FORTRAN and cross-compiled and linked on a VAX. Code can be 
downloaded and started via MULTIBUS or FASTBUS; however, the symbolic cross-
debugger currently runs only over SLCNET-MULTIBUS. An SFC with a 68000-based 
SBC has also been implemented at SLAC, and several units have been delivered for 
implementation outside SLAC. 

The SFC is capable of serving as host for a FASTBUS system since it is capable of 
loading its own logical address and arbitration level registers and of asserting RB and 
GK to preempt a segment. Additional features include self-diagnostic capability and 
board area available for wire wrap, for instance, of a sequencer. MULTIBUS is available 
on the FASTBUS auxiliary connector and to plug-in modules for some expansion and 
peripherals. 

4.4 THE 3081/E PROCESSORS AND FASTBUS VAXES 

The 3081/E and FASTBUS VAXes have been described in Refs. 17 and 18 and 
discussed at this conference.<19•20> 

Implemented on line, the 3081/E is a powerful (4 to 5 VAX 11/780 equivalents) 
processor for applications such as data preprocessing, software triggering, and event 
reconstruction. It is capable of executing on line the same code used off line for event 
reconstruction on IBM mainframes. Mark II plans to use 3081/E processors interfaced 
to FASTBUS through a quasi-dual-ported FASTBUS slave interface. These processors 
will preprocess drift chamber data from TDC and FADC systems and fully reconstruct 
events for on-line processing. They will also be used for an on-line software trigger if 
necessary. 

The FASTBUS VAX, equivalent to about 90% of a VAX 11/780 in CPU, offers the 
easy programmability of VMS, software compatibility with the on-line host computer, 
and in situ debugging. The SLD plans to use these microcomputers as a master trigger 
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processor and to separately tag physics and background events with a fast filtering al-
gorithm. In addition, they will be used as stand-alone microcomputers for development 
work. 

4.5 THE 168/E PROCESSOR 

The 168/E processor has been described and discussed comprehensively in Ref. 21. 
These processors have been used at SLAC for off-line event reconstruction by LASS(22) 

and DELCO and for lattice gauge theory calculations.(23) On line at SLAC they have 
been used by the SLAC Hybrid Facility (SHF) to provide camera triggers and for 
monitoring.(24) At SHF, the processors could obtain their data by listening passively 
to data transfers on a CAMAC backplane.!25) In addition, circuits whose results were 
sufficiently time critical for triggering were built into a 168/E, where they interacted 
with the processor as locations in data. memory. Data. input from PWC digitizers and 
space point finders were implemented as read-only memories. Camera triggers were 
provided by accessing memory addresses on other 168/E hoards. 

4.6 THE VAX CAMAC CHANNEL 

The VAX CAMAC Channel (or VCC), described in Ref. 26, is a UNIBUS to 
CAMAC interface utilizing a bipolar microprocessor to supervise the CAMAC system 
and minimize the host computer's work. The high speed 16-bit CPU is composed 
of AMD 2900 bit-slice bipolar microprocessor components. The interfaces to a DEC 
UNIBUS and to CAMAC are peripherals to the CPU linked by input and output data 
busses, a status bus, and a microcode bus for interface control. The CAMAC interface 
connects, via SLAC CAMAC protocol, to a set of system crates which house Branch 
Drivers for parallel or serial branches or for other data links. A VCC operation is 
initiated by a software device driver which passes the VCC the addresses of control and 
data buffers. No further VAX CPU activity is required until the VCC has completed 
the list of data transfers implied by the control "channel program" buffer. The VCC 
fetches commands from VAX main memory, sets up the Branch Drivers and transfers 
data between the CAMAC modules and VAX main memory at rates limited by the 
UNIBUS. Address scanning for block transfers is handled by the Branch Drivers. Data 
acceptance, conditioned by X and Q responses, and data packing into 16-bit words are 
performed by the VCC. The VCC also serves as a channel to the VAX for hardware 
interrupts. A coherent software package integrates high-level programs with system 
driver-level programs and microcode control of the system. 
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5. SLC CONTROL SYSTEM 

The SLC control system<27l will be an order of magnitude more complex than 
SLAC's other accelerator control systems. In addition to modernizing and streamlin-
ing the operation of the present linac/beam switchyard system, the SLC control system 
must provide machine modeling to support the extensive accelerator development re-
quired to meet the tight SLC beam requirements. In its final configuration, the SLC 
control system (see Fig. 9} will provide a combination of two VAX 11/780 central pro-
cessors networked to 70-100 powerful microprocessor clusters which interface through 
CAMAC with the equipment to be monitored and controlled. 

The dual-VAX complex provides a centralized human interface for the machine 
operators, as well as on-line execution of the large modeling programs. In addition, 
these computers provide an environment for fast, efficient program development and 
maintenance for both the VAX and the micro-processor clusters. 

The distributed micro-processor clusters are located in each of the 30 linac sector 
alcoves and near the damping ring, electron and positron sources, and the SLC arcs and 
final focus. The clusters are based on the Intel Multibus architecture, which provides 
support for an arbitrary number of single-board computers which communicate with 
each other through the use of shared memory and interrupts. The micro-processor clus-
ters contain an Intel iSBC 86/30<16l with 8087 coprocessor, 786 Kilobytes of RAM, and 8 
kilobytes of EPROM, providing about 1/7 of the processing power of the VAX 11/780. 
The microprocessor clusters interface to a 5 MHz serial CAMAC branch through a 
DMA channel device. 

Intelligence is also distributed into the CAMAC crates via the use of dedicated 
microprocessors in some of the data acquisition modules. The Smart Analog Monitor 
(SAM) is a Zilog Z80-based CAMAC module that continuously scans 32 analog chan-
nels, auto-calibrates, auto-ranges, digitally filters, and provides floating point voltage 
values in either VMS or IEEE formats. The Parallel I/O Processor CAMAC mod-
ule (PIOP) is a general-purpose processor based on the Intel 8088. It interfaces to 
CAMAC and to a front panel port which is a differential transmitter/receiver version 
of the micro-processor's bus structure. This port provides a standardized method of 
interfacing to specific devices or processes. For instance, PIOP's monitor the phase 
and amplitude of the 240 linac klystrons, as well as provide general klystron monitor 
and control. Code for the PIOP is cross-compiled or cross-assembled on the VAX, then 
downloaded via CAMAC to the PIOP or "burned" into EPROM. 



-25-

Centro I Processor Typical p.- Processor Cluster 

CAMAC Crate CAMAC Crate 

Multibus Crate 
CAMAC Interface 

Data Base Memory Board 
Intel 86/30 Cluster SBC 

Serial DMA Module 
Modem Interface 

Spare Slots 

Directional 
Couplers To Other 

Frequency ~----+'--+-___ 5_-_11 O_M_H_z ___ ......,_.....__+--_31_4_"_G_A_TV_G_oo_x--+<--+-.,_.G_lu_s_ter_s_a_nd_GO_W~S 
Translator 160- 300 MHz -

Serial DMA Module 
Memory Board 

Intel 86/12A Dis la SBC 
512X512X4 Graphics Memor 

512 x 512 Video Generator 
Touchpanel and Knob Interface 

Spare Slots 

== 0 0 0 0 

KNOBS 

Typical "Console on Wheels"(COW) 

Monochrome 
Touch pone I 

Fig. 9. SLC Control System block diagram. 

"CALF" 

There are two types of operator consoles in the system. The Console-On-Wheels 
(COW) consists of a micro-processor cluster, high-resolution color graphics display, 
touch panel, general-purpose knobs, computer terminal, video monitor, and audio in-
tercom; yet the COW is a fully pori.able unit which can be connected at any point along 
the system's Communication Line. The Curser-Addressed Limited Facility (CALF) em-
ulates a subset of COW functions and can be also connected at any point along the 



-26-

Communications Line. The number of COW's and CALF's that can be supported is 
limited only by the system's processing power. 

The Communications Line for the system consists of a broadband (5 - 300 MHz) 
cable television (CATV) system. Communications are organized in an inverted-tree 
topology with mid-split repeaters. Low frequencies feed from the source to the up-
converters, and high frequencies feed to all receivers. Several sub-systems use the cable 
for communications. The micro-processor clusters and the VAX's are interconnected 
by a one Megabaud polled network. A bit-slice processor directs sequential polling 
at a rate of about 1000 polls/second and serves as a DMA channel to the VAX. The 
logical topology is a star network with communication only between the host and the 
microclusters. 

A significant effort has been expended to create an efficient and user-friendly en-
vironment for the development of micro-processor software. All SLC software develop-
ment is performed on the VAX. Wherever possible, which has been in about 95% of 
cases, FORTRAN 77 is used for applications programming of the micro-clusters. (VMS 
FORTRAN is used for the VAX's.) In collaboration with Intel, FORTRAN 77 and PLM 
86 cross-compilers, a cross-assembler, and a cross-linker have been developed to sup-
port the 8086/8088 series of micro-processors. Further, a symbolic cross-debugger has 
been developed to allow the remote debugging of micro-processor programs running 
under iRMX. In this complex system, on-line debugging and diagnostic aids have been 
essential in order to trace problems efficiently in the system's operating environment. 

6. SUMMARY 

Trigger and on-line processors share the role of reducing data rates to manage-
able proportions in large, general purpose e+ e- physics experiments. This paper has 
attempted to review a vast amount of work on trigger and on-line processors at SLAC. 

Generic solutions to trigger processing have evolved at SPEAR and at PEP, al-
though special-purpose hardware trigger processors have been developed for each ex-
periment. Some of these processors, on the other hand, have a great deal of flexibility 
and programmability. The environment at the SLC will offer the possibility of sophis-
ticated, software triggers. 

On-line processor development at SLAC has focused on data reduction and pre-
processing at the data acquisition crate level. The BADC and the SLAC Scanner 
Processor are examples of such processors. At the SLC, more powerful processors, such 
as the 3081/E and the FASTBUS VAX, will be used for more sophisticated preprocess-
ing, software triggering, and event sampling and flagging. The SHF use of the 168/E 
pioneered on-line use of such powerful processors. In addition, general-purpose micro-
processors, such as the SLAC FASTBUS Controller and the Parallel 1/0 Processor, 
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are assuming roles in experiment and accelerator control. At all levels, a high pre-
mium has been placed upon uniformity of approach, for both hardware and software, 
leading to the development of a small number of flexible yet powerful processors and 
sophisticated software tools. 
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QUESTIONS AND ANSWERS 

Q: How fast is the ASP memory trigger, and ASP data readout? 

H. Kasha 

A: I am not fully qualified to give the answer. Fastest available 
memory chips have been used. The readout should be accomplished in 
about 3 msec. 

Q: About the trigger at SLC; signal rate is expected to be -1/4 
Hz, negligible background, so why bother? 

P. Lebrun 

A: The trigger will be single (single track); but, even with such 
a low trigger, one has to choose between - 4 crossings due to data 
acquisition dead time. Also, the synchrotron radiation might be larger 
than expected. 

Q: 1) How much development effort was required to emulate IBM 
Run-time Library in the 370/E? 

2) If IBM sold you a 370 architecture microprocessor, would you use 
it? 

E. Siskind 

A: 1) 3/4 man-year for software. 

2) Yes 
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A PARALLEL, PIPELINED, EVENT PROCESSOR 
FOR FERMILAB EXPERIMENT 605 

D.M.Kaplan 
Fermi lab 

ABSTRACT 

I describe the E605 event processor, which 
represents the first use of the Nevis Laboratories 
processing system in an experiment. The processor is 
constructed of simple general-purpose modules designed 
to operate on 16-bit data words synchronously and in 
parallel at speeds up to 40 MHz. It uses information 
from hodoscopes and wire chambers to reconstruct tracks 
in the bend view of a magnetic spectrometer, calculating 
an approximation to transverse momentum (pt) for each 
track and mass for the most massive pair in an event. 
It also distinguishes tracks originating in the target 
from tracks originating in the beam dump. The results 
from the processor may be used to prescale events of low 
mass or pt' and to simplify further analysis of the 
events by an on-line array processor or off-line 
computer. The processor was debugged during the Winter 
run of the Tevatron and is being utilized in the Spring 
run. 

Introduction 

Fermilab Experiment 605 is a spectrometer for the study of 
particles and pairs of particles produced at high transverse 
momentum (see Figure 1 ). Its open geometry permits simultaneous 
detection of leptons and hadrons, and its high degree of 
segmentation, sophisticated triggering scheme, and high-speed data 
acquisition system are designed to allow data taking at the very 
hig~ 1 beam intensities required to study phenomena representing 
10 or less of the total proton-nucleon cross section. After a 
test run in the Spring of 1982 and a 400 GeV data run in ~be Fall 
of 1983, we are now taking data 9at 800 GeV and 10 proton 
interactions per acceleratqr pulse (10 interactions per second). 

To enhance the power and flexibility of our triggering scheme 
we have constructed a parallel pipelined event processor to 
reconstruct pa~ticle tracks on-line. Using the granularity of the 
wire chambers, this processor is able to make more precise 
decisions than the first- and second-level triggers, which are 
based on hodoscope and calorimeter information, and it is faster 
and more powerful, though more specialized and less flexible, than 
the array processor attached to the on-lin2 computer, which 
constitutes the final level of on-line filtering . In addition to 
reconstructing tracks, the processor computes an approximation to 
transverse momentum (pt) for each track and mass for the most 
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massive pair of tracks in each event. These can be used to reject 
or prescale events of low pt or mass. 

Originally the processor was conceived as a means of rejecting 
particles originating in the beam dump rather than in the target, 
but our goal has evolved into the distinguishing of target events 
from dump events, with different pt and mass thresholds applicable 
in the two cases. This evolution was motivated by our realization 
that although muon pairs produced in the beam dump have worse mass 
resolution than those from the target by more than an order of 
magnitude, they have five times larger acceptance in the 
spectrometer and are accepted in a different region of phase space 
(large Feynman x), where interesting physics may be found. 

2 General Description of Processing System 

The processor is construct'd using the Nevis Laboratories 
data-driven processing system , which consists of a set or 
processing modules and a standardized bus and protocol for 
interconnecting them. Each module implements some simple 
operation such as addition of two 16-bit quantities, comparison of 
a 16-bit quantity with upper and lower limits, or computing an 
arbitrary function of an 8-bit quantity via table lookup. The 
modules used in the E605 processor are listed in Figure 2, and 
Table 1 summarizes the processor bus protocol. 

The modules are designed to operate with a cycle time of 25 
ns. It takes typically two or three cycles for an input to 
propagate through to the output, but the modules are internally 
pipelined so that a new operation can begin every cycle. Data 
transfers between modules are also pipelined, so that after an 
initial period in which the processing pipelines are filling, all 
modules in the processor are operating simultaneously to the 
maximum extent possible. Data transfers among modules are 
synchronized to a central clock, which may be single-cycled, 
speeded up, slowed down, or run in bursts for diagnostic purposes, 
and every register and counter of every module may be read or 
written under computer control, facilitating thorough testing of 
the system. 

Compared to hard-wired special-purpose processors, the system 
is quite flexible, since the modules may be recabled or the lookup 
tables reprogrammed to make changes in the algorithm. It also 
differs from typical hardware processors in that the algorithm is 
embodied in the interconnection of the modules rather than in 
control logic, so that no bottleneck arises when the system is 
expanded; as more modules are added, the total processing power 
increases proportionately. 

The modules are constructed on 9"-square 
circuit boards. Most modules consist of 
containing typically 60 ECL 10,000 chips, and 

two-layer printed 
a single board, 

can be duplicated 
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for approximately $200 (an except i.on is the Map module, which 
takes two boards). Each module connects to one or two input 
processor buss ea and one output processor bus, as well as to power 
and control buaaea. The control bus is a simple bit-aerial bus 
used for initialization, downloading of data, and testing. 

3 Reconstruction Algorithm 

Reconstruction is performed only in the y-z plane (the plane 
in which the magnets deflect), using the six wire chambers Y1A, 
Y1B, Y2, Y2', Y3, and Y3'. Y1A and Y1B are 2-mm-apacing 
proportional chambers, while Y2-Y2' and Y3-Y3' are pairs of drift 
chambers with cell widths of 1 and 2 cm (respectively), and with 
primed chambers offset by half of a cell with respect to unprimed 
chambers. 

For all particles traversing the three stations of chambers, 
the positions measured by the chambers are linearly related: 

Yl = aY2 + bY3 + c • 

The trackfinding loop forms all possible track hypotheses,_ 
consisting of a hit in station 2 and a hit in station 3, projects 
to station 1 using the above relation, and demands a hit in 
station 1 consistent with a particle originating in the target or 
in the upstream end of the beam dump. 

The present version of the processor uses only wire numbers 
and ignores drift times, except to cut out hits whose drift times 
are too small (since with our drift chamber electronics, the first 
two time bins contain only hits from previous proton 
interactions). At typical beam intensities, this cut eliminates 
approximately 30% of drift chamber hits. With _10 hits per plane, 
this algorithm is capable of finding all the tracks in an event in 
typically 5 microseconds or less. The efficiency of the algorithm 
depends on the efficiencies of the hodoscopes and chambers; since 
these are all well above 90%, we can expect an efficiency greater 
than 95%. 

4 Detailed Description of the Processor 

Figure 3 is a schematic diagram of the 
following paragraphs describe the function 
proceeding roughly downwards from the top (i.e. 
of data flow). 

processor. The 
of each module, 
in the direction 

In order to reduce sensitivity 'of the algorithm to chamber 
dead time and other inefficiencies (typically 10% per chamber 
plane), all track hypotheses having a hit in each station plus at 
least one additional hit are accepted as tracks (i.e. two of the 
six planes may be missing). This is facilitated by merging the 
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hit address lists from primed and unprimed drift chamber planes 
before hypothesis generation, using the Ordered Merge and 
Associator modules. The Ordered Merge merges the lists while 
maintaining monotonicity of wire number, and it appends to each 
address a low-order bit indicating primed or unprimed plane. The 
Associator finds pairs of adjacent hits in a primed and an 
unprimed plane and squeezes them into a single address, appending 
a low-order bit to indicate pair or single hit. Hit addresses 
emerging from the Associator thus represent position in units of 
1/4 wire-spacing. 

Between the Ordered Merge and the Associator are placed a 
Block Buffer and a Comparator. The Comparator eliminates early 
hits from previous interactions (as mentioned in Section 3) by 
cutting on drift time. The Block Buffer is a 256-word memory with 
three ports: a processor write port, a processor read po§t, and a 
bidirectional Transport Bus port. (The Transport Bus is Nevis 
Laboratories' answer to CAMAC and FASTBUS, and serves to 
interconnect the on-line computer, the processor, and the various 
pieces of the data acquisition system.) The Block Buffer stores 
up to 255 hit addresses emerging from the Ordered Merge and sends 
them to the processor. If the processor accepts the event, the 
hit addresses are then read out to the on-line computer via the 
Transport Bus. The Block Buffer is designed to connect subsystems-
having independent clocks, allowing the processor to cycle at a 
higher speed than the Transport Bus or readout system. 

4.1 Hodoscope Masking 

The three modules following the Associator use hodoscope 
information to reduce the number of drift chamber hits to be used 
in hypothesis generation. Since the hodoscopes are sensitive to a 
much narrower time window than are the drift chambers, many 
particles from previous or subsequent interactions register in the 
drift chambers but n.ot in the hodoscopes; these "out-of-time" 
drift chamber hits are eliminated by keeping only those hits which 
correspond to hodoscope hits. The usual computer algorithm for 
this requires searching a list of hodoscope hits for each drift 
chamber hit (or vice versa), which can take considerable time if 
there are many hits. In the processor, this search time is 
eliminated by using the Map module, which contains an associative 
memory structure: when presented with an input position, it 
immediately fetches the state of the counter or wire at that 
position, along with the state of up to four adjacent counters or 
wires to either side. 

The first Normalizer converts position in the drift chamber 
into units of hodoscope counter widths; its output is thus the 
number of a hodoscope counter which should have fired if the drift 
chamber hit is in-time, as well as some fraction bits indicating 
where within the counter the particle passed. After all hits from 
the appropriate Y hodoscope plane have arrived at the Map's write 
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port and been stored, the Map can accept input from the 
Normalizer. It uses the integer part of the Normalizer output to 
fetch the state of the requested counter plus one counter to 
either side, and it puts this out along with the input bits. The 
second Normalizer then makes a decision as to whether the drift 
chamber hit should be kept, and it puts out the hit address along 
with a bit indicating its decision. If the drift chamber hit is 
near an edge of the central counter, the hit is also accepted if 
the adjacent counter fired, but if the hit is away from an edge 
then the central counter alone is considered. 

(It is evident that the Normalizer is an unusually flexible 
module, and a few words on its design are in order. The 
Normalizer consists of two 256-word x 16-bit tables whose outputs 
are summed. The high-order 8 bits of an input word can be sent to 
one table and the low-order 8 bits to the other, allowing any 
function of the form 

f (xhigh-order) ~ g (xlow-order) 

to be computed by preloading the tables appropriately. For 
example, a Normalizer can be loaded to put out its input times a 
constant. The Normalizer may be divided into "pages," each page 
to be used in a different case as determined by the input data, by-
sending some bits from the input to both tables in common. The 
partitioning of the input bits is determined by a jumper patch 
programmed by the user.) 

Note that the hodoscope data pass through a Normalizer prior 
to reaching the write ports of the Maps. This Normalizer is used 
to transform the hodoscope hit addresses into counter numbers, and 
it also puts out bits indicating plane, which allow each Map to 
decide which hits to accept. Thus one Map accepts hits from plane 
Y2, another from Y3, and a third from Y1, and hits from the 
remaining hodoscope planes are ignored. 

4.2 Trackfinding Loop 

After being masked with the hodoscopes, the drift chamber wire 
addresses are stored in the Lists and counted by the Index 
Generator. The Index Generator puts out index pairs (8 bits per 
index) which call forth from the Lists all possible track 
hypotheses consisting of a hit in Y2 with a hit in Y3. The Page 
Generator and List-Counters generate multiple passes around the 
loop for each hypothesis. The Page Generator simply repeats each 
index pair, once for target and once for dump. The List-Counters 
pass the index pairs through and also store them internally for 
potential use on subsequent passes. The passes are identified 
using the Name bits of the processor bus. 

On the 
(Arithmetic 

first pass, the four 
Operators jumpered to 

Normalizers and two Adders 
perform addition) generate 
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predicted positions in the Y1A and Y1B proportional chamber 
planes, and the Maps and Binary Table accept or reject each track 
hypothesis, requiring a hit consistent with the prediction in Y1A 
or Y1B, and a total of at least four out of the six chamber 
planes. Outputs from the Binary Table pass through the Buffer to 
the List-Counter's read port, and accepted track hypotheses are 
re-issued by the List-Counter for the next pass. (The Buffer is 
required in order to prevent Holds from propagating back around 
the loop and stopping the data flow. It is a fast FIFO buffer, 
capable of performing both a read and a write on each cycle.) 

on the second pass, those hypotheses accepted on the first 
pass are masked with the Y1 hodoscope plane. On this pass, only 
one of the two Maps is used, having been loaded both with Y1B 
chamber hits and Y1 hodoscope hits in two pages. The two hit 
streams are merged using the Switch module (an Arithmetic Operator 
jumpered to pass data through unmodified, switching back and forth 
as needed from one input port to the other). 

4.3 Transverse Momentum and Mass Calculation 

Hypotheses accepted on the second pass are repeated by the 
second List-Counter for calculation of pt and mass. On this pass 
the wire address pairs of good tracks are written into a Block 
Buffer, to be read out and written to tape along with the rest of 
the event information; this allows the off-line analysis program 
to monitor the correct functioning of the processor, and it may 
also permit the array processor and the analysis program to find 
tracks more quickly, since the y-view reconstruction need not be 
repeated. 

Actually only the y-component of momentum is computed (since 
no x information is available to the processor), and we choose to 
approximate (accurate to 20%) 

At the cost of building a more complex processor we could have 
included information from the other chamber views and avoided 
these approximations, but they are adequate for triggering 
purposes. The set of four Normalizers and two Adders is used once 
again, this time to compute the quantities e0 (production angle in 
the y-z plane) and 1/p, which, like positlons in station 1, are 
linear combinations of positions at stations 2 and 3. 

To compute p , these quantities must be divided. It is not 
worthwhile to d~sign a divider module capable of cycling at 25 ns 
just for this one use, so we resort instead to subtraction of 
logarithms. Since these quantities may be either positive or 
negative, their absolute value must first be taken; this is 
accomplished using Normalizers, and the signs are recorded in Name 
bits. The Tables take logarithms to 8-bit accuracy (which is 
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adequate f6r our purpose), which are subtracted using an 
Arithmetic Operator, and a third Table takes antilog to yield py, 
again with an accuracy of 8 bits. 

Since the processor does not use all available chamber 
information, it does not have the best rejection against 
accidental tracks, so we must be prepared for events in which the 
processor finds many tracks, of which only one or two might 
represent real high-p particles. An algorithm for triggering on 
high-mass events mustttherefore be able to deal with large numbers 
of tracks, and to compute the mass of the most massive track pair 
in each event. To accomplish this we first find the two tracks 
with the most positive and most negative values of p , using the 
Min/Max modules, then add the absolute values ofythe two p 's. 
This ls done separately for dump and target tracks, hence tKere 
are four Min/Max modules and two Adders. The calculated p and 
mass values are merged into one data stream using SwitchesY and 
written into a Block Buffer to be read out with the event, making 
them available for off-line monitoring, 

4.4 Trigger Generation 

The ultimate result of the processor's decision is a command-
issued on the Transport Bus, telling the Block Buffers and other 
data sources either to read out the event or to skip it and reset 
the readout system for the next event. This decision is based on 
the reconstructed Pv and mass values. It is undesirable to reject 
low-p and low-mass events outright, however, since then any bias 
whichythe processor might introduce into the data sample can never 
be corrected. Instead, we prescale events by different factors: 
events having high p or mass are "prescaled" by 1, but only one 
in sixteen (say) lowip and low-mass events are accepted. 

y 

This prescaling is performed by the Event Generator Source 
(EGS), shown at the bottom of Figure 3. The EGS is a Transport 
Bus module which receives a processor bus input and issues Read 
and Skip commands on the Transport Bus. It also maintains an 
event count, which it puts out on the Transport Bus when the event 
is read out. Its input data stream is a sequence of prescale 
values terminated by 0a Complete 1 ~ord. Prescale values may be any 
power of 2, from 2 through 2 . On receipt of Complete, it uses 
the smallest prescale value of the sequence: if that value is 1, 
it issues a Read command; if 2, it issues a Read if the low-order 
bit of the event number is zero: if 4, if the two low-order bits 
are zero, etc. In this way, fractions ranging from all to 
1/32,768 of events can be selected. The prescale values are 
determined from the calculated p and mass values according to the 
preloading of the two Tables. Y 

We have also implemented a feature allowing the processor to 
be bypassed; for example, certain classes of study triggers which 
have already been selected and presoaled by the second-level 
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trigger logic are accepted regardless of the processor's decision. 
The leftmost data stream shown in Figure 3 comes from the Trigger 
Bit Latch system and indicates which second-level triggers fired. 
If a study trigger fired, the Table sends a preacale factor of 1 
to the EGS, forcing the event to be accepted. Thia also provides 
a simple way of disabling the processor entirely: the Table can be 
loaded so that all events are forced through. Since the 
processor's verdict is still read out, this mode is useful for 
testing, and we ran the processor in this mode until we 
eatabliahed to our satisfaction that our algorithm was working. 

5 Current Status 

The processor is now debugged and working. At our typical 
beam intensities the events have many background hits, causing the 
processor to find many accidental tracks. Some typical events are 
shown in Figure 4. An average of 10 or 20 tracks are found per 
event. We are working on improving the accidental-track 
rejection; options being considered include requiring five out of 
six chambers per track, using drift time information, and (for 
muon triggers) using muon proportional tube information. 

I wish to thank my collaborators on E605 for their help, and 
especially Bob Haiung for his able work in assembling and 
debugging the processor and its support software. 

Postscript (5/14/84): At 10 10 interactions per pulse and for our 
typical mix of triggers, the processor reduces the event rate by a 
factor of 2, with p and mass thresholds set at 6 and 8 GeV and 
preaca9e factors at 16~ The rejection improves to a factor of 5 
at 10 . (These relatively modest factors are due to the already 
high selectivity of the second-level trigger.) Efforts to reduce 
the sensitivity of the algorithm to accidentals and improve the 
rejection are in progress. 
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PROCESSOR BUS FORMAT 

24-bit Cable: 

Data Name Control 

Control Bits: 

V Valid: here is a data word 
H Hold: couldn't accept that word 
C Complete: end of block 
B Block Reset: abort this block 

NOTE: Hand B travel against the flow of data, i.e. 
from receiving module to sending module. 

Table 1 
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Processor Modules 
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ABSTRACT 

An overall view is presented of Brookhaven E766 and Fermilab E690, which 
includes the construction and development of an on-line processor. The 
primary goal is to investigate the diffractive production of heavy quarks by 
studying exclusive multiparticle final states. The close relationship of the 
detector and read-out system with the processor and the physics goals that 
motivate this research program are discussed. In addition, we discuss the 
functions of the processor and explain an example of a module that forms part 
of the track fitter. We estimate we will reconstruct on-line 105 events/sec. 

Introduction 

By the end of the decade of the 60 's it was expected that with the 
availability of high-energy beams, an explosion of data produced in high-
energy collisions would lead to the systematic study (among other things) of 
many particle final states, hoping to learn more about hadron dynamics. 1 With 
the advent of the higher energy machines in the U. s. and Europe during the 
decade of the 70' s, a weal th of events in high-energy collisions appeared; 
however, the exclusive multi particle final states expected to provide more 
insight iI)tO the interaction of high-energy particles could not be studied. 
The problem was not only to produce those states, but to detect them and 
properly present them for further analysis. 

*presented by C. Avilez, on sabbatical leave at Fermilab, Fellow of the John 
Simon Guggenheim Memorial Foundation. 

tCurrently on leave at Texas A&M. 
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In order to detect and produce the appropriate information that .leads to 
the full reconstruction of an exclusive reaction, the dead time of the 
apparatus has to be minimized and its read-out fast enough to achieve the 
proposed goals. Several levels of logical triggers have been found to be 
insufficient to identify the events under discussion, and the necessity of on-
line processing is by now widely accepted. 

With a highly segmented detector, fast read-out and on-line processing, 
it is possible to study the details of the dynamics of hadron physics in 
exclusive reactions. 

E766 (BNL) and E690 (Fermilab) 

The experimental high-energy physics program of the collaboration 
University of Massachusetts (Amherst)/Columbia University (Nevis)/ University 
of Mexico (IFUNAM)/Fermilab, is to explore the physics of the exclusive 
multiparticle final states. 

Our primary physics goal is the comprehensive study of hadronic spectro-
scopy and production mechanisms, eventually covering strange, charm, and 
bottom particles at Tevatron energies. The construction of a multiparticle 
detector capable of measuring moderately complex reations (up to 20 particles) 
with high resolution and efficiency at moderately high rates is underway. A 
crucial feature of the experiment is detailed on-line reconstruction of up to 
105 events/ second chosen from more than 106 interactions/ second. With the 
E690 spectrometer, this should allow the measurement of more than 104 fully 
reconstructed charm pairs and as many as 102 bottom pairs per hour of Tevatron 
beam. 

The detector for this program is seen in Fig. 1, which also shows the 
part of the detector already in operation at Brookhaven. To perform accurate 
measurements over a wide range of particle types, angles, and momenta, the 
detector components must fit and function together. 

The detector in operation at BNL consists of six drift chambers totaling 
11,500 signal wires in a low-field, wide-aperture magnet (7kG, 4 ft><8 ft). 
Charged particle trajectories are efficiently reconstructed with momentum 
resolution 6 p/p < 1% ( FWHM) from 200 MeV I c to 10 GeV I c. Mass resolutions for 
Ks and AO are presently 8 and 2 MeV (FWHM), with further improvement 
expected. Direct particle identification is provided by 102 time-of-flight 
counters and a segmented-threshold Cherenkov counter (96 channels). We have 
uniformly high acceptance for a wide range of topologies, particularly final 
states containing heavy particles. We intend to record a large number of 
events, fully reconstructed and identified as such, typically recording both 
raw and reconstruction results. 

One of the main endeavors of E766 is to produce a sample of - 106 •l- for 
which the use of a real-time processor system is an absolute necessity. Our 
program at BNL also includes the search for highly-inelastic baryon resonances 
and further studies of hyperon polarization. In particular, we are interested 
in understanding AO polarization in exclusive reactions, since virtually 
nothing is known about the contribution of specific final states to this 
phenomenon. 
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The detector and processor form a hierarchy of independent subsystems 
linked to each other by high-speed buffers and linked to host computers 
through the Nevis transport system.2 Transport system buffers between the 
detector and the processor allow data acquisition to bypass the on-line 
processor and allow data recorded on tape to be fed back to the processor. 

The Hardware Processor 

The processor is a way of dealing with very well-defined events, however 
rare, in a high rate environment, where very large-scale numerical computation 
is expected. It can adapt in the most elastic and flexible way to the compu-
tational needs of a wide variety of situations encountered in high-energy 
physics experiments. In a somewhat restricted way, it has been tested in 
Fermilab's E605,3 and its first large-scale applications are E766 and E690. 

The processor is a data driven synchronous pipeline. It has distributed 
memory and a modular structure with general interconnectability to match the 
computational needs of a given project. The pipeline is realized in terms of 
a parallel processor whose opetands receive data when the data are present and 
the destination is available. The synchronous aspect of the pipeline, in 
conjuction with two control bits, allows alignment of the data, avoiding 
juxtaposition of boundaries of blocks of information. 

Data Processor For E766 and E690 

A central feature of the processor is its extreme capability to match the 
computational requirements of a modern high-energy physics experiment. The 
problem we are interested in is the track reconstruction of all the particles 
in a moderate multiplicity (7 to 20) final state. The fitted track parameters 
provide us with charged particle momenta and trajectories which are used to 
reconstruct interaction and decay vertices. The track reconstruction consists 
of four stages: track finding, matcher, track fitter, and clean-up. 

The track reconstruction by itself is most challenging and involves two 
extreme situations: pattern recognition to find tracks, which requires 
relatively little computation but a large number of combinatorial situations 
(actually dealt with by loops), and the track fitting, with a smaller number 
of decisions involved but requiring much more computation. 

The track finding problem, which for straight lines has been discussed 
extensively, 3 is primarily solved with modules that involve bit parallel 
structures in a sequential word process. Experiment #605 at Fermilab has used 
the track finding in a single view of drift chamber with marginal constraints. 
In E766 (and E690) we look for tracks of charged particles in a magnetic 
field. In each view of the drift chamber, we obtain three wire numbers and 
the deviation from a straight line to represent the track. In Fig. 2 we show 

*This is the data-driven principle that assures maximum hardware utilization, 
minimizing the number of idle components at any time. 
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the algorithm to find tracks in a moderate magnetic field by a single view. 
The results from different views are matched with strong constraints. For 
instance, the single-view curvature parameter is independent of view, 
providing a quick constraint. This pattern recognition, i.e., finding lines 
in single views and matching them to form track candidates, uses only wire 
addresses, while ignoring drift times. 

We now concentrate on the other extreme, namely, the track fitter. In 
this part of the processor, as the computation proceeds, more bi ts are added 
to accurately represent the result of the calculation, changing thereby the 
size of the word involved. 

The coordinates that specify the track are non-linear functions of the 
measured parameters. The process of fitting consists of finding the best set 
of parameters by minimizing a lt2. Following Newton's method, a solution can 
be found to the non-linear problem, and in fact a few iterations, if an 
appropriate,. starting point is available, i.e., a zeroth order set of para-
meters p~O). The process of track finding provides us with this first 
approximate parameterization. In an operational way one first calculates, 

P~ = ~ Ani xi+ Aoi' n = 1, •• , 6; i = 1, ••• , s 
The wire numbers (Xi) are ten-bit words and the resulting five parameters (P~) 
are 12-bit long. This kind of operation is done in hardware by a module 
called a sum multiplier which is explained below. 

After having the zeroth order parameters we are interested in formiyg 
higher order nonlinear products of them, producing a set of 11 parameters (Pj, 
j = 6, ••• , 11) to be used in a Taylor expansion beyond the linear terms. 
Again, using a sum multiplier we predict wire coordinates 

5 11 
(o) A (1) 

Xi = n~l Ain Pn + n~6 in Pn • 

This produces 16-bit wire coordinates, 10-bit integer wire number and a 6-bit 
fraction. One may now get the difference of the predicted value from the 
nearest measurement within a Map, and by using a sum multiplier again produce 
a first correction to the zeroth order set of parameters. After a few itera-
tions the drift time may be included to obtain the best predicted value for 
the coordinates within the measured precision of the experiment. See Fig. 3. 

~nts on Modules; One Example of Bi.t Serial 

The modules of the processor have three general requirements, namely, 
that they perform simple operations, have simple communication control, and if 
needed, have small storage independent of the size of the net. In the 
preceding talk, Dan Kaplan explained in more detail some features of the bit 
parallel modules and their protocol. Here we would like to explain the 
function of one of the most important modules of the track fitter, the sum 
multi plier. In an extremely simplified form showing the essence of the idea 
behind the design, let us do the following calculation 
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where the X's are represented by three bits. The constants a can in 
principle be described by all the bits we like, independent of the Q,size" of 
the X's. We may write, assuming n=l,2 

~ anXn = alxl + a2X2 

a 1 (X~ 2° + xi 2 1+ xt 22 + ••• ) 

+ a2 (x~ 2° + xf zl + x~ 22 + ••• ). 

We now rearrange this expression and factor out all powers of 2 

+ (a1Xi + a2X~) 2 1 

+ '"•f1 + 

The expressions in parentheses can be calculated in advance, in terms of the 
different possibilities of the weights of the binary expansion and loaded into 
a look-up table. The two vertical arrows show the two words that, serially 
fed into the module, provide the address to retrieve the precalculated 
combinations from the look-up table. In Fig. 4 we schematically show the 
structure of the sum multiplier. 

The associative memory concept is extensively used both in the bit 
parallel and in the bit serial modules, in modules called Maps. Here the data 
are retreived by value and provide us with a considerable speeding-up factor. 
In the track finding problem, the use of a Map reduces an N3 problem to an NL 
one. Using first and third chamber information to predict the position at the 
intermediate one allows us to retrieve by value the experimental result. In 
the least square process of the track fitting, we systematically have to com-
pare results of evaluations with the experimental measurements in the first 
iteration, or in subsequent ones, with the result of the previous step. A Map 
module has two input ports, one to write on the memory of the module, the 
other a read port that receives whatever value was predicted and has to be 
tested for its validity. A third port of the module is just an output that 
provides a "road" of values around the tested one. Provision is made to mask 
the word at the read port to select fields of bits that are asked to be repre-
sented by the data written on memory. The Map itself does not "decide" if the 
tested value passed the test or not, but by providing a road of possible 
values around the predicted one, produces a word to be fed into a look-up 
table with precalculated results of the test as a function of the road. 

Comments and Remarks 

After recognizing the complexity of the problems of event selection and 
data analysis, we have set out to provide a general approach to large scale 
computation. Our first large scale operation will be at Brookhaven in 1985. 
This should provide an adequate demonstration of a more generally useful 
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inexpensive approach to the larger computation problems of high-energy physics 
experiments, as well as other fields. 
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Schematic layout of E690 (FNAL). A-I are drift chambers; Ml and M2 
are large aperture modest field analyzing magnets; C0 , C1 , and C2 are 
highly segmented threshold Cherenkov counters and downstream a 
subsystem of calorimeters. E766 is the part of the detector 
operating at Brookhaven National Laboratory. 

Fig. 2. Moderate magnetic field track finder. Uses wire numbers of single 
views of 6 drift chambers. x1 and X are used to predict values at 
either x2 or x3 (done at different cytles. This is why the straight 
line finder x1-x4 requires a page generator module [P)). The 
predicted value (X2 or x3 ) is used with x6 to predict a value for the 
deviation from a straight line tested in a Map by x5 • 
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Fig. 4. Operation of the sum multi plier. Words are fed bit serially into a 
register. The nth bits of all the input words provide an address 
used to retrieve from a look-up table precalculated values of the 
linear combination l: an X~, where the X~ are the weights of the 
binary representation of Xn' 
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QUESTIONS AND ANSWERS 

(Editor's Note: The question and answer sessions for the talks by Kaplan and 
Avilez were combined.) 

Q: How much pay off do you get from the "refit" using the drift time 
information, compared to computation time it takes? 

P. Lebrun 

A: We need - 100µ to 200µ resolution. A normal, usual size PWC cannot give 
such a resolution. Therefore we do have to do this "refit." 

C. Avilez 

Q: Needs for off-line analysis? 

A. Brenner 

A: Most experiments will require only minimal off-line analysis. 

M. Kreisler, C. Avilez 

Q: Considering that typical off-line reconstruction codes consist of many 
pages of FORTRAN, how can you expect to build systems of that many modules? 

M. Fischler 

A: The mapping of FORTRAN in the most general sense into hardware modules is 
not the way to examine the problem. Rather the question is whether one can 
reconstruct a large number of tracks from complex topologies in a finite 
(i.e., small) number of modules? The answer to that is yes. 

M. Kreisler 

Q: How much does one of your modules cost? 

M. Delfino 

A: $100 to $300, depending on volume. 

M. Kreisler 

Q: How many experiments have the resources of talent to put together a data-
driven system that will "fully" reconstruct their data? 

T. Nash 

A: At present, very few although we expect that to change as this technology 
is developed. 

M. Kreisler 
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Comment: At E766, we currently write data limited by tape writing speed 
yielding approximately 4 tapes/hour. Such tapes take ~ 4 CPU hours on a 
Cyber. This would yield a mass of data not easily passed in to to through an 
off-line computer center. Thus the bulk of the data is filtered by the 
processor and then taken to an off-line system. Experiments such as ours will 
need computer time, of course, but not at the scale one would first guess by 
the magnitude of our data stream. 

M. Kreisler 

Q: A pipeline can only compute as fast as its slowest element. For either 
configuration, what is the efficiency of the pipeline for a typical event? 

R. Fine 

A: No answer 
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ON-LINE FILTERING OF HIGH ENERGY PHYSICS DATA 
WITH AN ARRAY PROCESSOR 

John P. Rutherfoord 
University of Washington, Seattle WA. 98195 

In a high data rate experiment (E605) at Fermilab we 
are using a programmable Array Processor, an FPSlOOE, to 
reject events using criteria which are either too 
complicated for the existing hardware triggers or are not 
anticipated with enough lead-time to build a special 
hardware trigger. The advantages and limitations of this 
approach are discussed. 

Modern elementary particle physics experiments have a 
number of levels of trigger decision. Typically the first 
level trigger is very fast and simple and provides a high 
rejection rate. Successive levels are usually slower and more 
sophisticated and each filters out all but a fraction of events 
presented to it until finally the rate is low enough that 
surviving events can be written to magnetic tape. As magnetic 
tape technology has improved and as physics experiments acquire 
data over many years, it is possible to fill data tapes at a 
rate much faster than off-line computers can analyze. It is 
now increasingly important to make even more sophisticated 
trigger decisions before data is written to tape. An 
inexpensive Array Processor can perform filtering algorithms on 
data at rates comparable to the speed with which that data can 
be written to mag tape. An example of such an application is 
described here. 

Experiment E605 at Fermilab is a large, fixed target 
experiment optimized to search for narrow structure in the 
dilepton spectra at large invariant mass. The primary proton 
beam intensity is a significant fraction of that available from 
the accelerator. Because the processes of interest are a tiny 
fraction of the total hadronic cross section, the challenge for 
the experimenters is to reject the huge backgrounds. As is 
typical in experiments of this kind, off-line analysis shows 
that many background events survive all levels of hardware 
trigger. 

In this experiment an event is subjected to three levels 
of hardware filters, the third of which is the Nevis Trigger 
Processor described at this conference by Dan Kaplan. During 
the accelerator spill the data from an event c-soo 16-bit 



-56-

words) surviving these filters is stored in a fast (150 
nsec/16-bit word) buffer memory with a capacity of 4 Mbyte. Up 
to 4000 events can be stored during the lS second accelerator 
spill ~ith -2, readout dead-time. Between spills the data can 
be dumped onto mag tape. The full 4 Mbyte can be written in 16 
seconds. As the current minimum time between spills is SO 
seconds, this speed is more than adequate. In this way we can 
fill a 62SO BPI, 2400 ft. data tape in about 30 minutes. 

Our current, first level off-line analysis program (not 
yet optimized for speed) which runs on a Cyber 17S takes an 
average of 100 msec. per event or -3 hours of CPU time per 
data tape. 

Rather than write the data from the buffer memory directly 
to tape, a Floating Point Systems FPSlOOE Array Processor DMA's 
the data, one event at a time, into one of two buffers in its 
own data memory, performs a filtering algorithm on that event, 
and, if it survives, DMA's that event out to the on-line 
computer's memory and from there onto mag tape. Because there 
are two data buffers in the Array Processor, the analysis on 
one event overlaps in time the ~ading-in and writing-out of 
the event in the other buffer. The Array Processor's DMA speed 
was measured to be 4 microsec/16-bit word. Thus it takes 8 
seconds to read in 4000 events of 500 words each and another 8 
seconds to write them all out again. (Usually only a fraction 
are written out.) Because neither the Array Processor DMA speed 
nor the mag tape drive challenge the natural bandwidth of the 
on-line computer's bus (a Unibus on a PDP ll/4S) , the full 4 
Mbyte from the buffer memory can be passed through the Array 
Processor and written to tape in the same 16 seconds as when 
the Array Processor is removed from the chain. 

The current filtering algorithm, programmed into the Array 
Processor, looks for two or more muons penetrating our 
calorimeter and shielding and counting in two hodoscope planes 
and in three planes of proportional tubes. The algorithm is 
written in Fortran IV. Editing, compilation, linking, and 
testing of algorithms are all done on a VAX. The load module 
is transfered to the on-line computer on a floppy and 
automatically loaded into the Array Processor's program memory 
at the beginning of a data acquisition run. The algorithm 
takes about 1 msec. per event. On a VAX 11/780 with FPA this 
same algorithm executes in 2 msec. and on the Fermilab Cyber 
17S in about 2SO microsec. With no degradation in the speed 
with which data flows through the Array Processor, more 
sophisticated algorithms could take up to 4 msec/event. Or 12 
msec/event would still allow all events to be processed during 
the SO seconds between spills. 

This low cost ($3SK) Array Processor has a maximum program 
memory size of 4K 64-bit words. This is roughly equivalent to 
10 to 20 pages of Fortran code. We are currently using a 
little over 3k words for our routines. The program memory size 
is the first limit we would hit if we were to try to expand our 



-57-

application. Were we to program in the Array Processor-a 
assembly language the same algorithm would require much less 
memory and would run much faster (N factor 4). Fortran IV is 
not a good match to the architecture of the Array Processor but 
it is the only higher level language supported by Floating 
Point Systems. The programmer time required to write an 
algorithm in the Array Processor-s assembly language (more 
similar to microcode) compared to coding in Fortran IV is 
approximately an order of magnitude for an experienced 
programmer. 

Latches 

On-line 

Data Flow 

ADC s etc. 

Processor 

Q Mag 
0 Tape 

J Flow during 
accelerator spill 

Flow between 
accelerator spills 
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~UESTIONS AND ANSWERS 

Q: Is it correct that the Array Processor part of the analysis is 
only 1/3~ of the full analysis? 

M. Fischler 

A: Yes 

Q: Have you compared the results of the array processor with the 
Cyber results? 

L. Leipuner 

A: No 

Q: Why the choice of a FPSlOO rather than, say, an Analogies 500 
which can swallow data at a much faster rate (5-6 MHZ)? 

R. Fine 

A: No answer 

Conunent: Speed of data transfer for FPSlOO to UNIBUS is limited 
by UNIBUS speed not by speed of array processor. FPSlOO itself could 
transfer at - 4 x 106 words/second. 

J. Amann 
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A CHARGED KAON TRIGGER USING THE M7 

The E-400 Collaboration presented by Paul Lebrun 
Fermi National Accelerator Laboratory* 

The goal of experiment E-400 is to accumulate a large sample of 
hadroproduced charmed events. Since the most likely decay of a charmed 
particle is via the emission of a kaon, a charged, high momentum kaon trigger 
has been designed using a previously build fast processor (the M7 computer) 1 ' 2 

for experiment E-401. 3 This report demonstrates the flexibility of such a 
processor. 

The Experiment 

The experiment is running in the neutral-wide band beam at Fermilab; the 
relevant parts of the spectrometer and the data acquisition system are shown 
in Fig. 1. The 10% interaction length target consist of Tungsten, Beryllium 
and active silicon and is followed by a vertex detector and a trigger counter. 
The first analysis magnet, characterized by a transverse momentum kick of 400 
MeV/c, is followed by 3 multiwire proportional chambers and the first 
Cherenkov counter. The second analysis magnet (transverse momentum kick of 
600 MeV/c) followed by 2 MWPC's gives us good momentum resolution for central, 
high momentum tracks. P3 has 2 mm wire spacing in all 3 views (x, non bend 
view, u and v, characterized by a stereoangle of 11 degrees). P4 has 3 mm 
wire spacing in the x view, 2 mm in the u and v view with the same 
stereoangle. The counters C1 and C2 have a pion threshold set at 5.4 GeV and 
10.8 Gev, respectively. Each of those Cherenkov counters has 34 cells, the 
geometry for C1 and C2 is displayed in Fig. 2. On the downstream face of C2, 
a scintillation counter hodoscope (CH2) matching the C2 cell geometry is 
mounted, allowing Cherenkov related fast triggers. 

A fast trigger is obtained by requiring a coincidence between the target 
counter and the trigger counter located downstream of P4. The second level 
trigger is obtained by requiring (i) a signal from the active target, (ii) the 
MWPC hit multiplicity average over PO, P1, and P2 being at least 4, average 
over P3 and P4, 2; (iii) the total energy deposit in the lead glass array and 
in the hadron calorimeter being greater then 100 GeV, allowing us to trigger 
on the high energy component of the neutron spectrum. This second level 
trigger achieves a factor of 4 in background rejection. 

The M7 Trigger 

The M7 is a small fast computer with an instruction set designed to match 
the on-line pattern recognition problem of a high-energy physics experiment. 
The processor is a five address, microprogrammed pipelined, EGL machine with 
simultaneous memory access to four operands which load two parallel 
multiplexers and an ALU. 
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A charged kaon with momentum between 20 and 40 GeV will produce light in 
C1 and not in C2 and hence will fire a fast electronic trigger consisting of 
CH2 C1 C2. Unfortunately pions with momenta between 5.4 and 10.8 GeV will 
also fire this fast electronic trigger. In order·to discriminate against 
these lower momentum tracks, the M7 processor provided a crude momentum 
measurement using hit information from chamber P3 and P4. Coarse hit 
information are defined as the "OR" signals from 8, 16, or 32 signal wires, 
depending on the location of the wires in the chamber; the central region 
being always the high density, fine grained region. This defines 32 active 
"bands" per plane. The M7 search for a triplet (x, u and v) in P4 aligned 
with an active Cherenkov cell, assumed the presumed track is issued from the 
target, and search for a corresponding hit in P3x (x refers to the non bend 
view). A triplet in P3 completes the candidate tracks, the track momentum can 
be measured by virtue of the different spectrometer momentum dispersions 
present at these two chambers. Because of the crudeness of this measurement, 
only a minimum momentum cut of 18 GeV is applied to discriminate against pions 
below the C2 threshold. Above 120 GeV, no momentum information is available. 

The whole program was about 120 instructions long, the excecution time 
was typically 50 to 200 us, depending on the complexity of the event. Prior 
to data taking, the hardware has been checked on previously recorded data, by 
sending the pseudo hit information issued from the PDP 11/45 to the M7 
interfaces through CAMAC. The M7 gives it's answer through the Transfer 
Memory modules (TM) to the 11/45, relevant tracks coordinates were compared, 
the set up was found to be better than 99% efficient. During normal data 
acquisition, the efficiency of the processor was constantly monitored by 
comparing TM data block with off-line FORTRAN emulators. 

The M7 kaon trigger rejects 2/3 of the events satisfying the second level 
trigger while being 70% efficient at passing events with an analyzable kaon 
track identified by C1 and C2 in the extensive offline analysis. The 30% 
inefficiency is not due to hardware failure, but reflects problems inherent in 
the greatly simplified Cherenkov algorithm employed by the M7, such as sharing 
light of a given track amoung several Cherenkov cells or tracking confusion in 
high multiplicity events. Fig. 2 illustrates the algorithm by showing a 
typical event. Tracks locations are black dots, the circles represent the 
Cherenkov light ring, shaded bands are the active MWPC bands in P4 inducing 
the trigger. Finally, this trigger is fully programmablei allowin~ sreat 
flexibility. Triggering on proton versus antiproton, K±, K±P, or K K is 
presently being considered. 

References 
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QUESTIONS AND ANSWERS 

Q: 1) How many tapes do you write? 

2) How do you analyze your tapes? 

A. Brenner 

A: 1) 1 tape/12 minutes. 

2) Off line .. 

Q: You said you write one 6250 BPI tape per 12 minutes. How many 
tapes do you end up with after one "season" (i.e, year) of running? 

M. Delfino 

A: Approximately 1500 tapes. 
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A TRIGGER PROCESSOR FOR A FERMILAB DI-MUON EXPERIMENT 

John F. Greenhalgh 
Princeton University 

Princeton, N. J. 08544 

A trigger processor is described which is currently 
in use in Fermi lab di-muon Experiment 615. 

Introduction 

Fermi lab Experiment 615 is designed to study the characteristics of muon 
pairs produced in the forward direction by negative pion beams incident upon a 
tungsten target. 1 In the continuum region of mu-pair invariant masses between 
the J/ 1jl and T resonances, the production occurs predominantly through quark-
ant i quark annihilation (the Drell-Yan mechanism 2), an electromagnetic process 
with extremely small cross section (less than 100 pb) compared to the total 
ll-p cross section ( ~ 24 mb). Consequently, an experiment dedicated to 
studying specific kinematic regions with good statistics, such as this one, 
requires both a high intensity beam and a powerful means of rejecting unwanted 
events at the trigger level. 

Overview of Apparatus and Trigger 

A schematic of the apparatus is shown in Fig. 1. A 7.3-m-long dump con-
sisting of BeO, Be, and C absorbs most of the particles produced in the 
target, except muons. The detection apparatus downstream is live through the 
beam region in order to achieve good acceptance at large xF. The dump fills 
the tapered gap of a dipole magnet which tends to focus the low momentum 
member of as.}111metrically produced muon pairs,*thereby affording good accept-
ance in the interesting angular variable cos a from -1 to +l. 3 With its 
transverse momentum kick of 3.2 GeV/c, this "selection" magnet is largely 
responsible for the ability of the trigger processor to discriminate between 
sought after high mass muon pairs and background events, simply on the basis 
of the topology of the muon trajectories through the downstream apparatus. 

Four scintillation counter hodoscope planes, C, D, E, and F, are used to 
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Figure 1. E615 apparatus in 250 GeV/c pion beam configuration 
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trigger the apparatus on muon pairs, and two others, A and B, to veto triggers 
containing muons from beam pion decays (halo muons). The E and F banks, 
situated behind one and two meters of steel, respectively, provide an 
unambiguous identification of muons. 

The trigger for the experiment is made in three successive stages. Under 
normal data-taking conditions, only events satisfying all three levels of 
logic are written to tape. (Actually, one in a thousand Level 1 triggers also 
goes to tape for diagnostic purposes.) The first level of logic is designed 
to select events with at least two distinct muons that are in time coincidence 
with the accelerator rf signal and that have no beam halo particles anong them. 
The second level logic insists that every event have at least two tracks that 
point back to the target in the non-bending (elevation) view. The Level 1 and 
Level 2 circuitry by itself constitutes a fairly sophisticated trigger. None-
theless, a significant improvement in the trigger is achieved at the third 
level. 

The third stage of the trigger imposes the requirement that the muon 
trajectories bear a resemblance to those of high mass pairs. Unlike some other 
trigger processors, 4 no mathematical computation of an invariant mass is 
actually made. 5 Instead, two 15 bit words are constructed, each one describing 
a trajectory through the C and D hodoscopes. In principle, these 30 bits could 
furnish an address into a 230 bit memory, each location of which contains a 1 
or 0 depending upon whether or not the candidate track pair is to be accepted 
or rejected. This is the essence of the philosophy adopted for the trigger 
processor described here, though the implementation does not actually use such 
a memory. 

Level 3 Trigger 

The "raw data" used in making the Level 3 trigger consist entirely of the 
latched signals from the C and D hodoscope X, Y, and U counters. Only those Y 
c_ounters which contributed to a Level 2 trigger participate in Level 3. A 
three-fold coincidence of X, Y, and U counters (the result of which is also 
latched) creates rectangular "pads" in each hodoscope, as shown in Fig. 2, 
which depicts an actual event from the point of view of the third level 
processor. 

/UM DIRECTION 

Given a set of struck pads, a 
hardware "track pair finder" assigns 
pairs of pads, one in the C hodoscope 
and one in the D hodoscope, to a 
candidate particle trajectory. Two such 

0 candidates are constructed, called a and 
a. Ultimately, each track is described 
by a 15 bit word. The lowest order 5 
bits specify the X coordinate of the 
struck pad in the C hodoscope, the next 
6 bits give the X coordinate of the 
struck pad in the D hodoscope, and the 
remaining 4 bits identify the Y 

E615 EVENT DISPLAY OF PAO HITS IN c ANO 0 HOOOSCOPES coordinate of the c hodoscope pad. The 
Figure 2. Detector as seen by Level 3 Y coordinate of the struck pad in the D 

hodoscope need not be encoded because 
the track pair finder will associate a given C hodoscope pad with only those 
pads in the D hososcope belonging to Y counters that are roughly on a line with 
the target, in keeping with the Level 2 logic. Furthermore, the track pair 
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finder will not permit the a and a track pads to share a Y address in either 
hodoscope, in conformity with Level 1 nonadjacency requirements. 

As can be seen in Fig. 2, it may be possible to construct many candidate 
track pairs for a given event (though only the tracks actually reconstructed 
using the wire chambers are shown in the figure). Accordingly, the track pair 
finder not only performs an encoding function, but "loops" over all possible 
pairs of candidate tracks, subject to the Level 1 and 2 trigger requirements. 
Each pair is presented in turn to Fermi lab ECL/CAMAC Memory Look-Up modules 
(MLU's) , 6 where a comparison is made with stored patterns. The track pair 
finder also knows when to quit. That depends not only upon the outcome of each 
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comparison, but on the number of 
track pair candidates that have been 
constructed and compared so far, for 
a given event. 

The MLU's are interconnected as 
shown in Fig. 3, though it should be 
emphasized that once the two words 
describing a track pair candidate are 
made available, the bits may be 
manipulated in any fashion desired, 
simply by re-cabling and re-loading 
the MLU's. In this experiment it has 
proven convenient to assign a charge 
to each track, to determine whether 
or not each track's curvature is 
compatible with a physically allowed 
momentum, and to determine whether or 
not the pair of tracks has a topology 
similar to that expected for high 
mass di -muons. 

Charge is specified using a two-
dimensional matrix that has the C 
hodoscope pad's X counter address 
providing one index and the D 
hodoscope pad's X counter address 
providing the other index. The 
elements of the matrix used to load 
the appropriate MLU's are set 
to 1 for positively charged tracks, 
and to 0 for negatively charged 
tracks . 

A momentum selection ("good" or 
"bad") is based on another matrix 
with the same indices, loaded with 
ones in kinematically allowed regions 
and zeroes elsewhere. 

Invariant mass is strongly 
correlated with the plan view track 
separation at the C hodoscope ( tiCX) 
and the track separation at the D 

o L......J.~_._...__..._,_.__._....._..__,.___..___,,,=--_.__._. hod os cope ( llD X) . The h i g h mass 
o 1 2 3 4 5 6 1 a 9 w H n 13 i4 15 iG region in the tCX vs. llDX plane 

NUMBER OF TRACK PAIRS FOUND PER EVENT varies according to the vertical 
Figure 4. Typical track pair multiplicity separation of the tracks, so that a 
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nllTiber of two-dimensional arrays must be specified (one for every I tCYI) in 
order to load a Mass MLU. Separate Mass MLU's are needed for track 
pair candidates in which track a is assllTied to have one charge and track 6 
another, since the 16-bit-wide input to the MLU is exhausted by the ACX, LOX, 
and I tCY I inputs. 

The Trigger f'll..U at the end of the chain is easily programmed to set the 
output "trigger bit" to 1 or 0 depending on the state of its seven input 
bits. An "output ready" signal tells the track pair finder when the trigger 
bit is valid so that it may decide whether to assemble the next track pair 
candidate or quit. An internal counter may be set so that no more than 1, 2, 
4, 8, 16, or 32 track pair candidates are constructed. (Two 32-word-deep 
Memory Stack modules record, for diagnostic purposes, the 30 bit description 
of each track pair candidate presented to the MLU's.) During data-taking, 
the stack limit has been set to 16. Of course it is possible that no track 
pair candidates at all can be constructed for a given event, or that al 1 
possible track pair candidates are exhausted before the stack limit is 
reached. In the first case the event is rejected. In the latter case the 
event is rejected if none of the candidate pairs satisfied the Trigger MLU, 
and accepted otherwise. We have chosen to reject events when the stack limit 
is reached, regardless of the state of the trigger bit associated with the 
candidates tested. A representative histogram of the nllTiber of track pairs 
found per event is shown in Fig. 4. (The entires at 0 and 16 are associated 
with the prescaled Level 1 trigger.) 

Electronics Design, Construction, and Testing 

Most of the trigger electronics was designed and constructed at 
Princeton using ECL 10,000 series chips. The Level 1 and Level 2 circuits 
were built using a Multiwire technique. 7 The track pair finder (5 boards) 
and U counter-to-pad fanout modules (4 boards) were wired using the 
insulation displacement technique. 8 This permitted somewhat faster wiring 
than the wire-wrap method, but at the price of a greater susceptibility to 
bad contacts. Nevertheless, since having been debugged, the entire trigger 
processor has operated with only two or three failures during the last nine 
months, those failures having been single dropped bits in the MLU's. The 
veto hodoscope logic was designed and built at the University of Chicago. 
The only commercial electronic modules employed in the trigger are the 
phototube discriminators (Lecroy 4416's), a few latch modules (for the A, B, 
E, and F counters), and assorted NIM modules. 

Operational Characteristics 

The trigger processor has made possible a marked reduction in the nllTiber 
of events written to tape per beam spill while significantly enriching the 
sample of interesting events recorded on each tape. 

Some typical rates per spill (- 14 sec in duration) are tabulated below 
for runs with a 75 GeV/c rr- beam (400 GeV/c protons) and a 250 GeV/c n- beam 
(800 GeV/c protons). 
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Typical Rates per Beam Spi 11 

75 GeV/c 250 GeV/c 

protons on primary target 4.9 x 10 12 3.6 x 10 l 2 

w- on experiment's target 2.7 x 10 9 2.4 x 109 

hits per downstream hodoscope - 10 8 - 10 8 

Level l triggers 2.4 x 10 4 6.3 x 10 4 

Level 2 triggers 1.6 x 10 4 3.3 x 10 .. 

Level 3 triggers 1390 1260 

The ratio of Level l to Level 3 triggers varies between 20 and 50. The dead-
time of the experiment varies between 303 and 40%, most of it attributable to 
the on-line computer and the A/B veto rate. The deadtime introduced by the 
Level 3 logic is only about 2.5 µsec per Level 2 trigger. The minimum time 
interval between the start of the Level 3 logic and the assertion of the 
"trigger bit" is 570 nsec, about 370 nsec of which is spent in the sequence of 
memory look-ups. If no track pair candidates can be found, a minimum of 90 
nsec passes before an abort is issued. 
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Another measure of the 
effectiveness of the trigger 
processor is displayed in Fig. 5, 
which compares data taken with and 
without the Level 3 trigger, at a ir 
beam momentum of 250 GeV/c. The µ+µ-
invariant mass spectrum reveals a 
suppression of events below the J/~ 
relative to those above by more than 
a factor of 15 when the Level 3 
trigger is employed. Both data sets 
have been normalized to 100,000 
triggers written to tape. Minimal 
event selection criteria were imposed 
in the analysis of the data to make 
the comparison a fair one. 

Summary 

o.o 4.0 2.0 3.0 4.0 5.0 6.0 

A fast, ECL-based trigger 
processor featuring a specialized, 
hard-wired "track pair finder" and 
modular, programmable memory look-up 
units has been implenented in a di-

7D muon experiment at Fermilab, and has 
µ.+ µ.- INVARIANT MASS (GeV/c 2 ) 

Figure 5. Analyzed data from two runs 

achieved better than an order of 
magnitude reduction in trigger rate 
and rejection of background events. 
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A REVIEW OF TRIGGERS AND SPECIAL COMPUTING HARDWARE 
FOR THE 

FERMILAB FIXED-TARGET PROGRAM 

Sergio Conetti 

Institute of Particle Physics and McGill University 
Montreal, P.Q., Canada, H3A 2T8 

The design and implementation of a "trigger", that is the selection of 
a particular process from the many ones induced by the interactions between 
elementsry particles, have always been among the most crucial aspects of 
particle physics experiments. In the case of fixed target experiments in 
particular, the rate at which the reactions under study are produced, 
rather than being limited by the accelerator's luminosity, is very often 
determined by the achievable trigger rste and the consequent dead time 
produced by the data acquisition system. 

Thanks to technological advances in the field of micro-electronics, 
new and powerful tools have recently become available to upgrade the 
capabilities of the triggering systems. The community of particle 
physicists has welcomed the advent of the microprocessor which, together 
with the ever-increasing availability of integrated circuits with a more 
and more favourable cost/performance ratio, has allowed the implementation 
of very sophisticated, multi-level schemes of event selection. 

The first comprehensive coverage of the marriage between micro-
electronics and particle physics was given by the 1981 CERN "Topical 
Conference on the Application of Microprocessors to High Energy Physics". 
In his contribution to the Conference[ll, Tom Nash in addition to a more 
detailed discussion of the required perrormance and general properties of 
"intelligent triggers" in the fixed target environment, reviewed the 
activity in such a field connected with Fermilab experiments. In that 
paper thirteen processing devices, employed in eleven different 
experiments, were described: three years after the CERN Conference the 
rapid growth in the field is clearly indicated by the presence of thirty 
different processors, employed in twenty-four fixed target experiments at 
Fermilsb. A more detailed breakdown can be obtained using the Fermilab's 
Situation Report tables, where approved experiments are listed under the 
categories: "Experiments completed during the past year", "'Experiments in 
progress or to be set-up within a year" and "Other approved experiments". 
When the Summer '83 Situation Report is employed, and after excluding 
purely bubble chamber or emulsion experiments~ one recognizes that in the 
three categories, respectively, 7 out of 15 (41%), 6 out of 7 (86%) and 11 
out of 17 {65%) experiments employ one or more processing devices for the 
online event selection. In the presence of so many different systems, and 
before describing them in more detail, it is useful to introduce a 
classification scheme into which the various devices can be accommodated. 

Classification of Processors 
Like numerous other attempts, in various scientific disciplines, to 

find some underlying order in an ensemble of complex srstems, the scheme 
presented here will involve some arbitrariness and exped tious overlooking. 
Trying to force all of the existing units into a rigid pattern will cause 
the appearance of hybrids, hermaphrodites, chimerae and other monsters. 
These reservations notwithstanding, there are some definite advantages in 
introducing a classification scheme, even if not fully satisfactory nor 
necessarily unique, so we will proceed towards such a goal. As a first 
step, processing devices will be grouped into Fixed Flow and Variable Flow: 
a Fixed Flow processor will be one for which the sequence and total number 
of processing steps is always the same, independent of the features of 
individual events!· for the second category, the processing flow will 
obviously vary w th different events. Fixed Flow processors will be 
further sub-grouped into Logical (FFL) and Arithmetical (FFA) while the 
Variable Flow ones will be of the Data-driven (VFD) or Program driven (VFP) 
type.A more detailed description of the four major groups just introduced 
follows. 
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Fixed Flow Logical. When an interaction takes place, the data most 
immediately available from a detector is in the form of bit 
strings,obtained by imposing a "binarising" threshold to analogue data , 
carrying information related to pattern of hits in wire chambers or 
counters.An FFL processor would consist of hard-wired or programmable logic 
elements capable of examining the patterns to decide upon the acceptability 
of each event received.The operation could involve sequential steps or be 
completely parallel. As the most extreme case for the ultimate processor, 
one can think of achieving a very fast (20-50 nsec) and arbitrarily sharp 
event selection by presenting in parallel all the information recorded by a 
suitable detector to a huge look-up memory: performing different 
experiments would only require reprogramming the memory ••••• The only 
drawback of such an approach is that, even for a relatively simple 
detector, the number of bits needed in the memory is of the same order as 
the number of molecules in the galaxy. A more down-to-earth and commonly 
employed category of devices is represented by the "shifters" for which 
speed of execution is traded off versus number of components. Such devices 
make use of some shift register to sequentially examine partial sections 
into which the complete bit pattern has been broken. Typical cycle (step) 
times for FFLs are 20-50 nsec. 

Fixed Flow Arithmetical. These devices involve the encoding (often done 
via priority entodets)of wire/counter hits into coordinates and the fast 
digitization of analogue data. Arithmetical (and logical) operations are 
performed on the data as it cascades through the various stages of the 
processor. In order to obey the requirement of fixed flow, some selection 
criteria (e.g. largest, leftmost)is imposed in the case of multiple entries 
,such as more than one hit in a detector plane, etc. In this way the 
sequence of operations is completely pre-determined and can be built into 
the processor structure. Typical single cycle times are 50-100 nsec. 

Variable Flow Data-driven. VFD processors are the obvious evolution of the 
FFA ones (or is the FFA just a special case of the VFD?). For this type of 
processor, an attempt is made to digitize, for every event to be processed, 
all the relevant data and to perform the desired computations on all the 
different combinations arising from multiple entries. To achieve this 1 the 

~
rocessor must be capable of executing single or nested loops, conditional 
umps, etc. The logic of such a processor becomes more and more elaborate, 
ut the potential for fast computations of complex algorithms is very 

large. Given the sophisticated structure, it is advisable to develop such 
processors with a modular approach and with a well defined mechanical and 
signal standard. As we will see two such systems have been independently 
developed for fixed target experiments at Fermilab.Cycle times are usually 
the same as for FFAs. 

Variable Flow Program-driven. In this category we include all the systems 
that employ, as their central intelligence agency, "conventional" 
computers, driven by a stored program. In most instances:{ the systems are 
centered around one or more microprocessors, often deve oped ad hoc to 
optimise the performance with respect to the required application, yielding 
some very unconventional and most interesting architectures. Typical cycle 
times for such devices are in the hundreds of nanoseconds. 

Processors at Fermilab 

The large set of processors developed for the fixed tarlet 
experimental program at Fermilab is summarized in Table 1. The four ma or 
categories introduced in the previous section are well represented, w th 
some experiments exhibiting more than one processor in their set-up. E-605 
and E-705 in particular, channel the flow of incoming events through an 
FFL-VFD-VFP sequence, so achieving a powerful multi-level trigger (it 
should nevertheless be mentioned that E-690 aim is an equally effective 
event selection through the exclusive use of a very sophisticated VFD 
device). Performance figures describing the processing speed and rejection 
power of each system are deliberately not included in the table: such 
entries might lead to perform a comparison among different systems, which 
is somewhat meaningless when a large set of boundary conditions is not 
taken into account. In short, one could say that each processor was 
designed to attain the speed and rejection power that were needed for the 
particular application. 

The functions performed by the various systems cover a wide spectrum, 
reflecting the ample degree of dif ferentation exhibited by fixed target 
experiments. One particular application nevertheless stands out 
unmistakably: as many as twelve experiments made use of their processors 
to evaluate the invariant mass of a set of particles, described by their 
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Table I. 

1) 2) 3) 
Rrp FFL FFA VfD VFP REF STATUS FUNCTION MAIN CHARACTERS 
326 x C,2 c di muon mass Suaner,Halling,Isaila 

361 x 3 c synch. rad. pattern Dworkin 

400(687) x CG,24 R high pt kaon Lebrun,Gaines,Droegge 

516(691) x cl~ c missing mass NashIBarsottidBracker x event reconstruction Mart n,Shepar ,Luste 

537(705) x C,14 c dimuon mass Areti,Conetti 
x c track finding Glass 

605 x G,22 R high p ,high mass Kaplan 
x G,26 event Teconstruction Rutherfoord 

609/683 x 4 c multi-jet pattern Erwin,Nelson 
x 27 D event reconstruction Thomson 

612 x c c track reconstruction White 

615 x G,17 R dimuon mass Greenhalgh,MacDonald 

617/731 x 9 R Ko (6 photons) mass Gollins,Winstein 
x ~~o:~8clusters Heller 

621 xx 5 R Thompson 

623 x C,10 c <P~ (4K) mass Fenker,Green 

665 x 7 D high Q 2 muon Pitt,Kobrak 

672 x 23 R dimuon mass Crittenden,Smith 

687 x x 19 D high pt ltaon Lebrun ,Gaines 

690 x G,20 D event reconstruction Knapp,Sippach,Avilez 

691 x 15 D high forward mass Tagged Photon Collab. 

704 x 28 D A 0 mass Bi raa, Villari 
x 6 ~i~~o~t;df~~t~~ss ~~:=~~!:~:~~=~l;~nch 705 xx 16 D x 30 event reconstruction Haire,Kuchela 

715 x 8 c trans.rad.pattern Leningrad 

732 x 11 D !!Omaaa Sheaff 

743 x I 29 D vertex reconstr • Rome 

.!!!!!!!. 
!)Bracketed numbers represent experiments performed by the same group 

again in the table with some additional system. Number separated by 
81rify that the same processor was used in two experiments. 

2 C : the processor was described in the CERN '81 Conference (ref. 
contributed paper is contained in these Proceedings. 

that appear 
slashes(/) 

1). G : a 
3) C : co•pleted. R : running. D : development 
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measured momenta (or energies) and directions. Be the sought-after final 
state a di-muon a Ko, or any other, it can really be said that the advent 
of processors olfered the most effective solution to a problem that until 
then could only be partially and insufficiently solved. 

A description, necessarily very brief, of the 
grouped into the four major categories follows. 

individual systems 

Among the Fixed Flow Logical processors, the first two we encounter, 
E-326 and E-361 are of the Shifter" type. The very effective di-muon 
processor for E-126 has already been described in the literature [1,2]: in 
a set-up where the detector and the processor appear to be well integrated 
parts of a single body, counter hit patterns are identified and compared, 
via a shift register, to the pre-computed set associated with high mass 
di-muons. E-36113] had a simpler requirement: particles associated with 
the beta-decay of A hyperons produced, in a Xen"n chamber! a characteristic 
pattern (fig.1) 1 induced by the particles themselves pus a photon from 
synchrotron radiation. A processor (fig. 2) was built to recognise the 
presence of the correct number of AND and XOR coincidences, counted while 
shifting the data from the Xenon chamber two planes. 

Skipping the E-605 front end processor and the E-612 track finder 
already presented in reference 1, we describe in more detail the E-60~ 
calorimeter matrix [4). The calorimeter was composed of 132 towers each 
one giving an output proportional to the energy deposited times the slne of 
the tower polar angle. A trigger was formed when the sum of the energies 
in a group of towers was above a threshold energr· The sum was obtained by 
using an analogue adder and a cross-eoint matr x (fig. 3).A given module 
(fig. 4) performed 40 analogue sums in parallel (through the cross-point 
matrix): specific triggers were programmed by connecting the desired 
cross-point resistors, allowing an easy reconfiguration of the system. 

Still in the realm of calorimeter processors and somewhat similar in 
scope, although very different in actual realization of the system, are the 
E-621 and E-705 cluster finders. Both these experiments process the 
analogue data from an electro-magnetic glass calorimeter to recognise and 
count clusters of energy deposition, likely associated with incoming 
photons or electrons. The E-621 ECL processor IS) looks for neighbours on 
two adjacent edges of each glass block hit (rig. 5): if none of the 
neighbours is hit, then it is called a cluster edge. The total number of 
identified clusters is available as the processor's output. The E-705 
cluster finder {61 compares the energy deposition in every block of a 
scintillating g ass calorimeter with the one in its eight neighbours, 
looking for local maxima which are identified as cluster centers. The 
total energy of each cluster (peak + neighbours) is weighed by its radial 
position, to identify high ~- photon candidates. A digital list of cluster 
energies and positions is aiso prepared, to be analyzed by the next level 
of triggering. 

The new, high energy, muon beam at the Fermilab Tevatron will be 
utilized by E-665. The experimental requirement of recognising muons 
scattered with large q2 will be satisfied tiy a processor [7J, designed to 
analyze the information from 4 banks of X-Y proportional tubes imbedded in 
the spectrometer iron walls. Track finding will be done separately in each 
of the two views, using fast memories to recognise hit patterns appropriate 
to scattered muons coming from the target. In each view, each wire in the 
first chamber is the endpoint of one road. Each road is associated with a 
4096 x 1 ECL memory, whose twelve address lines are connected to the 
appropriate chamber wires. The memories will be downloaded with the 
acceptable hit patterns, pre-computed through extensive Monte Carlo 
simulations. Finally, we mention the cluster finder developed for E-715[8] 
to recognise and count clusters in a system of proportional chambers 
forming the active component of a transition radiation detector. 

Similar to FFLs, Fixed Flow Arithmetical processors are usually 
designed and hardwired having in mind a very specific application, so that 
their configuration is experiment-dependent and not easily transportable 
from one set-up to another. On the other side, since FFA processors, as 
mentioned earlier can always be considered as a special case of the VFD 
ones, we will finJ in our list some FFA devices based on modules developed 
for the VFD systems. 

From Table 1, we first encounter E-617 and its follow-up (E-731), a 
pair of CP violation experiments that require in their trigger, to 
recognize the K0--j3rr0 decays for which all the photons are contained 
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within the detector[9). To this goal, the information from an 800 blocks 
lead glass calorimeter (fig. 6) is treated in a processor that combines 
digital and analogue calculations to attain maximum speed and efficiency. 
For every event, the quantities computed are 

~E. (analogue sum), ~x.E./~E. (analogue sums, digital division) 
l l l l 

and 
2 

~r. E .. ~E. (analogue sums, digital multiplication) 
l l l 

where Ei is the energy deposition in the 
transversal and radial coordinates. Suitable 
provide, in"'l50 nsec, the desired signal. 

i-th block, and Xi ,rt its 
cuts on the above quantities 

Another CP violation experiment, E-621, was already mentioned earlier 
for its photon cluster finder, wnich is used in conjunction with an 
arithmetical processor to select KO--? rr+rr-rrO decays in tne presence of a 
competing background (5). Still in the setting up stage, the experiment 
features two processsors utilizing the information from two different 
detectors (proportional chambers and counters) to evaluate the same 
quantity. Using respectively a set of look-up tables (the Lecroy version 
of the Fermilab ECL-CAMAC system, see below), or a home-built subtract and 
divide circuit, the two processors compute the quantity 

(B -A )/(B 
left left right 

- A ) 
right 

where A,B 
left( right) 

represent the left (right)-most hit from the two planes of detector A and B 
(fig. 7). Such quantity is related to the mass of the detected Vee decay. 
Not too dissimilar in concept, but more complex because of the presence of 
four candidate kaon tracks, the E-623 ~~ mass processor has already been 
described elsewhere (1,10). 

The identification of yet another invariant mass, this time the ;:: O , 
is the aim of E-732.(11) The exact formula for the mass evaluation, shown 
in fig. 8, involves a sequence of arithmetical operations. The proposed 
processor is hard-wired to diligently go through the required set of 
operations, making the largest possible use of parallel processing, as 
detailed in fig. 8. Finally the current plan of the E-691 collaboration 
(father of the Fermilab ECL-CAMAC system), is to reconfigure their E-516 
trigger processor into a simpler system suitable to satisfy the 
requirements of the new experiment. 

In addition to the rich choice of application dependent projects 
described so far, a very important feature of the Fermilab fixed target 
program is the presence, as mentioned earlier, of two very powerful general 
purpose systems, representing the global approach to trigger processing 
that is the distinctive character of Data-driven~riable Flow devices. 
The first of the two srstems, the Fermilab ECL- ,.,.,,.c, has already been 
described in detail fl, 2). The first imJlementation for which it was 
developed, the recoi trigger for E-516(13 , was followed by the E-537 
di-muon mass processor[l4J. The modules rom both of E-516 and E-537 
processors are going to be used again in a new round of Tevatron 
experiments: E-691 will reconfigure the recoil processor to achieve a 
forward mass evaluation[l5), while E-705 will implement an improved version 
of the basic di-muon processor[l6]. Another experiment, E-615, has already 
run with a hlbrid home-built! ECL-CAMAC di-muon processor, described in 
these Proceed ngs[l7]. 

The ECL-CAMAC system has been very successful: one can foresee that 
more and more applications of it will appear in the future, based on its 
connnercial version~ now produced and marketed by Lecroy Research Systems. 
The two most funaamental building blocks of the ECL-CAMAC system, the 
Stack1 used as a buffer and supplier of operands and intermediate results, 
and tne Memory Look-Up, the general purpose operator, have already been 
produced by Lecroy, together with other general purpose logic and 
arithmetic modules. It appears that all the elements exist to assemble 
sophisticated processing systems similar to the ones developed in the 
original ECL-CAMAC standard, although with some notable differences. An 
important element of the Fermilab system was the Do Loop Indexer, a module 
capable of requesting, as soon as they become available all possible pair 
combinations from two lists of elements which are filled concurrently with 
the pair extraction process. Such property yielded a faster processing 
capability as compared to the one given by a "nested loop"' logic where the 
outer index cannot be advanced until all the elements belongtng to the 
inner index have become available. The Lecroy Corporation has decided[l8) 



-74-

not to produce such a module, providing instead the Stack with 
nested-loop" capabilities. Such a choice represents a very reasonable 
trade-off of potential processing speed (not always exploitable) versus 
system simplicity. Another imeortant feature of the commercial version 
that will greatly facilitate its adoption is the packaging into modules 
residing in standard CAMAC crates and obeying the CAMAC protocol, Various 
groups are already using or planning to use the Lecroy ECL-CAMAC modules: 
in addition to the already mentioned E-621, E-705 and E-687 will implement 
respectively a di-photon addition to the ai-muon trigger and a front end 
processor to the M7 computer[l9). 

The second general system for VFD processors the Nevis Lab 
data-driven pipelinef is described in these Proceedingsf 20) as well as in 
earlier publications 21). The approach is even more ambitious than the 
ECL-CAMAC one: in its ultimate configuration, the system is expected to 
perform a complete reconstruction of all the beam interactions in the 
target, without introducin~any dead-time, A system of such a performance 
is already running at 10 interactions/ sec, for Brookohaven experiment 
766 while Fermilab E-605, as described in these Proceedings[22), is 
utilizing the same modules to look for high ~ particles and high mass pairs 
in a low multiplicity environment. E-690, as described in ref, 20, will 
demand the ultimate performance from the Nevis Lab project. 

So far all the systems in the VFD category have represented 
implementations of the ECL-CAMAC or the Nevis efforts; there is one notable 
exception, the E-672 di-muon mass processor[23), whose self- explanatory 
block diagram is shown in fig. 9. In what turns out to be a very elegant 
development, the designers have given up some of the speed attainable when 
maximum concurrency ls demanded, to realise instead a system which is 
particularly compact and easy to commission. The E-b72 algorithm for 
evaluating di-muon masses is very similar to the one utilized by the E-537 
ECL-CAMAC processor, so that a comparison of the two systems is meaningful. 
Trading speed for simplicity, the E-672 system needs about 5 µsec to 
process the ideal event (only the 2 muon tracks present) as compared to 1 
µsec for E-537. The E-672 system nevertheless is totally contained in 1 1/2 
crates (versus 'V5 crates for E-537) and required a total manpower of about 
2 man/years, small figure when compared to the large effort involved in the 
ECL-CAMAC system. 

The last category, the Variable Flow, Program-driven computer-like 
devices, has not had a strong representation at Fermilab, especially when 
compared with the CERN program. Until recently, the only important 
presence in the VFP category was the M7, a stored program device designed 
to optimally perform track reconstruction algorithms. The device has 
proved its value~ having already been used in E-401(11~ E-400 (ref, 24, 
these ProceedingsJ, with a projected utilization for E-681[25]. 

The E-605 project, presented at this Conference[261, consists of 
hanging a fast processor onto a DEC UNIBUS, to analyze and filter events 
between spills, a procedure similar to the one foreseen for E-683(27). The 
next two entries, E-704128] and E-743(29), merely represent the intention 
to transport to Fermilao two microprocessor systems currently in use at 
CERN so that the only maior new development is the E-705 project[30), The 
problem facing this experlment is an expected trigger rate in excess of 200 
events/sec, with"'-' 2000 words/event and a spill of more than 10 seconds. 
In the presence of a pre-existing heavy dotation of CAMAC read-out modulesi 
it was necessary to develop a system capable of reading out the CAMA~ 
crates in less than 1 msec inclusive of the several hundreds of 
microseconds required for data digitization. To this goal, a set of smart 
crate controllers, built around a Motorola 6809 microprocessor, is being 
constructed: the controllers will be loaded with a list of CAMAC 
operations, that can be executed within a few microseconds after reception 
of a trigger, The controllers daisy chained into a subset of parallel 
data channels (fig, 10), will unload the data into a set of FIFO memories, 
residing into a VME crate, deep enough to handle the worst case 
instantaneous trigger rate. An array of Single Board Computers (based on 
the 68000 microprocessor) will sit in the VME crate to so~~r compress and 
filter the events, and eventually to transmit them to a CAMAC memory for 
conventional recording. The system, currently under construction, is 
scheduled to run in 1985. 

One final entry, E-516, appears in the VFP column of table 1. Rather 
than an on-line processor, the entry acknowledges the University of Toronto 
effort in the construction of a system of eight IBM-168 emulators (168/E), 
that were run to analyze a large fraction of the E-516 raw data tapes, 
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Conclusions 
The impressive amount of processors of all types employed in a 

majority of the current and future experiments proves that such devices 
should now be considered as a standard tool available to the researchers. 
In the presence of such a variety of developments, one still has the 
feeling that there is not a "best system". For each particular case the 
choice will depend first of all on the requirements of the given exper!ment 
and secondly on the experimenters' ambition and availability of manpower 
and/or commercial hardware. There is no doubt however that, in order to 
optimize the performance of any given system, the processor's structure and 
requirements should be integrated! at the earliest possible stages, in the 
overall design of the experiments set-up. 
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QUESTIONS AND ANSWERS 

Q: Do you write raw data or calculated data on tape? 

R. Poutissou 

A: Both. 





[Photograph of Guanajuato by Eduardo Rangel Cerrillo (Guayo) of Guanajuato.] 
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PARALLEL SUPERCOMPUTERS AND LATTICE GAUGE THEORIES 

Anthony Terrano 
Physics Department 
Columbia University 
New York, NY 10027 

Numerical studies of lattice gauge theories are severely 
limited by the power of the computers which can be brought to 
bear upon them. fhis limitation has a number of consequences. 
First, the number of samples which can be taken in a given 
cal c u lat i on w i l l be s ma l 1, res u l ting in, at best, a 1 a r g e 
statistical uncertain_ty. Indeed, with limited resources, it may 
impractical to measure the autocorrelations of the quantity 
being calculated with the result that the statistical errors in 
a calculation are simply unknown. Secondly, the number of 
different values of the parameters in the theory which can be 
investigated is limited, making a thorough study of systematic 
effects difficult Perhaps worst of all, there is little 
possiblity of studying algorithms or alternate formulations of 
the problem. In order to carry out a definitive study. we 
should be able to spend 75X of our resources learning the nature 
of the system and perfecting the procedures for studying it and 
have the remaining 25X suffice to do a high statistics study. 

Of course, this limit is not imposed by the computers 
themselves, but by the finite amount of money which we can 
realistically hope to be able to spend. lhere are a variety of 
approaches for relaxing this constraint One can try to find 
"free time" on unused or partially used computers, or try to 
increase the level of financial support for computational 
physics. Norman Christ and I have pursued tne approach of 
t1·ying to ;ncrease the number of floating point operatio11s which 
each dollar will Duy Surprisingly. there isn't a lot of 
difference between cu1•re11tly available computers when tt,ey are 
rated by the number of flops per dollar: a Cray-1 provides 
about lOflops/$; a VAX somewhat less at 2Flops/$; an IBM-PC 
<with a floating point coprocesser chip addedl also about 
lOflops/$. 

The starting place for a more powerful and cost efficient 
machine are the microprocessors which are generically refered to 
as a "'./AX on a chip" These computers will typically execute 1 
million instructions per second and cost on the order of $100. 
However. to study lattice gauge theories we need millions of 
floating point operations. not integer instructions. per ·;;econd 
The next building block are VLSI floating point arithmetic 
chips The first such units were made by TRW and include a 
22+22 bit adder with a cycle time of 125ns. or 8MFlops These 
chips use a special Format consisting of a 16 bit sign1ficand 
and a 6 bit exponent. A comparable multiplier can be assembled 
lrom a 16116 bit integer multiplier coupled with an integer 
adder Fur the exponents. An arithmetic unit built around these 
two units could possibly perform 16 million floating point 
operations each second, at a price in the neighborhood of $500. 
These chips were the state of the art when we began our design. 
Since then. however, a chip set which performs full 32 bit 
arithmetic and runs at the same speed has become available for 
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about $1000. The final element is of course fast memory. which 
as the density per chip increases becomes more economical each 
year. With these ele~ents. the outlines of our overall strategy 
become clear: ~e can build inexpensive units ~hich will operate 
in the lOMflop range; we need to Find a way to bring 
lindefinitelyl many such units to bear upon a single 
calculation Our supercomputer will consist of an array of 
single board computer/array processors 

AR <;_H IT~ C 1Jd.PJ~. 
To begin. I will describe the architecture of the system. 

Each element of the array consists of a processor and memory. 
However. it is useful to think of the system as an array of 
memories Joined to one another by the processing elements 
<Figure ll The memory nodes are mapped uniformly onto the x-y 
plane oF the problem: each node is associated with a specific 
rectangular region in the x-y plane The regions cover the 
entire plane and have the same size, shape. and orientation. 
Note that each of the regions may include several points in the 
x-y plane of the lattice rhe data associated with the lattic~ 
point; <x. y. z, t) is stored in thP- memory associated with the 
region in the x-y plane containing the point (x, y). 

The interconnections provided between the elements of the 
two-dimensional array are arranged to provide direct 
communication between all nearest-neighbor pairs of memories 
In lattice gauge theories. all calculations are built from 
operations involving only quantities associated with nearest 
neighbor sites in the four-dimensional physical lattice. These 
elements will necessarily be stored either in tne memory of a 
single node or ir1 the memories of two adJacent nodes. In either 
case, with the interconnections shown in Figure 1 there is a 
unique processor with direct access to the pair of operands 
Thus all three of the memories which are attached to a 
particular processor must be included in that processor's 
address space. 

Although each memory is accessible to more than one 
processor, no contention will arise 1f all processors execute 
the ;;ame program in leek-step. Sir1CE· the calculations of 
interest are spacially homogeneous. it is possible for each node 
in the array of processors to be executing identical code. 
However, only one processor need control the addresming of a 
particular memory since that processor <Pl can anticipate the 
needs of a neighboring processor (QI for data. provided a second 
ne1gnbor !RI will do the same for <Pl Thus all the 
communic~1tion required betuieen two nodes can be carried by 
•ixteen data lines In addition to the lock-step operation 
described above in which data can be transferred between nodes. 
a second asynchronous mode allowing only local activity is 
provided This is described below 

Uften in the problem of interest one imposes "periodic" 
boundary conditions. effectively Joining with links those planes 
of sites lying on opposite boundaries. These conditions can be 
realized by our array if the connections indicated in Figure l 
b et ween top and b o t tom and b et ween 1 e f t and r i g h t a r· e pr· o vi d e d . 
Thus the connections in the array form the surface of a 
two-dimensional torus It should De noted that if the 
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processors are physically placed in a two-dimensional plane, the 
inter-processor connections required to form this torus can be 
achieved with wires whose lengths need not grow as the number of 
processors increases. (In our case the maximum length required 
is less than eight inches ) 

IM_PLEMENTATIO~ 

Let us now consider the implementation of this design. The 
processing element at each node of the array consists of an 
Intel 80286/287 microprocessor with a 16K x 16 bit program 
memor4 and a microprogrammable floating point vector processor. 
Each node also contains 128KB of data memory divided into two 
independent. simult•neously addressable 32K x 16 bit banks, 
which can be accessed by both the '286 and the vector processor. 
and a switch to allow the desired pair of (local and/or remote) 
memories to be addressed. All of the data paths are 16 bits 
wide. In addition, each node is provided with an Intel Multibus 
port to allow connection of additional local memory, accessable 
by the '286. The operation of the array and the transfer of 
data and code to and from the host computer is directed by a 
simple central controller which contains a 16KB data buffer, and 
provides the control signals and common clock for the array. 
Mechanically, each node occupies a seperate board which is 
provided with a standard Multibus edge connector The seperate 
nodes are connected to each other and to the central controller 
by ribbon cable. Figure 2 shows the architecture of a single 
node 

al Microprocessor The Intel '286 microprocessor supervises all 
the activity on the node It can read from and write to all the 
memor4 on the node as well as the data memories on two of the 
adjacent nodes. In addition to controlling the vector 
processor, the '286 must perform all of the scalar processing 
required to complete the calculation. The problem at hand 
requires a scalar processor fast enough to execute at least one 
instruction for every 4 to 5 floating point operations performed 
by the vector processor 1n order to roughly balance the scalar 
and vector execution times. Further. the possibility of 
includinq additional memory at each node mandates a 
multi-megabyte address space. The Intel 80286 microprocessor 
with the 80287 coprocessor nicely meets this requirement. 

Each '286 has its own independent program memory so that 
the '286 can operate concurrently with the vector processor 
which appears to it as a second coprocessor - a program running 
on the '286 will stop on a "wait" instruction until the vector 
processor completes its present program. Another control signal 
is provided for the purpose of re-synchronizing the array. When 
a period of asynchronuous operation. for example data-dependent 
branching or node-dependent subroutines, has ended. the central 
controller is informed and conditions this control line. When 
all nodes are done. the central controller sends the reset 
signal, and all processors are restarted synchronously. 

ti Vector Processor. The floating point vector processor is 
based on the TRW MPY-16HJ, 100ns 16x16 bit multiplier and the 
TRW TDC 1022 100ns. 22 bit (16 bit sign1ficand and 6 bit 
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e~ponentl floating poi11t adder. The vector processor is 
pi.pel1ned, with 125ns stages, and is microprogrammed to perform 
the matrix-matrix and matrix-vector multiplications described 
above. A complex number is stored in six consecutive bytes· 
the first two bytes contain the 16-bit signif1cand of the real 
part, the third byte contains the 6·-bit exponent of the real 
part, the fourth byte contains the 6-bit exponent of the 
imaginary part. and the fifth and sixth bytes contain the 16-bit 
signif1cand of the imaginary part. 

The vector processor has two independent inputs. and a new 
·~perand can be strobed into each one on every 125ns clock pulse. 
Each input to the exponent adder has two 16-bit latches. 
allowing a total of eight exponents to be stored temporarily 
!Figure 31 The input latches of the TRW multiplier are also 
separately controlled· by suitably ordering the complex 
multiplication no additional temporary storage is needed for the 
incoming s1gnificands The outputs of the multiplier and 
exponent adder attach directly to the <sole) input of the 
floating point adder Since matrix operations involve the 
accumulation of a series of products. the adder can be run in 
its accumulate mode and requires only one new operand on every 
clock pulse Further, since the adder requires two clock pulses 
to complete an addition. it can accumulate both the real and 
imaginar4 part of the sum simultaneously with out any external 
storage. With this arrangement the vector processor can sum a 
string of products of complex numbers at the maximum rate 
allowed by the SMHz clock 16 million floating point additions 
and multiplications each second 

cl Writeable control store. The operation of the vector 
processor is controlled by a writeable control store <WCSI made 
up of static RAM arranged in 4K 48-bit words which can be 
accessed by the '286. The microcode provides the signals 
necessary to control the arithmetic unit and latches shown in 
Figure 4, as well as determining the addresses of the source and 
destination operands. The '286 initially loads two 4-word 
16-bit latches which contain the base addresses for the 
operands In each cycle. for each of the A and B memories. the 
microcode chooses one of these lb-bit base addresses and 
supplies an 8-bit offset to be added to it to determine the 
effective address of the operand. The additions are performed 
by two dedicated 16-bit adders. The operands are thus required 
to be less than 512 bytes long; there is no restriction on 
their alignment 

The microcode sequencer is simply a counter driven by the 
system clock This counter is started when the '286 writes to a 
reserved 4KB range of addresses. The particular location 
addressed provides a preset value for the counter, and hence the 
starting address in the WCS for the m1crocode subroutine to be 
executed. The vector processor is stopped wnen a microcode bit 
resets the counter and releases the coprocessor busy signal from 
the '286. 

di Memory In order to run the vector processor at Pull speed, 
two numbers must be obtained from memory every 125ns. lo 
accomplish this. the memory at each node is split into two 
independent banks. The memories are made from 45ns static RAM, 



-83-

which eliminates the need for further high speed registers to 
feed the vector processor. Either memory bank provides one 
input to the vector proc•ssor on the same node. The other bank 
feeds the second input of the vector processor on that or on one 
of the two adjacent nodes Switching between banks is 
accomplished at the same time as switching between nodes. and 
the delay due to all switching is buried in the pipeline. There 
is no delay for data coming from a neighboring node. Thus the 
fast arithmetic is supplied by internode data transfer at a rate 
of 16MB per second 

el Switch. The interconnection of the '286. the vector 
processor. the local memory and the four neighboring nodes is 
accomplished by the switch diagrammed in Figure 4. It is 
composed of eight 8-bit transceivers, four D-type latches and 
four latching multiplexers. The latches and propagation delays 
introduced by these elements are incorporated into the pipeline 
which makes up the vector processor 

fl Multibus port. In order to increase the flexibilit4 of our 
individual nodes. each microprocessor-vector processor 
combination is provided with its own. private Multibus. Thus. 
in addition to the memory built onto the board, the '286 has the 
possibility of addressing additional. conventional bulk storage 
attached to this Multibus. For example, a problem needing 32MB 
of storage which would otherwise require a full array of 256 
nodes could be tackled using a much smaller array of 16 nodes if 
four standard 1/2 MB boards were connected to the Multibus of 
each node This port also allows the direct connection of 
magnetic disk storage to some or all of the nodes in the array. 

gl Controller The transfer of data and code between the 
array and the host computer. in our case a VAX 11/780, is 
managed by the central controller. fhe input/output Prom the 
array is performed in bucket brigade fashion. Two of the nodes 
(through their Multibus portl can access buff•r memories on the 
central controller. one for input and the other for output, 
shown as wavy lines on Figure 1. When !/O is initiated. each 
processor copies a page of data from a standard I/O buffer in 
memory at one node R <or from the controller) to the appropriate 
location in another node P The processor also copies the data 
into the I/O buffer area in P lor into the controller), 
preparing for its transfer to node 0 during the following cycle 
Since our I/O requirements are small, we are using a •ingle 
input and a single output port so that the transferred data must 
thread its way through the entire array at a rate no larger than 
16MB per second. However. since each node is provided with a 
Multibus port, the system can be reconfigured to create 
additional ports serving smaller subsections of the array Thus 
the data transfer rate is Jn fact limited only by the bandwidth 
of the interface to the host computer. 

In addition to the I/O function. the central controller 
provides some simple global communication and commands: Iii It 
broadcasts a synchronous clock signal to all nodes of the array. 
liil It issues a synchronous reset signal which initiates the 
one page I/O transfer described above liiil It initiates 
synchronous progr•m execution. also using the '286's reset 
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signal. \1vl lt T'esynchrcnizes 
executed d1FFering subroutines 
error and a finished signal from 
appropriate composite message to 

['B__Q.Q.B-8.t::IM I f\IG. 

the process•Jrs 
(y) Finally 

each node and 
t~1e host 

they've 
it receives an 
transmits the 

Since high level languages are available for the '286, we 
expect to do essentially the entire calLulation using the array. 
from the generatjon of an ensemble of matrix configurations. to 
the evaluation of the various observables of interest The host 
computer will be used to generate the code. to move data to tape 
per1odically, and for tt•e final fitting of the data and error 
anaylsis The great majority of the calculations to be 
performed on the array can be carried out in the synchronous 
SIMD mode and are being written in a combination of FORTRAN86. 
PLM86 and ASM86 The programs are being written, compiled and 
linked on the VAX using standard Intel utilities The resulting 
absolute oDJeCt files are transfered to the array using a loader 
which resides partly on the VAX and partly in PROM on each node. 

We have written an assembler which translates simple 
mnemonics for arithmetic operations using the vector processor 
into microcode. Since the arithmetic unit has a single. short 
pipeline and a large number of uniformly addressable registers. 
effective use of the full power of the machine does not require 
highl4 vectorized code, and it will be possible to write an 
opt1mizing compiler for it using FORTRAN or C like syntax 
With this compiler, the programmer will generate a set of 
high-speed subroutines which perform the bulk of the arithmetic 
tn a given calculation. and which are then called From a 
controlling program written in a conventional language 

f'_fgf..QE-'.M1'.\1'!.<2[ 
A single board has a nominal speed of 16Mflops. For real 

programs. this limit will be reached only momentarily. A more 
practical measure oF its performance is given by running lattice 
gauge theory Monte-Carlo programs It will take the product oF 
two 5U(3> matrices in 20us. which corresponds to a speed of 
1 OMf lops; a 10 ·-h it ME· tr op o l 1 s update takes 1 es s than 1. 5m s at 
present These numbers can be compared with those For a Cray-I 
and for ci Cyber·-205· 

Nominal SUl31 product 
10-·l"letropo 11 s 
Cray-I l60Mf lops lOOMf lops 75us 
Cyber-205 200Mflops 40us 
fhe co·;t of producing a single board is less than $2500; the 
cost fur a system of 256 boards, in~luding the necessary disks 
.;rnd other •~quipment will b~· less than $8001o< .. At a nominal speed 
of 4Gflops. we will be able to provide more than 5000flops/$, 
more than 3 orders of magnitude better than commercially 
ava1l~ble co,nputers. 

h..QHfJ".J,,!E3 !Jl!J 
This problem. in common with a large number of interesting 

problems in phyics, has a number of features which make it well 
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suited to solution by a special purpose computer. Iii The 
calculation is dominated b4 the multiplication of 3x3 complex 
matrices associated with the links of the lattice and the 
product of these matr1ces with three-dimensional complex vectors 
defined at the lattice sites. These products can be efficiently 
evaluated by a pipe-lined. multiplier-adder. (iii All of the 
calculations are local. only matrices and vectors associated 
with contiguous links and sites are to be combined. <iiil The 
problem is homogeneous. the same products of the variables 
associated with the links and sites are to be carried out for 
all the points in the lattice. (ivJ Because statistical methods 
must be employed the results are generally not expected to be 
accurate to more than a few percent and great precision is not 
required in the arithmetic computations. By exploiting these 
special features and b4 taking advantage of powerful. 
commercially available VLSI chips, we have designed a parallel 
array of inexpensive single board computers which will perform 4 
billion floating paint operations each second The device is 
presently being constructed in the Physics Department of 
Columbia University 
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QUESTIONS AND ANSWERS 

Q: The funding agencies are now trying to make new large scale 
(Class VII) super-computers available to the research co1111111Jnity. If 
such a machine became available to you, or Caltech or others, would you 
abandon these efforts and turn your efforts to calculating physics? 

A. Brenner 

A: No, it's still much more cost effective to do it this way and 
we get a larger amount of computing done this way. 

Q: I'm tremendously impressed with the progress you people have 
made! Isn't it true that 3 or 4 years ago Norman Christ first appeared 
at Nevis Labs to ask Bill Sippach about TTL and how to use a soldering 
iron? 

D. Kaplan 

A: Yes. We cut our teeth on a small board we wired ourselves, 
but this project is much more rationally designed. 

Q: In addition to the re-education of funding agencies, I am 
amused by the re-education of theorists. When a board comes back from 
the assembler and it doesn't work, Who debugs it? - you or Norm? 

K. Kreisler 

A: Kost of the time, it's Norm. It's part of a deal we struck 
when we started the project. 
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GIBBS - A Programming Environment and Workstation 
for Scientists 

The GIBBS Groupt 

Cornell University 
Ithaca, N.Y. 14850 

ABSTRACT 

GIBBS provides a new framework for the development, 
maintenance, and documentation of complex codes written in For-
tran or other high level languages for scientific applications. It 
facilitates the creation of and implementation or highly modular 
code without sacrificing efficiency. Programs are organized accord-
ing to the logic or the problem rather than the needs of the com-
puter, and are therefore much more readable and changeable than 
programs written and documented in more conventional styles. 

1. Introduction 
Computing hardware is changing rapidly over time periods as short as a sin-

gle year. The difficulties encountered in adapting existing computer codes and 
creating new ones are a major obstacle to the efficient utilization of this new. 
hardware. Complex programs, written in Fortran, Pascal, C, etc., are vitally 
important to science and engineering. They are however very difficult to read 
and modify, even with liberal use of comment cards, indenting, top-down pro-
gramming, and the like. Consequently, researchers are hard pressed to find the 
time to write, debug, adapt, or document large-scale computer programs. This 
problem is particularly acute for students, who are generally required to complete 
significant projects in relatively short periods of time. The GIBBS Project is an 
attempt, conceived by Ken Wilson and involving Cornell's Computer Science, 
Computer Services, and Physics departments, to deal with this problem. 

The heart of the problem with programs written in conventional program-
ming languages lies in the organization of the program. This organization is 

* t The GIBBS Group includes D. Bergmark, A. Demers, D. Gries, P. Lepage, D. Moitra, 
A. Neirynck, M. Nesheim, TK Srikanth, and K. Wilson. Cornell undergraduates partici-
pating in the project include C. Cady, and D. Freed. Additional information about 
GIBBS can be obtained from D. Bergmark, Cornell Computer Services, G-02 Uris Hall, 
Cornell University, Ithaca, N.Y. 14850. 

*Presenter 
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generally dictated by what the computer should do next and not by what should 
be explained next. As a result, the central ideas embodied in the program 
become completely scrambled, and the program can be understood, if at all, only 
by constantly flipping back and forth among many pages of hard-to-read code. 
This point is illustrated in Fig. 1 by a simple program for studying one-
dimensional diffusion. A scientist would begin describing this problem by writing 
down the diffusion equation, and then describing initial and boundary conditions 
for the equation. Only then would he get into the nitty-gritty details of discretiz-
ing the t and x derivatives, setting up data structures, and optimizing the code. 
These last details must be addressed in the very first line of the Fortran code. 
Furthermore elements of the same idea appear diffused throughout the entire 
code, while at the same time any given line of code many involve several different 
ideas. It is this complexity that makes even simple programs, let alone 60 pages 
of such code, difficult to understand and modify. In addition, Fortran has a rigid 
structure built on the ANSI character set. Thus the scientist, coding in Fortran, 
is denied the use of his natural language - i.e., sophisticated mathematical nota-
tion combined with English, French, or whatever. 

2. The GIBBS Project 
The GIBBS Project has adopted a textbook analogy for program 

specification. A problem is first broken down into a large number of simple 
modules called 'Chapters'. Like a good textbook, each chapter of a GIBBS pro-
gram deals with a single idea. Chapters might describe an equation, a numerical 
method, an abstract data type, or perhaps an optimization targeted for a particu-
lar piece of hardware. Also in analogy with a textbook, the author is free to 
order the presentation of the program according to the logic of the problem. 
Typically, central equations appear first, followed by data type definitions and 
restrictions, numerical algorithms, and optimization procedures. GIBBS helps the 
author in establishing the interrelations between different chapters. Also, the 
programmer is permitted full scientific notation in specifying his problem, ulti-
mately through the use of a graphics workstation. 

The GIBBS style for writing programs is illustrated by Fig. 2. Following an 
introductory chapter outlining the problem, Chapter 1 deals with a key equation 
in numerical studies of the nuclear force. The equation is entered with a struc-
tured editor. Thus, for example, GIBBS knows that n +fl is a subscript on W, 
and that Unµ either multiplies or operates on W (it finds out which in Chapter 4). 
The cross-references listed at the end could be generated by GIBBS; again 
through the structured editor, the system understands that Chapter 5, for exam-
ple, is needed to understand the significance of K and r . Chapter 4 illustrates 
the definition of a new data type - Gauge_Field, an array of complex numbers 
labeled by two indices of type color (Chapter 7), one of type nearest_neighbor 
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Scientist's Version Fortran Version 

Diffusion equation: 

dimension v(O: 100),dv(99} 

do 100 i=0, 100 
Boundary conditions: 

100 v(i}=O 
v =0 for all I at x =0 

v(50)=1 
and x =10 

delta=0.05 

do 130 j=l,10000 
Initial conditions: 

do llO i=l,99 
v =0 when I =0 for all 

110 dv(i}=delta•(v(i+ 1 )+v(i-1 }-2•v(i)) 
x except x =5 where v =l 

do 120 i=l,99 

120 v(i)=v(i)+dv(i) 
Space mesh: 

• 
100 points with ox =0.1 

• 
• 

Time steps: 

10000 steps with ot =0.0005 

Optimization: 

ox and ot appear only in the 

combination 51 /ox 2 = 0.05 

Figure 1 - Two versions of a one-dimensional diffusion problem. The lines indicate 

some of the correspondences between the two descriptions. 
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Chapter 1 

The evaluation of 4>. represents the most time consuming step in the numerical analysis of hadron 
structure using lattice QCD. 

For K and r: see Chapter 5 (Flavor) 
For µand n and ji,: see Chapter 6 (Grid) 
For/µ: see Chapter 10 (Dirac Matrices) 
For u. µ: see Chapter 4 (Gu age Field) 
For 4>. and >It. : see Chapter 2 (Fermion Fields) 

Chapter 4 - Gauge Field 

The gauge field is the mathematical representation of the gluon field that holds quarks together. For 
each grid location and axis direction, the gluon field is represented by a color matriz. 

type Gauge_Field = array(color, color, nearest_neighbor, grid) of type complex 
variable U is type Gauge_Field 

For color: see Chapter 7 (Color) 
For nearest_neighbor: see Chapter 6 (Grid) 
For grid: see Chapter 6 (Grid) 

Chapter & - Grid 

The theory is defined on a simple hypercubic grid of points, labeled by an integer O ... N-1 for each 
of D directions. 

type grid = array( axis) of type integer 
restrict 0 ~ n µ < N for all n of type grid and all µ of type direction 
n is type grid 
define 'loop on n ' to be 

loop on nv 
loop on nv_1 

loop on n 1 
{ BODY OF LOOP } 

Figure 2 - Sample chapters from a GIBBS program for lattice QCD. 
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(Chapter 6), and one of type grid (Chapter 6). The field u,.,, in Chapter 1 is of 
type Gauge_Field, and, being a variable, it multiplies V rather than operating on 
it. The lattice grid upon which the theory is defined is specified in Chapter 6. 
This chapter illustrates the definition of new data types, like type grid for the 
lattice coordinates of a site, the introduction of restrictions on these data types, 
and the definition of a new loop command specific to this problem. 

3. The GIBBS Agenda 
Although the GIBBS Project is still in its infancy, substantial progress 

already has been made. Today GIBBS is a promising new technique for writing, 
modifying, and documenting complex programs hand-coded in Fortran or similar 
languages. Several GIBBS programs have been written for problems in a variety 
of disciplines, including theoretical high energy physics, molecular dynamics, and 
numerical analysis. Some of these programs have been successfully compiled into 
Fortran and/or C by groups of Cornell undergraduates, functioning as a 'human 
GIBBS compiler.' This exercise demonstrates the potential for describing com-
plex computer programs in natural language, and provides important insights 
into the problems and possibilities of the GIBBS approach. There is still much to 
be done in specifying the nature of the GIBBS compiler. Input from researchers 
outside the Project is welcomed - e.g., sample GIBBS programs. A manual 
describing the GIBBS methodology is now available.t 

A structured editor for GIBBS programs hopefully will be available in the 
very near future. This prototype for the GIBBS editor runs on ordinary ASCII 
terminals. It supports some high level mathematical notation (subscripts, E, J, 
... ), and understands the relations between parts of a chapter and between 
different chapters. This makes it a useful tool for program documentation._ 
Farther into the future, it is hoped that the hand-generated Fortran of the 
finished program can be incorporated into the editor, allowing cross referencing 
between the GIBBS documentation and the source code. 

Ultimately, GIBBS should provide facilities for interactive code generation in 
Fortran or other target languages. A variety of systems, like Speakeasy or 
Macsyma, have been developed in the past to allow the direct programming of 
scientific problems. While elements from such systems will undoubtably be incor-
porated, GIBBS will deal with more complex problems - e.g., problems like 
finite-difference approximations to nonlinear partial differential equations, or 
Monte Carlo simulations of large statistical systems, where highly optimized For-
tran usually is required. The tremendous flexibility of GIBBS requires that code 

t Information about GIBBS and the GIBBS Manual can be obtained from D. Berg-
mark, Cornell Computer Services, G-02 Uris Hall, Cornell University, Ithaca, N.Y. 14850. 
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generation be a collaborative effort between the compiler and the user. It is 
hoped that GIBBS chapters can function as operators on other chapters and on 
the Fortran code. Then a GIBBS program will become a series of very sophisti-
cated transformations that convert equations written in standard scientific nota-
tion into executable Fortran. This will complete the relegation of Fortran to the 
role of a portable assembly language, thereby greatly enhancing the prospects for 
large-scale computational science and engineering. 
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QUESTIONS AND ANSWERS 

Q: How do you distinguish between a description of a problem (=) 
and an algorithm (<-) in GIBBS? 

F. Beck 

A: You can actually use those symbols if you like. You can 
define such symbols as you go. 

Q: A symbolic language for reconstruction algorithms is badly 
needed. It would allow a) communication between algorithm writers 
now almost non-existent; b) GIBBS support in this area which would be 
of great value; and c) identification of algorithm kernels that can 
be processed in specialized hardware subroutines or coprocessors. 

T. Nash 

A: Yes. 

Q: How are you doing in connecting the GIBBS mathematical 
equations and target parallel or vector machines? 

A. Charlesworth 

A: Trying to develop a high level notation for target machines. 
Have tried array processor: RPS-164 eight FPS-lOO's, etc. 

Follow-up: Should try a parallel array like the CAL-Tech Cosmic 
cube. 

Q: I suspect that GIBBS might become too slow to run in a 
reasonable time on any but a supercomputer. Can you comment? This is 
why in KEXLAN I aim at something nruch less ambitious. 

T. Brody 

A: Structured editors at least already exist; with VLSI chips and 
so on, things should be limited by the speed of the interactive user. 
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Q: Have you any thoughts on debugging issue of the "pre-compiler"? 

M. Fischler 

A: Yes. GIBBS chapters describing debugging tests could be 
included in a complex code description. Hopefully GIBBS will support 
some sort of interactive debugging of the sort discussed in earlier 
talks. 
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The CMU Multi-Micro Computational Engine 

Michael J Levine 

Physics Department, Carnegie-Mellon University 
Pittsburgh, Pennsylvania 152 13 

I. Introduction 

The CMU Multi-Micro Computational Engine is the hardware result of a continuing 
project within the High-Energy Physics group at CMU _which aims to provide a very cost 
effective vehicle for doing some large scale calculations in theoretical particle physics. 
Below, we outline the model problem which has motivated this effort, the hardware of the 
current engine, the programming environment in which we function, the current status of 
the engine and our plans for the near future. Detailed information is available in a series 
of internal reports. 

II. The Model Problem 

This engine is composed of general purpose microprocessors, but it is structured to 
be especially cost effective for at least one specific class of problems. We first describe 
a physics problem from that class and then abstract from it certain characteristics which 
are important from a hardware standpoint 

The anomalous magnetic moment of the electron, a , is the most precisely measured 
and calculated quantity in physics. The order of magnifude of current experimental and 
theoretical errors is 1o- 1 O The dominant contributions to ae are given by OED as a 
power series in ~ the coefficients of which are obtained by evaluating certain Feynman 
graphs. Theoretical work 1s now being done on the contributions from 4-loop graphs and 
a few 3-loop graphs. The usual Feynman graph techniques reduce these contributions to a 
set of integrals, in up to 1 0 dimensions, of rational functions. Those integrals are being 
done numerically. 

Because we control infrared divergences and perform the ultraviolet subtractions 
numerically, the integrands must be evaluated with high precision and large dynamic range. 
There are about 50 integrals to be done. A typical integrand numerator contains 20k 
terms. The denominators are of negligible complexity. We estimate that more than 109 
integrand evaluations will be required per integration. Because the many evaluations of the 
integrand are independent of each other, all need not be done on the same machine. 

From this, we may abstract several machine requirements. The intrinsic machine 
arithmetic should be at least 'double precision' and have a dynamic range of at least 1 osoo. 
The aggregate arithmetic speed of the machine must be at least 30 Mflops/sec in order to 
do the estimated 3* 10 1 5 arithmetic operations in no more than a few years. Because of 
the intrinsic decomposability of this type of problem, it is possible to use many processors 
with an interprocessor bandwidth which is quite modest Only small amounts of memory 
( 1-3kB) are required for data storage for any single functional evaluation. Modest amounts 
of memory, which might be shared between processors, are required for the code 
necessary to evaluate an integrand (about 60k instructions). 

Ill. Hardware Outline 

Our need for large amounts of high precision floating point arithmetic coupled with a 
desire to minimize our electrical engineering efforts has led us to use the Intel 8087 
Numerical Data Processor (NDP) as our basic arithmetic unit The intrinsic 8087 arithmetic 
is REAL* 1 O with 19 digit precision and 1O10000 dynamic range. We might view the engine 
as a mechanism for putting the arithmetic capabilities of a large number of 8087's at the 
disposal of the user with as little overhead as is possible. In this picture, we have a 
sequence of blocks [user, host, (controllers, computational modules, numerical processors)] 
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interconnected by a set of communication links. The last 3 of these blocks constitute the 
'engine'. This view forms the basis for the following outline of the hardware. 

The user communicates with the host, a VAX 111780 running under VMS, over a 
terminal line. The host communicates with the engine (specifically, with the controllers) over 
a low speed interconnect composed of serial lines. The engine functions as a slave 
processor to the VAX. Most of the control function and voluminous, nonarithmetic user 
code is kept within the VAX. Most of the arithmetic is done within the engine. This 
partitioning of function is done in a way which minimizes the required bandwidth between 
VAX and engine. 

Within the engine, each of the two controllers communicates with and has reset 
control over a set of eight computational modules. The controllers and modules are single 
board computers of our own design and construction. The controller-module link is a 
parallel, master-slave, 16 bit wide bus structure with hardware handshaking. It has a 
hardware speed of about 1 MB/s. Arbitration is done in software by the controller which 
is always bus master. Through this bus, the controller can receive from any module and 
can transmit to any set of modules. 

The single board computers used for the controllers and for the computational 
modules are based upon the Intel 8086 chip family operating at 5 Mhz. They are of 
standard design but are limited in scope. Each has a CPU section, 32 kB of ROM & static 
RAM memory and parallel (96 bits) & serial (2 ports) 110. The computational modules have, 
in addition, a quad 8087 arithmetic section which we use as a 'micro array processor'. 
The 8086 and four 8087's share the local, multiplexed bus. Additional circuitry, controlled 
by the CPU, determines which 8087(s) will execute the next NOP instruction. It is possible 
to use any single NOP in the usual manner. 

The problem specificity of the engine lies only in the size of the memories and in 
the bandwidths and connectivity of the various interprocessor data paths. 

IV. Programming Outline 

In normal use, there are programs running concurrently in the VAX and in each 
processor of the engine. These programs consist of numerous code modules written in a 
variety of languages. In function, the modules range from problem dependent user code to 
1/0 and other service routines which rarely change. 

The problem dependent 'user level' code on the VAX, in the computational modules 
and for the 'array processor' is written in Fortran. We use cross language processors on 
the VAX to generate all '86/'87 code. We have constructed a set of language processors 
which convert Fortran arithmetic statements into special code for the array processors. In 
production running, successive batch jobs on the VAX allocate the lines to the engine, 
download code to and start execution on the engine and then exchange data with the 
engine at intervals. 

On the VAX, the user level code can initialize the engine and exchange data with the 
computational modules by calling a set of service routines which are, themselves, written in 
Fortran and which contain some calls to VMS System Services. Similarly, in the engine, the 
user level Fortran code calls a set of service routines (which are written in PL/M) to 
communicate with the VAX. Some of these service routines are in ROM and provide the 
basic engine boot function. Together, these service routines provide a downloading 
capability and a packet communications facility between the VAX and engine. This VAX-
module communications facility can do conversions between VAX and 8087 floating point 
formats so that the user code in each environment can function in its native format. 

The large arithmetic statements which specify the integrands are processed into '86 
object modules which are linked and downloaded with the other '86 code. Subroutine calls 
in the '86 user code invoke the array-processor to do multiple, parallel integrand 
evaluations. Code for the array-processor is more compact than ordinary '87 code. This 
reduces the code memory requirements by a factor of from 2 to 4. The array-processor 
execution code, which is not visible to the user, is written in '86 assembly language. 
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Synchronization between VAX and module programs is accomplished by waiting for 
1/0 completion. The VAX program writes input data to a module and then. or perhaps 
later. issues a read on that module. The module, upon receiving input data, does its 
computation (typically lasting 1-2 hours). sends the result to the waiting VAX program and 
goes to wait for more input data from the VAX. The waiting VAX program does 
postprocessing on the data from the module and then goes to write another set of input 
data to the waiting module. In a typical job, this cycle is repeated, using all modules. over 
a period lasting anywhere from a few hours to a week. 

It is up to the user to decompose the problem into many subproblems and to 
delegate each, in turn. to a computational module. For multiple integrals and other highly 
decomposable problems, this is a trivial exercise. 

V. Current Status and Future Plans 

The current version of the engine has been functional for nearly 10 months. 95% 
of that time has been spent doing production running on 3-loop graphs. The remainder of 
the time has been spent doing testing and implementing modifications. Preliminary testing 
of modifications is done on a some solitary computational modules. Using a single 8087 
per each of 16 modules provides an arithmetic capability equivalent to twice a VAX 
1 11780 in double precision. REAL* 10 cuts the speed by 20% compared to REAL*8. We 
are currently upgrading each module to 4 8087's. Tests indicate that this will effectively 
treble the strength of the engine. 

By asking each module to do a subintegration rather than a single functional 
evaluation between communications with the VAX, the ratio of 1/0 time to arithmetic time 
can be made extremely small. In usual production running, the VAX spends less than 1 % of 
its resources looking after the engine. 

A few percent of all running time is spent redoing old calculations as a test of 
integrity and reliability. We have detected no aberrant behavior. Doing numerical 
integrations with successively finer integration meshes provides a built in check on errors 
and protection against them. A low error rate would simply slow the apparent rate of 
convergence: a high error rate would destroy convergence. 

Modules which fail to respond to the VAX within a reasonable time are declared 
dead for the remainder of the job. Their work is given to other modules. Such 'dropouts' 
happen about once a month. They are largely attributable to severe electrical interference 
or to the low grade sockets which we used in the first few boards. The overall mean 
time to failure of the engine is considerably longer than that of the host. 

We are currently building the next. more compact, iteration of the computational 
module. It will have more memory ( 128kB of dynamic RAM with parity) and no serial 1/0. 
We hope to make up to 5 12 of those modules during the next academic: year. This would 
give a useable full scale strength of approximately 40 Mflops/sec. 
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QUESTIONS AND ANSWERS 

Q: Do you do program testing and debugging with a simulator on 
the VAX? 

T. Brody 

A: No. We test FORTRAN source code on the VAX and then it has 
always worked. 

Q: How do you detect and handle arithmetic errors in 8087's? 

J. Ainann 

A: Integral computations tend to be self-checking due to use of 
various meshes -- if error is bad it won't converge. Also we 
periodically run test cases. We find micro processor engine is as 
reliable as VAX host. 
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Algorithms for Concurrent Processors 

Steve W. Otto 
Physics Department 

California Institute of Technology 
Pasadena, Calif., 91125 

ABSTRACT 

I describe the general techniques in the use of concurrent 
processors for scientlf!c problems. It is described how one usually 
obtains linear speedup with a computational power that is not only 
proportional to the number of machines making up the processor 
but has a proportionality constant that is near 1. Examples from 
statistical mechanics, astrophysics, and high energy physics are 
discussed. Before concluding, I describe the current state and 
direction of the Caltech-JPL concurrent processor project. 

Technological .llotivati.on 

The VLSI technology revolution is expected to lead to somewhat faster but, 

mostly, much less expensive computers contained on a few chips [1]. The 

expected increase in cost-effectiveness of these machines is quite impressive. 

As an example, the 32 bit multiplier-adder chip set of Weitek provides approxi-

mately 5 million tloating point operations per second ("Mtl.ops") of performance 

(when used in a pipelined calculation) for a cost of about $1000. A similar sys-

tem for 64 bit arithmetic is probably not too far away. It is possible to exploit 

this technology and build very high performance computers by combining very 

many of these cost effective units into a single concurrent processor [2]. I will 

term the basic (VLSI) building block a "node" in the rest of the text; a node is 

itself a small but complete computer of modest power. Concurrent processing 

seems a more practical route to high performance than the design of a single 
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very fast machine. In tact, it is expected (or perhaps I should say, some of us 

expect!} that one can build machines consisting of about 10,000 nodes with each 

node being an individual computer capable of 10 Mfiops. Such a design seems 

practical five to ten years from now and offers the promise of machines that are 

one thousand times as powerful as current supercomputers. Such "top ot the 

line" machines would be accompanied by smaller collections (of, say, about 100 

individual nodes) which would have a total power of some thousand megaftops at 

a cost of perhaps $100,000 (for the basic cpu and memory - I am ignoring such 

essential peripherals as disks}. This increased power will revolutionize the com-

putational approach to all scientific and engineering fields. For instance, one 

will be able to solve such difficult and important problems as weather prediction 

and the dynamics of quantum field theories. 

The above, rather attractive, scenario is the driving force behind research 

in parallel computing. The main stumbling block to the use of concurr'ent pro-

cessors is the difficulty of formulating algorithms and programs for them. 

Indeed this leads some to doubt the utility of these machines. The goal of this 

talk is to discuss the general techniques for using concurrent processors and 

illustrate them with some simple examples. It is our belief that these machines 

are fairly easy to use and are not specialized devices but rather can address the 

vast majority of computationally intensive problems. I will mainly confine 

myself to science and engineering fields (as opposed to, say, artificial intelli-

gence) as in these cases the algorithms are well understood and so it is possible 

to quantify the effectiveness of concurrent processors. However, we believe that 

similar considerations apply to other appllcations [3). 

This talk is divided into two parts. The first part will be a somewhat general 

discussion of the use of concurrent processors for the solution of scientific prob-

lems. Secondly, I will describe what we are doing in our project, both in terms of 
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hardware and software. 

General Features o'l the Problems 

Before moving on to specific examples, let us identify some of the general 

properties of computationally demanding problems. In Table 1, several exam-

ples are listed and, also shown, are some of their features which we have found 

important in their implementation on a concurrent processor. In each case, one 

must decompose the total problem into many parts -- one for each node. Typi-

cally, each problem is not demanding because of complexity of the algorithm in 

a conceptual sense. Rather, there is a relatively simple procedure (e.g .. com-

puting ve), which must be applied to a basic "unit" (e.g., the field) in a ''world" 

that consists of a huge number of such units. In finite difierence problems, the 

unit is a grid point in a three dimensional world. In a study of the evolution of 

the universe, the unit is a galaxy and the world is the universe itself. 

The first step in the decomposition of such a problem onto a concurrent 

processor is to divide the world into subdomains in such a way that each node is 

responsible for a single region. If we have Nn nodes and a total of D units (for 

example, grid-points) we find n=D/ Nn adjacent units in each node. This type of 

decomposition is only possible if D':2!:.Nn and we will see later that in fact D»Nn 

is desirable. This constraint is easy to satisfy; today, calculations with D~108 

are commonplace and in every case the number of degrees of freedom in state 

of the art calculations is increasing with time! 

There are, of course, exceptions where computationally intensive problems 

cannot be so decomposed. As an example, consider the N body gravitational 

problem for N=lO (the solar system). where we wish to integrate the 10 equa-

tions of motion for a very long time, T. This large parameter, T, cannot be as 

easily decomposed and we can use, at most, 10 nodes for the problem.• 

•On the other hand, for the actual example discussed, one usually wants to examme the 
results of the integration for a variety of initial conditions. The problem can then be decom-

posed on the product apace - particles and initial conditions - and so make effective use of 
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TABLE 1 

APPIJCATIONS AND FEATURES RELEVANT FOR CONCURRENT PROCESSING 

Class of Examples: Unit and Natural Load Communication 
Problems: World: Balance? Range: Topology: 

Finite Ditl Geophysics grid point, Yes Short 3D Mesh 
Finite Element Aerodynamics space (x,y,z) 
P.D.E. 

Statistical Lattice Gauge space time Yes Short 4D Mesh 
(x,y,z,t) 

Melting Configuration No Short 3DMesh 
space (x,y,z) 

Coulomb Gas Particle Yes Long Ring 
Number 

Time Evolution N-body GraVity Particle Yes Long Ring 
1/r Potential Number 

Time Evolution Particulate space (x,y,z) No Short 3D Mesh 
General Motion (sand, 
Dynamics avalanches) 

Fast Fourier Evolution of "Bit space" Yes Long Hyper 
Transform universe, Cube 

Fluid dynamics space (x,y,z) 

Network Circuit Component, No Long logarithmic 
Simulation Simulation circuit (sparse) graph 

(e.g., hypercube) 
Neural network neuron, brain No Long 

Isolated Ray tracing Event space Yes None Needed 
(graphics) 
Data Analysis 
Initial condition 
study 

Image Analysis of Pixel space Yes Long Hyper 
Processing Satellite data cube 
(or see FFT) 

Artificial Chess Inference, Yes Short tree 
Intelligence Decision tree 

Event driven Industrial/ cars on a No Mainly logarithmic 
simulation Economic/ freeway; short graph 

(e.g., hypercube) 
Military tanks on a 
("war games") battlefield; 
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General Features of. our Approach 

There are many possible designs of concurrent processors differing pri-

marily in the number and nature of the nodes and their interconnection topol-

ogy. We will consider as target hardware for our discussion what are termed 

ensemble or homogeneous machines by C. Seitz [ 4]. These are collections of 

identical nodes -- each a complete computer with its own arithmetic unit and 

memory. Although this is not necessary for every application, we will assume 

that each computer can execute its own instruction stream, i.e., that the target 

hardware is MIMD (Multiple Instruction, Multiple Data). The nodes may even have 

a more fine-grained level of concurrency within them, such as pipelining. We will 

allow the interconnection topology to be general and examine each problem to 

find the "natural" connectivity. Of particular importance is the so-called hyper-

cube (more precisely, Boolean hypercube) topology -- Nn =Z" computers with the 

connectivity of a cube in -y dimensions. We will not assume that there is any 

shared memory accessible by all nodes; the simpler distributed memory archi-

tecture seems sufficient for our applications. 

It is convenient to characterize the effectiveness of a concurrent processor 

by the speedup, S, defined so that the collection of Nn nodes runs, for the same 

problem, S times faster than a single node. Furthermore, define the 

efficiency e so that S = eNn. We wish to examine the effects that reduce the 

performance of a concurrent processor and tower the efficiency from the nomi-

nally perfect value of unity. One is usually quite satisfied to find algorithms with 

linear speedup - those with an efficiency e that is independent of Nn and of rea-

sonable size - say e~.50 . 

a large concurrent procesaar. 
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There are at least two issues that need to be addressed in discussing the 

efficiency. Firstly, the nodes must spend some time communicating with their 

neighbors. This is minimized if the inter-node communication, demanded by the 

algorithm, always proceeds by a "hard-wired" path. Note that communication in 

ensemble machines can be viewed as a mail system where messages may be 

sent between arbitrary nodes through intermediate nodes. Obviously, the 

"wasted" communication time is minimized if the amount of such message for-

warding is small. In general, the "world" which is decomposed in a particular 

problem has a certain topology which dictates the appropriate hardware con-

nectivity. The hypercube node connection is attractive because it includes the 

ring and (many different) mesh topologies as subsets as well as being that 

needed for the fast Fourier transform. Furthermore, the distance between arbi-

trary nodes grows only logarithmically with the total number of nodes. This 

means that the forwarding overhead is modest for problems (such as circuit 

simulation and "war-games") which have an irregular structure. 

The second issue affecting performance is that of "load balancing"; one 

needs to insure that each node has essentially identical computational loads. 

The efficiency is typically reduced by a factor which is approximately the ratio 

of the mean computing load per node to the maximum load per node. For sim-

ple partial differential equation based problems, identical loads are achieved by 

assigning equal numbers of grid points to each node. For this regular problem, 

this corresponds to equal volumes of the "world" in each node. For homogene-

ous problems, it is generally easy to achieve balanced loads, but in some inho-

mogeneous cases. care is necessary. Consider a gravitational evolution, where 

we assign equal number of stars (or other celestial bodies) to each node. If we 

are working in a region where, say, binary stars are formed, then velocities will 

tend to be high and we may need a reduced time step for this case. So, nodes 
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Fig. 3a 
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is referred to [10] and references therein. 

'lbe Caltech-.JPL Concurrent Processor Project 

I would now like to describe what we have done and where we are headed in 

our project at Caltech. 

'lbe Prototype Computer 

We have built, as a collaboration between Physics (headed by G. Fox) and 

Computer Science (headed by C. Seitz) a 64 node hypercube computer. Each 

node has 6 110 ports (channels) connecting it with its 6 neighbors, is based on 

the Intel BOB6-BOB7, has 12BK bytes of RAM storage, and BK bytes ROM for boots, 

memory test, and downloading of code throughout the hypercube. At 5Mhz, the 

node ts IOll ~ of a YAX 111780 (C code to C code comparisons), so the cumulative 

power of the computer is IOll B YAX 1117B0s. In terms of Mflops, with the BOB7s 

running flat out, the machine achieves 50Ktlops x 64 = 3.2Mflops (for 32 bit). In 

actual usage (with the C cross-compiler) we typically get about 2 Mflops. The 

total memory of this machine is B Mbytes. In terms of reliability, the hardware 

supports single bit error detection in memory (we see one every -2 weeks) and 

in software, checksums capable of detecting single bit errors in communications 

are kept (these are very rare and we have seen only a few). 

The cost of a node, including parts, printed circuit board, and some of the 

labor, is approximately $1000, making the entire machine cost about SB0,000 (I 

have added in the cost of some peripheral hardware). At the time we started, 

the best off-the-shelf floating point performance to be had was the BOB6-BOB7. 

This is now changing and I will mention later our future plans. 

Our collaboration has more recently grown to include the Jet Propulsion 

Lab and we have been involved with them in producing 300 more nodes. These 
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are basically a tuned-up version of our original node (almost twice as fast, twice 

the memory per node) and will be configured as a 27, a 'i!!J, and several 'i!!' 

machines. The nodes are currently in production and the first 32 node cabinet 

will be "delivered" at the end of May. These machines will provide the "capacity" 

to serve the many potential users the project is attracting. In regards to this, 

our basic philosophy has been to provide the incentive (i.e., some substantial 

amount of computational power) to scientists and engineers to learn how to use 

these parallel machines. To a large extent, this seems to be succeeding; many 

groups at Caltech and JPL are learning about using a hypercubic, MIMD machine 

for their particular applications. Contrary to some beliefs, we have not found 

the programming of this MIMD machine extremely difficult. This is probably 

best indicated by the large number of applications which are being developed to 

run on the machines - these are listed in Table 2. 

Fu.lure Kacbines 

Our current machine should be regarded as an experimental proving 

ground toward the construction of much larger and faster multiprocessor sys-

tems. In collaboration with JPL, we are currently designing our next generation 

system, based upon one of the powerful 32 bit microprocessors coming out and 

the high performance floating point units now available. By summer of 1985 we 

expect to have a node capable of up to 4 Mftops in a pipelined calculation (for 32 

bit; 2 Mftops for B4 bit), containing 1 Mbyte of memory, and costing approXi-

mately $6000. Furthermore, this node will contain 10 communication channels 

and so will be configurable in up to a 210 cube. Though this huge, monolithic 

machine is attractive, an even better idea is, perhaps, to build a 28 version. One 

of these would be capable of up to 250 Mtlops, would have 64 Mbytes of memory, 

and cost about S400K. A research group could afford to buy such a "desk top 
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TABLE 2: CODES WRl'ITEN FOR THE HYPERCUBE 

Who Scientific Application Algorithm Decomposition 
Field 

S. Otto, Lattice Gauge SU(3) quark Monte Carlo 3Dmesh 
P. Stolarz Theory potential 

R. Gupta, Real Space 4 different 
S. Otto Renormalization 4Dmeshes 
A. Patel for SU(2) 

S. Otto Finite Temp Double Monte 3Dmesh 
SU(3) with Carlo (Pseudo 
quarks Fermions) 

M. Johnson 2D, 3D Stat phases of Irregular 2D,3D mesh 
Mech. gases, liquids Monte Carlo 

F. Fucito, vortices of Monte Carlo 2Dmesh 
S. Solomon planar xy model 

J. Salmon Cosmology Large scale N Body-FFT 3Dmesh-
structure of hypercube 
universe 

W. Athas Computer general 
R. Faucette Science operating 
C. Seitz system 
(CS) 

S. Mattison Circuit 
C. Seitz simulation 

G.Fox any matrix eigen- subspace 2D 
A. Gee value package iteration 

P. Hipes. Chemical Quantum Mech Matrix 2Dmesh 
A. Kupperman Reactions of collisions inversion 
(Chemistry) 

P.Haff Particulate avalanches, time evolution 3D 
B. Werner motion sand dunes 

D. Meier Astrophysics Black Hole finite element 3D, finite 
(JPL) jet dynamics PDE elements 

S. Lewicki, galactic N Body-FFT 1D ring 
S. Otto dynamics 
N. Warner 

R. Clayton, Geophysics exploration finite diff, 2D,3D 
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(Geophysics) geophysics 

B. Hager geodynamics finite elements 2D,3D 
(Geophysics) Conjugate 

gradient 
inversion 

D. Jefferson Simulation circuits, Time Warp random 
(JPL) networks 

E. Felton Optimization Traveling Simulated random 
S. Karlin Salesman Annealing 
S. Otto Problem 
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Cray"! 

Conclusions 

In this talk we have tried to show that a large class of computationally 

demanding problems can be done efficiently on a concurrent processor. As for 

the interconnection topology, it seems that the hypercube is fairly general - it 

includes the ring and meshes, matches the FFT and is a logarithmic graph, mak-

ing it suitable for the inherently long distance algorithms such as circuit simula-

tion. 

In the past, the subject of parallel algorithms has been a somewhat esoteric 

pursuit, known to a few computer scientists. It has been mainly a theoretical 

subject, for the simple reason that few appropriate machines existed. VLSI 

technology is rapidly changing this situation, for it will soon be possible to chea-

ply build machines of very high processing capability. With this motivation, we 

believe that scientists will learn to use the parallel algorithms already known 

and no doubt invent better ones. This will not only delineate the basic principles 

of decomposition but help the development of tools (languages and compilers) to 

make concurrent processors (almost!) as easy to use as sequential machines. 
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QUESTIONS AND ANSWERS 

Q: 1) How do you measure efficiency on the system? 

2) How have you handled the problem of random number generation in 
your lattice gauge calculation, particularly with respect to passing 
the random number generation procedure and the total random number 
space required? 

C. Maples 

A: 1) In the case of FFT as much of the problem was run on one 
node and compared with the 64 processor machine. Some problems could 
not be completely run on a single node but the scaling was 
straightforward. 

2) We use different seeds for each processor. Because of the 
complex nature of the calculation and the utilization of random 
numbers, repeating or overlapping random number cycles are acceptable 
since the values will be utilized differently. 

Q: At what ~oint do you encounter interconnection problems when 
scaling up 2 hypercube of processors? 

D. Kaplan 

A: One-dimensional arrangement of processors works up to 4000 
processors. Two-dimensional up to 32,000 processors. 

Q: What processor will you use in your generation 2 machine to 
get 4 mega flops? 

I. Gaines 

A: National 32032 Floating Point: Weitek 

Q: Do you have reliability problems? 

M.J. Levine 

A: 1) Parity errors occur about 1/2 weeks. 

2) Node failure -1/3 months. We flush the process and 
restart (after fixing any hard errors). 





[Chalchiuhtlicue, "Jade Skirt," Goddess of Water. Codex Borbonicus, P• 5. 
Screenfold manuscript, panel 39 x 39.5 cm. Mexico City. Preconquest or Early 
Colonial.] 
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In this paper we will consider some essential issues in multiprocessor architectures. Pre-
vious work in this field considered taxonomies based on instruction and data streams [Flyn72), 
instruction and execution streams and types [Kuck78), or different models of computation and 
their implementations [Trel82]. We will not try to produce another taxonomy based on archi-
tectural features. Instead, we will discuss requirements needed to solve problems on multipro-
cessors without describing any particular architecture in detail. Nevertheless, we will discuss 
how each of the requirements is implemented in certain presently available or proposed 
machines. 

2. Architecture Evolution 

In this section we will consider three different types of architectures in their evolution-
ary order. 

Von Neumann architecture is shown in Figure 1. It consists of a memory, a proces-
sor, and a bus between them. Since data and instructions are stored in the memory, and the 
processor controls and performs the computation, that is, it generates addresses for data and 
instructions, fetches them and computes on data, the bus is the most frequently used part of 
the system. To avoid this potential bottleneck, the designers of van Neumann architecture add 
a small fast local storage, general register, local memory, or cache to the processor. It is used 
to save local data and instructions under the assumption that they will be accessed more fre-
quently by the processor. In what follows we will always assume that a processor may contain 
such a local storage. 
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Vector machine (Figure 2) introduced vector instructions in case when the same 
operation was performed on many sets of operands. This way only one instruction fetch is exe-
cuted for many data. If a program contains only vector instructions, then the ratio between 
fetched instructions and data will be very small and the bus load will drop significantly for 
large vectors. Furthermore, vector machines usually increase performance by pipelining opera-
tions in the processor. Since memory read and write cannot be pipelined, interleaved memory 
organization must be used. Such an organization allows a vector of data to be read simultane-
ously from the same location in all memory banks and then sent to the processor over a 
transmission pipe. Although vector machines such as Cyber-205, Cray-1, and Fujitsu VP-200 
are highest performance machines today, they are burdened with several problems. First, 
structured data that are not vectors of stride-1 are difficult to handle because of memory 
conflicts. Secondly, programs do not consist only of vector instructions. Thirdly, the market 
demand for increased performance cannot be satisfied effectively anymore by increased level of 
pipelining (more stages in the pipeline) or by faster circuit technology (reduced clock speed). 

Multiprocessor architecture uses several identical processors to compute on one 
problem. This approach introduces three new requirements that have not been encountered 
before. First, each problem must be partitioned into tasks; secondly, each task must be 
scheduled for execution on one or more processors; and thirdly, synchronization of control and 
data flow must be performed during execution. 

With respect to passing data between two tasks, two types of multiprocessors can be 
indicated. In the shared-memory model (Figure 3a), data are in preallocated locations in 
the shared memory where it can be accessed by each processor and operated upon without 
interruptions from other processors. In the message passing model, (Figure 3b) there is no 
global shared memory in the system. Each processor has an associated local memory and that 
data is passed from the producing processor to the consuming processor through the connec-
tion network. Both models require a general purpose connection network. The advantage of 
the message-passing model is that data is passed only .pnce through the connection network 
while two passes (write and read) are needed for the shared-memory model unless the data is 
in the local storage. Yet another advantage of message-passage model is that for data-driven 
computation, data. is passed through the network at generation time and not when it is 
needed. Thus, longer delays through the network can be tolerated in case when data is not 
used immediately after its generation. For demand-driven computation, data is fetched when 
needed and long delays through the network must be tolerated at every fetch. 

Since connection networks are expensive only small networks are built as crossbars 
(Farm84). Usually, a limited access network such as shufile-exchange in Cedar (GLKS84), 
Banyan in TRAC (Brow84) or Boolean-cube in Cosmic Cube machine (Seit84), is built. For 
WSl technology it is reasonable to restrict connection network to the nearest neighber connec-
tions (AbGa84). As long as each processor on wafer operates asynchronously from other pro-
cessors and can access all other processors through the network, the WSI implementation is a 
general-purpose multiprocessor shown in Figure 3. If we limit each processor to execution of 
the same instruction at the same time and all processors to operate in a lock-step manner, the 
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systolic-array model [Kung82] is obtained. Each processor in systolic array performs simple 
arithmetic operations such as addition and multiplication and has few registers for storing 
data. A larger main memory outside the systolic array supplies data which moves across the 
systolic array as it gets operated upon. Data is skewed in space and time according to the 
shape and type of systolic array. This limits each systolic array essentially to one algorithm. 
When different algorithms are used, systolic arrays of different types must be combined. Regu-
larity is lost and extra delay processors must be added for adjusting skewed data generation 
and consumption of two arrays (Figure 12 in (Kung82)). Furthermore, each systolic array of 
size n can only solve problems of size nor smaller. Larger problems must be partitioned, not a 
trivial task, into slice of size n and executed serially. Because of different topologies required 
by different algorithms, systolic arrays are not general purpose engines, but may serve as 
hardware accelerators for frequently used algorithms. 

To overcome the problems of fixed connectivity, Snyder [Snyd82] introduced a pro-
grammable systolic array in which each processor is surrendered by switches which allow 
embedding of different topologies into the same physical array. The switches are set by an 
operating system before each phase of the algorithm. Because of synchronous lock-step opera-
tion and lack of memory in each processor it is very difficult to program such an array, partic-
ularly when two algorithms must share the same array or when slightly different computation 
must be performed on the boundaries. 

Since systolic model and its derivitives are used for special-purpose computation, we 
will not consider them further in this paper. 

3. Parallel Model of Computation 

The model of computation is represented by a control graph in which nodea represent 
one or more transformations or movements of data and area represent order in which nodes 
are executed. Arcs rise from data dependencies when data produced by one node is used by its 
successor, or from control dependencies when an order of execution is specified by the user 
through a language with limited or no capacity to express parallelism. 

In the serial model or computation, usually used with single processor, nodes are 
serially ordered (Figure 4), each node representing one machine instruction. In this case a sim-
ple program counter is sufficient in keeping track of the next executable instruction. 

A parallel model or computation, characterized by a general directed graph, must 
be used for a multiprocessor. Three basic problems can be indentified in the parallel model: 

(1) Partitioning problem: Partition a program into tasks, where each task is 
represented by a node in a graph. Such partition must be optimal with respect to performance 
or some other measure of 'quality'. 
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(2) Scheduling problem: Assign each node to one or more processors for execution. 

(3) Synchronization problem: Determine all executable nodes in the graph and mark 
them for execution. 

There are two sequencing methods in the parallel model of computation. In a data-
driven execution the graph is executed in the direction pointed by arcs, that is, a node is exe-
cutable when all the data needed for its execution are available. This is implemented by send-
ing tokens down arcs. When tokens are available on all input arcs to a node, the node is exe-
cutable. In the dataflow model of Treleven [Trel82), tokens carry data with them and no preal-
located storage is needed for data. In Treleven's control flow model, tokens carry pointers to 
storage location where data can be found. (The anology is passing parameters by value and 
reference.) The former model is suitable for expression evaluation as well as those problems 
involving single data items. The later model is necessary for structured data, such as matrices, 
which may be only partially transformed by each node during the course of computation. It 
would be really inefficient to carry the entire matrix around if we want to change only one ele-
ment or perhaps one row of it. Thus any general-purpose architecture must include tokens 
with reference to data structures, since tokens that carry values are not efficient. An example 
is I-structures in tagged token architecture of Arvind [ArTh80). 

The demand driven execution processes the control graph in the opposite direction 
from data-driven. First, the result is demanded, which in turn requires evaluation of its argu-
ments and so on. This process continues until constants are encountered in which case a value 
is returned to the demanding node. While data-driven execution is redundant, the demand-
driven is not; that is, only those nodes whose values are needed in the final result are com-
puted. In data-driven execution, for example, both then and elae parts of a conditional state-
ment are computed whenever the data are available, with one part of them being selected 
later. This allows parallel execution of the condition, the then part, and the elae part. This 
redundant computation may increase the execution time. For example, if computation of the 
condition part takes IO time units while 20 and 100 time units are needed for the then and elae 
parts, then the entire statement will take 100 time units in the best possible case. On the 
other hand, if the condition is evaluated first followed by then or elae parts, then execution 
time could be either 30 or 110 time units depending on which part was selected. We see that 
considerable gain in performance can be obtained if the then part is chosen in the above state-
ment. So, in many dataflow model such as Arvind's U-interpreter, the conditional statement 
is executed in the demand-driven mode while the rest of the graph is data-driven. However, a 
data-driven model is still less efficient, since arguments for both then and elae parts are 
evaluated in parallel, although only one set will be used later. 

4. Partitioning 

The partitioning of a problem into many tasks and their execution on a multiprocessor 
has a dual purpose: first, increasing the performance or execution speed of a single program; 
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and secondly, increasing the efficiency or the throughput of the machine in a multiprogram-
ming environment. The partitioning can be performed by the user during algorithm design. In 
this case the user needs a language such as OCCAM [Wils83), that will adequately define 
separate tasks and communication of data between them. Furthermore, the partitioning can 
be performed by a compiler such as Paraphase [PaKL80], and BULLDOG [Fi0D84), or by the 
machine at run time such as IBM 360/91, and CDC 6600. 

So far we have been equating a node in the graph with a task, but we never defined 
what a task is. Usually it is assumed that each node in the graph represents one machine 
instruction. However, it can be as small as an arithmetic operation such as addition or multi-
plication. This fine granularity of parallelism is exploited by dataftow machines. The crude 
granularity is obtained when we combine more than one arithmetic operation into each node. 
In this case, each node may represent a vector instruction or an iteration of a loop. On an even 
higher level, we may consider each node to be a subroutine or the whole program. A task 
(node) is a unit of scheduling, which can be executed on one or more processors. 

Nevertheless, there is a general relationship between granularity and performance. Fig-
ure 6a shows a fine granularity graph with 7 nodes and 9 arcs. A time penalty for scheduling 
of each node and for synchronization of each arc must be added to the execution time of the 
program represented by the graph. However, if we merge nodes 2 and 3, 4 and 5, and 6 and 7, 
we will obtain the graph shown in Figure 6b for which a much smaller time penality must be 
paid. On the other hand, all the parallelism available in the original graph will not be 
exploited. When we merge nodes 6 and 7 into new node Z, for example, we force sequential 
execution on nodes 5 and 6 since node Y is executed after node Z. Thus, as we merge or fuse 
more and more nodes together, we pay less in synchronization and scheduling overhead but 
more and more parallelism may be wasted. 

The amount of parallelism wasted for random structures such as those orignated from 
expression evaluation is much higher than for regular structures such as those orignated from 
linear algebra. For example, addition of two vectors of size 100 can be scheduled on 10 proces-
sors in such a way that each processor generates the sum of every 10th element of the resul-
tant vector. The synchronization is performed only once at the end after each processor exe-
cutes all 10 additions. Scheduling and synchronization overhead is much higher if we consider 
each addition separately. This relation is shown qualitatively in Figure 7. 

Every multiprocessor architecture attempts to exploit as much parallelism as possible 
at the lowest possible overhead. Proponents of dataftow architecture [Denn80], [Aria83), 
[WaGu82) believe that each problem can be transformed into expression evaluation with negli-
gible scheduling and synchronization overhead and thus have chosen fine granularity as the 
main principle of their machines. On the other hand, proponents of crude granularity dataftow 
[GLKS84), [GaRo84), [HwSu83) believe that the solution to most of the important problems in 
science and engineering can be solved with structured data and operations on them and have 
chosen crude granularity as an underlying principle of their architectures. This way they hope 
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to overcome the overhead problem associated with fine granularity. 

An obvious solution to the overhead problem is to hide it or, in other words, overlap it 
with execution, called instruction pipelining. If such a machine has approximately 10 stages in 
the execution pipeline, then the number of nodes executable in parallel must be 10 times the 
number of usable processors in the machine. If we have 5 processors then 50 nodes must be 
executable in parallel at every moment to keep all the processors fully utilized. In other words, 
a program will run only at 10% ot it maximal speed if 100% efficiency of the multiprocessor is 
required. This relationship is shown in Figure 8, where a program profile with respect to 
number ot parallel operations is shown. There are areas of high parallelism interleaved with 
areas in which only few operations can be executed in parallel. This kind of profile is the result 
of partitioning a large problem such as 2-D or 3-D simulations into smaller subproblems and 
then using one processor to solve each subproblem. The areas of low parallelism come from 
updating the points on the boundary of the subproblem (complexity O(n )) before computing 
the points inside (complexity O(n2)). The architect must select a small number of processors 
for high efficiency. As the number of processors increases, the performance increases and 
efficiency drops. Therefore, to obtain high performance, we must tolerate some degree of 
inefficiency which can be minimized by not paying unnecessary scheduling and synchronization 
overhead for computation on regular structures. 

5. Hierarchical Control 

A task was defined in the previous section as a computation represented by a node in 
the control graph and scheduled as a unit. Partitioning problem deals with what comes into 
each node and can be divided into two subproblems. Paralleliam detection determines all 
possible parallelism on the smallest level. Clustering combines several operations into tasks. 
Although tasks are indivisible from a scheduling point of view, they can be executed by several 
processors. A process is an indivisible unit with respect to processor allocation; that is, each 
process is executed on only one processor and each task consists of one or more processes. 
Processes can be combined into higher level structures. A 11ector of proceuea is an ordered set 
of non-interacting processes such as a DO loop in which no data is passed between iterations. 
In a recurrence of proceaua each i·th process supplies some data to (i+ 1)-th process. In a 
tulo·aided recurrence i·th process produces data for and consumes data from both (i-1)-th and 
(i+ 1)-th processes. Obviously, these ideas can be extended to higher dimensions. 

At scheduling time a vector of processes can be allocated to n processors with the j-th 
processor (j $ n) working on the j·th, (j+ n)-th, (j+ 2n)-th, ... proce!ses, for example. Obvi-
ously other scheduling algorithms can be applied. On the other hand, one task can be just a 
random collection of interacting processes and still be assignable to more than one processor if 
the architecture provides a mechanism for it. Thus, four levels of control may exist on a mul· 
tiprocessor architecture: job, taak, proceu, and inlfruction. Very few machines have all these 
levels of control. In a batch system, jobs are running serially while in a time-sharing 
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environment, they are running in parallel. We will omit job level control in the following dis-
cussion. Each job consists of one or more tasks and each task consists of one or more processes 
while a process may have one or more instructions. A serial or parallel model of control can be 
used on each level. 

A aerial aingle level control, in which each node is single machine instruction, can be 
found in all von Neumann architectures such as V AX-11 or Motorola 68000. In this case, the 
entire program is a single process executed serially. Some data flow machines, such as the 
single-ring Manchester machine (WaGu82], have a parallel aingle level control in which each 
node of the control graph is a single machine instruction. In this case, there are no tasks and 
processes. 

Cray-1 may be considered to have a aerial-parallel control. As in von Neumann archi-
tecture each node is a single machine instruction. However, each vector instruction can be 
considered to be a vector of processes which is scheduled on x processors, where x is the 
number of pipeline stages in the functional unit. When vector instructions are considered, a 
x-stage pipeline is just a cost-reducing engineering trick to replace x independent processors. 
The NYU Ultracomputer has a parallel-aerial control. Each node is a sequence of instructions 
called task specified by the programmer at the algorithm time. At runtime, the operating sys-
tem will put all the active tasks in a queue in the shared memory. Whenever a processor 
becomes idle, it will get a new task Crom the top of the queue. Each task is executed serially in 
a processor. In NYU machine, task and process are the same and represent a node in the con-
trol graph. 

The tagged token dataftow architecture proposed by Arvind (ArGo82) has a parallel-
parallel two-level control in which the whole program graph is clustered into tasks called code 
blocka, each of which is another dataftow graph. Code blocks can be executed in parallel on the 
same or different set of processors, called a phyaical domain. There is no process in this archi-
tecture. However, each instruction inside a code block is allocated to a processor at compile 
time based on its iteration and statement number. Each processor contains a matching unit, a 
fetching unit, a program memory, one ALU, and a data memory (I-structure). DataBow graph 
in each processor is executed in pipelined fashion which allows an increase in performance 
equivalent to the number of pipeline stages as long as there are sufficient number of executable 
nodes. It is not obvious what is gained by using dataftow model on a single processor that is 
more complex and costlier than a von Neumann machine of similar performance (Arla83]. 

The HEP machine has a parallel-parallel-aerial control. Programmers specify tasks and 
processes inside a job. Tasks can be running in parallel in the same or different processors 
called PEMs, each task being allocated to only one PEM. Each PEM contains a task queue, a 
process queue, and several pipelined functional units each of which has 8 stages except for the 
division pipe. When a task is initiated in the HEP, a PEM is selected and the task status 
word (TSW) is stored into the task queue, while the initial process for this task is loaded into 
the process queue. Process can be created by another process of the same or different task. 
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All tasks in a PEM will be executed in a round-robin fashion. When a PEM executes a task, it 
will select a process from the task and send the current instruction of that process to one of 
the functional units. Afterwards, the PEM will switch to the next task in the task queue. Ir 
there are less than 8 active tasks in a PEM, several processes from the same task can be exe-
cuted in parallel. When an instruction execution is finished, the process will be put back in 
the process queue and will wait for the next turn. The instruction execution inside a process 
is performed serially. 

Cedar [GLKS84] also has a parallel-parallel-aerial control. Tasks are represented by a 
node in a macro-dataflow graph and can be executed in parallel on different clusters of proces-
sors. Each task is a high-level structure of processes which is executed in parallel on several 
processors. Each process is executed serially on a standard von Neumann processor. 

6.Scheduling 

Scheduling is a function that associates one or more processor with each task in order 
to achieve high performance of a single program or high utilization of processors in a multipro-
gramming environment. 

Scheduling can be done statically or dynamically. In static scheduling tasks are allo-
cated to processors during the algorithm design by the user or at compile time by the com-
piler. The OCCAM language [Wils83] allows programmers to specify the instruction execution 
sequence, the channel of communication, and the execution unit. On the other hand, 
BULLDOG compiler [Fish83], after applying the trace acheduling technique to determine all 
the traces (tasks), performs register allocation and binds operations to specific functional units 
at compile time. The advantage is that scheduling cost is paid only once if the program is run 
many times with different data. Secondly, there is no run time overhead. The disadvantage of 
static scheduling is possible inefficiency in gussing the run-time profile of each task. For this 
reason, BULLDOG runs each program with a set of data in order to determine more accu-
rately run time parameters. 

Dynamic scheduling is done at run time by the machine. It offers better utilization of 
processors at the price of additional time needed for scheduling. The scheduling algorithm can 
be distributed or centralized. The NYU Ultracomputer [GGKM83] uses a distributed algorithm 
in which all tasks are in a queue in the shared memory and each processor takes the first task 
from the queue and executes it. The task queue is not a bottleneck since Ultracomputer uses 
its special synchronization instruction called Fetch&Add, which allows simultaneous access 
from all processors to the same memory location without performance degradation. Such a dis-
tributed algorithm allows architectural scalability at low cost with high scheduling-overhead 
penalty because of the global memory access through the network. On the other hand, 
Arvind's dataflow machine uses a centralized scheduler called 'manager' to schedule each code 
block to a physical domain. 
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The HEP machine uses a self-scheduling technique to balance the execution time of 
processes in a task. This method is very useful when the number of totally independent 
processes in a task, such as iterations in a DOALL loop, is significantly exceeds the number of 
processes allowable in a PEM; moreover, the execution time of each process may be varying 
widely because of the unpredictable delay of memory access through the network. Self-
scheduling allows each process to acquire the next iteration dynamically when it finishes the 
previous one. 

Some machines have more than one level of execution control. Different control levels 
may use different scheduling schemes. For instance, Cedar and Arvind's dataflow machine use 
dynamic scheduling for tasks, while processes and instructions are bound statically at compile 
time. 

Different dynamic scheduling schemes such as Random Choice (RC), First Come First 
Serve (FCFS), Least Service Time First (LSTF), etc. can be used (HwSu83]. In case when a 
task is scheduled on more than one processor, a more sophisticated processor-allocation stra-
tegy is needed. In Cedar, for example, maximal number of processors needed by a task is 
determined at compile time. When the number of available processors at run time is not ade-
quate, the scheduler can either wait or fold the task on a smaller number of processors. Simula-
tion by Yew and Xu have shown that folding the task will provide a batter performance and 
processor utilization [YeXu84]. 

7. Synchronization 

When executing a program in parallel, we need to synchronize the execution from time 
to time. Synchronization can be done either at control level or at data level and can be imple-
mented either through shared-variable or through message-passing methods. 

In the Control-level synchronization, a program counter is used to synchronize a 
sequential execution, while in parallel execution of a control graph, synchronization is done by 
allowing a node to execute only when all its predecessors have finished. All the sequential 
uniprocessors such as VAX-11 and Motorola 68000, use the program counter method while 
dataflow machines, such as Dennis's and Arvind's, use control synchronization for executing 
the flow graph. 

The Data-level synchronization is used whenever synchronization is needed inside a 
node. It is very effective when a node represents operation on large structured data. For 

ft 

example, the computation of L;(a,+ b,)*c, is executed in two steps: vector addition followed 

by vector multiplication. However, the vector multiplication may start before vector addition 
is finished as long as we assume that consumer multiplication will not overrun producer addi-
tion. In Cray-1, this is called chaining and synchronization is accomplished through 
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synchronous operation (central clock) of two functional units: adder and multiplier. When vec-
tor instructions are replaced by general processes that cannot be executed in lock-step manner, 
a different mechanism must be used. 

Different data synchronization primitives exist in different machines. Smith introduced 
a Full/Empty bit in each memory location in the HEP [Smit78). Each register or memory 
word can be used to synchronize two processes in a producer-consumer fashion. This method 
is very elegant for 'single assignment' languages. However, for language that allow the reas-
signment of a variable, single Full/Empty bit can only synchronize alternating reads and 
writes to the same location. Arvind applied this synchronization method to the I-structure of 
his dataflow machine. 

The primary purpose of all data synchronization schemes is to provide an efficient way 
of preserving a proper order of memory references. The Fetch&Add instruction denoted by 
F&A (V,e) in the NYU Ultracomputer performs an indivisible operations of fetching the 
integer variable V and replacing it by V + e [GGKM83]. It allows simultaneous operations on 
the same memory location by combining requests through switching elements in the connec-
tion network. This permits highly concurrent execution of operating system primitives, such as 
management of a parallel queue. However, the Fetch&Add is a commutative instruction and 
can not perserve the order in which memory is referenced. 

Zhu & Yew introduced a synchronization scheme for Cedar [ZhYe84]. They define a 
key field for each synchronization variable arid use that key as a counter. Each synchronizing 
instruction will test the key and perform a memory read or write only if the tested condition is 
satisfied. After this operation, the key is incremented or decremented in order to allow the 
next operation on the same variable. The counter method of Zhu & Yew is very difficult to 
preserve the reference order when the counter is updated by two or more overlaping sequences 
of memory operations. For example, if each processor computes one grid point (Figure 9), then 
each grid value such as A is read twice by B and C before a new value can be written into A. 
This is repeated on each r iteration. Ir processor computing C is delayed by one iteration, 
then processor computing B will decrement the counter of A twice and allow updating of A 
out of order. Two errors are made: B gets an old value of A twice while C will compute with a 
new value of A. A Bit-map synchronization method [Peir83) solves this problem by treating 
the key field as multiple Full/Empty bits. Each memory operations is associated with one bit 
in the key. By testing and seting the bits in the key, a proper order can be preserved in this 
and similar examples. 

8. Memory Access 

As we mentioned in section 2, each multiprocessor must include a connection network 
which introduces unpredictable delay in accessing data stored in the shared or distributed 
memory. Furthermore, since access to certain memory can be blocked temporarily, the arrival 
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order may be different from the order in which data were requested. 

Memory latency problem can be tolerated by using a data-driven, message-passing 
method so that data will be fetched at the generation time instead of the demand time. All the 
dataflow machines use this method. Machines such as Cray-1, fetch vector data in a pipeline 
fashion. After an initial set-up delay, data arrive to the processor at pipeline time. A latency 
problem still exists when accessing non-vectorized data. High-performance von Neumann pro-
cessors, such as IBM 360/91, use runtime instruction lookahead to solve this latency 
bottleneck. However, this introduces an extra complexity in the control unit. The HEP and 
the NYU Ultracomputer have multiple processes in each processor and perform context 
switching while one process waits for the data from memory. An extra set of register files is 
needed for each active process to avoid overhead of saving registers. The Structure Memory 
Access Architecture [PIDa83] introduced a fetch and an execution processors in each conven-
tional processor. Address generation, data fetch, and operation execution can be overlapped to 
increase the performance. However, a data dependence problem is not easy to solve between 
these fetch and execution processors. 

9. Summary 

In this paper, we identified the issues in solving a problem on a multiprocessor 
machine. We discussed how to decompose such a problem, schedule and execute it using 
many processors. We reviewed several commercial and proposed machines and discussed 
approaches they use to accomplish this. 
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Figure 8. Program Profile with Respeat to Parallelism 
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QUESTIONS AND ANSWERS 

Q: Can your CEDAR structure handle list-processing problems 
more-or-less efficiently? 

T. Brody 

A: Present processor is not a LISP machine. If we replace it 
with a LISP processor and figure bow to decompose LISP programs, I 
believe it will run efficiently. 

Q: What are the kind of computational problems which are well 
suited to the architecture of CEDAR? 

R. Brower 

A: We believe that a large spectrum of problems are suited for 
CEDAR, since CEDAR provides fast access to shared memory, good process 
synchronization, static and dynamic scheduling, restructuring compiler 
and macro data flow model of computation. 

Q: How much overhead do you expect for fetching data and load 
module to a particular cluster? 

X. Miura 

A: Such overhead is inevitable in any multi processor 
architecture. Multi-programming may solve such problems for CEDAR. 
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Q: Can one avoid creating new languages and rather define a set 
of extensions to an existing language (FORTRAB) for partitioning, 
scheduling, etc.? 

T. Nash 

A: When I say "new languages" I mean mostly extensions to 
existing languages to support scheduling, synchronization, etc. 

Q: Experience, though limited, indicates that not a large number 
of extensions are needed to control parallel or multi-processor 
operations from FORTRAN. But the specific nature of this extension is 
currently somewhat dependent on the specific architectural structure. 
Therefore, specifying a completely general set of FORTRAN.extension for 
parallel systems is probably presently impractical - but it is 
tantalizingly close. 

c. Maples 

A: I agree. 

Q: When will CEDAR be operational and which physics and 
engineering problems will you attack with it to demonstrate the 
effectiveness of the approach? 

M.J. Levine 

A: CEDAR may be operational in 1986 or 1987 if someone would 
support it. We really have not done enough work, yet, looking into 
applications. 
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EXPERIENCE WITH SCIENTIFIC APPLICA TIIONS ON THE MIDAS 
MLL TIPROCESSOR SYSTEM* ---

Creve Maples 
Lawrence Berkeley Laboratory, University of California Berkeley, California 94720 

Introduction** 

Most experts agree that the speed of standard or 'serial' computers is 
approaching fundamental physical limitations imposed by signal propagation (the 
speed of light) and heat dissipation. This is evidenced by the fact that the fastest 
modern serial computers are only 2 to 3 times faster than the CDC 7600 intro-
duced in 1968. Although it is possible to increase present serial processing speeds 
by a factor of 10 to SD, such increases will require new technological advances 
(gallium arsenide, Josephson junction, etc.) and will probably be relatively expensive. 

The Cray-1 computer, introduced in 1976, attempted to circumvent these 
obstacles by performing various identical operations in parallel (vector processing). 
Suppose, for example, a problem required that two sets of 50 numbers be added, by 
pairs, and the 50 results were, respectively, to be multiplied by a third set of 
values. A vector machine would use 50 separate addition units and multiplication 
units and perform the entire operation in two steps rather than 100. For the 
portion of a problem that can be organized in such a manner, this technique yields 
substantial increases in speed over the traditional serial machine. If, however, it is 
necessary to examine the result of each addition, for example to determine an 
appropriate normalization factor, the performance of the vector processor would 
diminish considerably. Software effort in both the United States and Japan is being 
directed towards the development of compilers which attempt to reorganize 
programs in order to attain more effective utilization of vector machines. The 
extent, however, to which problems are amenable to this approach varies 
considerably and a great many important physical problems appear to be essentially 
non-vectorizable. The advances in micro-electronics during the past decade have 
made new approaches to computing feasible. This involves using multiple comput-
ers, or processing elements, collectively on the same problem. Unlike the vector 
approach, such processors are not constrained to perform the same operations at 
the same time and, may, for example, be working on different facets of a 
calculation simultaneously. Whatever speed individual serial computers ultimately 
achieve, it is clear that multiprocessor machines could potentially extend this speed 
by factors of hundreds or thousands. Although a number of manufacturers now 
provide systems which incorporate, or can be expanded to include, several 
processors, such systems are designed primarily to run separate problems and not to 
work collectively on the same program. Some new systems (such as Denelcor's 
HEP, CDC's Cyber Plus, Cray's X-MP, and ELXSl's System 6400) are beginning to 
offer coordinated processing capability. The potential power of multiprocessing 
computers, however, still remains virtually unexplored within the commercial 

*This work supported by Director, Office of Energy Research, Div. of Nuclear 
Physics, Office of High Energy and Nuclear Physics and Nuclear Science of the 
Basic Energy Science Program, U.S. Dept. of Energy, Contract No. DE-A03-
76SF0098. 

**Some of the material in this presentation has been extracted from papers 
appearing in the proceedings of the 13th International Conference on Parallel 
Computing (1984). 
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marketplace. This is primarily due to the difficulty in architecturally orgamzmg 
many independent processors so that they may work productively towards the same 
goal. The main problem areas in this respect are in multiprocessor control, 
coordination, and inter-processor communication. 

Although many designs for such multiprocessor systems exist, few have actually 
been constructed. The reason for this is both the expense involved in constructing 
such a system and the fact that many proposed designs are directed at specific 
classes of problems and hence may not be commercially viable. The new industrial 
consortium, the Micro-electronic and Computer Corporation, currently involving over 
a dozen corporations, is vitally concerned with the lack of development in this 
area. A recent MCC report stated that "To date, attempts to improve 
performance through highly parallel structures have been relatively disappointing. 
We believe the major reason for this lack of progress is the high real and personnel 
cost to build and evaluate parallel structures," This fact, coupled with newly 
expanding computer applications in both business and personal computing, make 
high-risk, high-priced ventures appear unnecessary. 

Contention and problem decomposition are two areas which can pose significant 
difficulties in the successful design and application of multiprocessor systems. 
Contention between processors for memory (or bus) access can drastically affect 
the performance of a system. As an example of this, Digital Equipment 
Corporation's announcement of the shared memory, two processor VAX 11/782 (Feb. 
1, 1982) indicated that system would only provide between 60 to 80% speedup over 
the single processor system. This loss of performance was due to contention even 
though the two processors were not intended to work on the same problem. 

The use of global memory versus hierarchial, partitioned, or local memciry is 
the subject of considerab!z discussion. Some projects, such as the Sl System and 
NYU 's Ultra Computer, believe that a general computer must permit any 
processor to access any memory at any time. Although this is extremely desirable, 
it leads to problems of contention and conflict, where two or more processors want 
to access the same location simultaneously. Conflict can occur if even one of the 
processor accesses is a write operation. The situation rapidly deteriorates as the 
number of processors increases. A simulation of the expected performance of the 
Sl system on the hydrodynamic test code SIMPLE is shown in Table 1. An 8 
processor system is expected to perform at 48% efficiency. The equivalent of 2 
processors is expected to be lost due to global ~mory conflicts and one due to 
interprocessor line transfers. The authors conclude that there "is little to gain by 
running this J?roblem on more than B processors." Other projects, such as the 
Cosmic Cube, avoid this problem by not having any global memory. In this case, 

Table 1. 
Simulated Performance of Sl on SIMPLE• 

No. Processors Speedup Efficiency 
1 1.00 1.00 
2 1.77 0.89 
4 2.93 0.73 
6 3.56 0.59 
8 3.64 0.48 

•r. S. Axelrod, et al., 
Lawrence Livermore Laboratory, Livermore, CA3 

, . ..., 
/ 
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Table 2. 
Ware's Model of Multiprocessors 

no. processors {P): Relative Sneedun (Efficiencv\ 
2 8 16 100 

% serial code fa) 
1% 0.99 'T"l ,._o r"I 'T'0l 5% 0.95 6.0 0.74 9.1 0.57 17 0.17 

10 % 0.91 4.7 0.59 6.4 0.40~ 9 0.09 
20 % 0.83 3.3 0.42 4.0 0.25 5 0.05 

1 
S(P) = a + (l-o.)/ p = speedup 

E = S(P)I P = efficiency 

however, significant amounts of interprocessor communication can severely degrade 
the system's performance. 

The efficient decomposition of a problem can, independently of the 
multiprocessor structure, be crucial to the performance of the system. This can be 
seen in the Ware Model for parallel systems. In this simple model, it is assumed 
that either one processor or all processors are operating, and that all effects of 
interprocessor communication can be neglected. In Table 2 alpha represents that 
fraction of code (in terms of time) that cannot be executed in parallel. Then 
Table 2 illustrates the effect of this parameter on performance as the number of 
processors increases. A very small amount (1 %) of serial computation obviously has 
little effect on the efficiency of systems with only a few processors. In a 100 
processor system, however, 1 % of serial code would lead to a 50% performance 
efficiency, or the loss of 50 processor equivalents. This illustrates the necessity of 
developing highly parallel problem decompositions in order to be able to utilize 
multiprocesors extensibly. Table 2 also illustrates that performance on a few 
processor system is relatively insenistive to the amount of serial code. This is 
important since many tests are currently being carried out in 2 to 4 processor 
environments. Such tests need to realize very high performance efficiencies (better 
than about 98%) if the approaches are to be successfully extended. 

The results of some actual multiprocessor tests are shown in Table 3 for the 2 
processor CRAY X-MP and four processor ELXSI System 64005 The test results 
were reported by Melvin Scott of Sandia National Laboratory. The code SPEED 
consists of 5 independent kernals exerpted from Sandia's mathematical library and 
from large user codes. It is designed to measure the ability of the machine to 

Table 3. 
Speedup Factors on CRAY X-MP and ELXSI 6400• 

Cbde Machine Number of Processors 
2 3 4 

SPEED X-MP 1.995 - -
ELXSI 1.994 2.74 3.03 

BENNEU X-MP 1.556 - -
ELXSI 1.995 2.85 -

SUP ORT X-MP 1.735 - -
•Melvin Scott, Applied Mathematics Division, 

Sandia National Laboratories, Albuquerque, NW 
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perform floating point calculations. BENNEU is part of a particle-in-cell code. It 
was used for testing because it required the separate tasks to share common 
memory. The program SUPPORT is a large code which solves two-point boundary-
value problems using methods of superposition and orthonormalization. These tests 
illustrate all the effects of contention and code on efficiency. As expected, 
efficiency drops rapidly as the number of processors increases. The difference in 
relative performance between the X-MP and ELXSI on BENNEU is most probably 
due to the architectural structure of shared memory. Unfortunately no information 
could be obtained that indicates specifically the causes of the performance loss. 

System Overview 

Focusing the power of many independent processors so that they may be 
effectively applied to single problems or applications is not easy and is the subject 
of a great deal of current research. The MIDAS system, under development at the 
University of California's Lawrence Berkeley Laboratory, is based on the concurrent 
operation of multiple asynchronous processors. The control architecture is a 
hierarchy of computer processors, organized in a general tree-structure (as 
illustrated in Figure 1) ~'.1f integrated with independent 'intelligent' mass storage 
and interactive systems. ' Within the present 3-level system, multiple processing 
elements are organized into clusters, each of which is controlled by an auxiliary 
computer. Every cluster combines central processing units from commercial 
computers with independently cigveloped specialized processors and a specially 
designed communications system. Multiple clusters are in turn controlled by a 
computer referred to as the Primary. The three processing levels, therefore, 
consist of a Primary Computer, Secondary Computers, and Multiple Processor 
Arrays. Interprocessor communication can be handled in a variety of ways which 

PRIMARY COMPUTER 
Multi-User; Allocate& Resources: links the Interactive 

and Analysis Operation; Controls the Secondary, 
Interactive, and Mass Storage Systems 

SECONDARY COMPUTERS l 
Handles Individual Problems. Subdivides Problems 

and Load• MPA Untta; Controla and Monitors MPA Operation 

r'1Cl~"*11~-·-·-·-·-.. <":iy.r'Jr'i''jrlr~r'"/rj 
MUL Tl-PROCESSOR ARRA VS (MPA) 

Multiple CPU's and Specialized Processors Handle Input, 
Data Selection/Correlation, Calculation, and Output In Each Array. 

All Operations are Conducted Asynchronously and In Parallel. 

Figure 1 MIDAS processor organization showing the three levels of operation and 
control. 
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will be outlined in the following material. The discussion will primarily focus on 
the operation and performance of a single subsystem at the second and third levels. 

A. Processor Organization 

Processors within the MIDAS architecture are organized into groups or clusters 
called Multi-Processor Arrays (MPA). Each MPA consists of a variety of 
independent processors, multiple busses, a high-speed switching network, and a set 
of independent switchable memory blocks. At present the processors include an 
Input Processor, and Output Processor, an array of independent CPUs, and a set of 
units called Zero Processors (ZP). An MPA is, in turn, controlled and monitored by 
a commercial mini-computer called a Secondary. This two-level processing 
structure is referred to as a Distributed Subsystem and forms the basic processing 
unit of the system. A single subsystem containing 11 independent processors is 
illustrated in Figure 2. From a control perspective, this architectural organiz'\fion 
is similar to that proposed by the Cedar project at the University of Illinois. In 
the Cedar design a cluster of 8 to 16 processors is controlled by a single cluster 
control unit (and multiple clusters, by a global control unit). The two designs, 
however, have significant differences with respect to communication, control, and 
the type of processors utilized. 

The Multiprocessor Array on MIDAS, shown as part of Figure 2, currently 
consists of eight general purpose CPUs referred to as Programmable Arithmetic 
Modules (PAMs). Each of these units is, in fact, a standard commercial CPU with 
dedicated memory, capable of handling scientific calculations in general, and 
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Figure 2. A Distributed Subsystem containing eleven independent processors. 
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floating point operations and Fortran codes in particular. For the initial 
development the ModComp 7870 CPUs were selected. These processors support 64-
bit floating-point hardware, pipelined operation, and up to 4 Mbytes of local 
memory. The CPUs are, for comparison, roughly 15% slower than the DEC VAX 
11/780. Ultimately a single MPA is expected to contain between 24 and 32 of 
these independent processors, each of which is perhaps four times the speed of the 
present units. 

The design facilitates the easy integration of specialized processing elements. 
Two such elements, the Input and Output Processors are shown in Figure 2. These 
are specialized pipelined devices designed to handle information flow into and out 
of the cluster. They operate independently at a 200 nsec. clock cycle on two 
separate, external, 20 Mbytes/sec. 1/0-busses 02-bit data, 8-bit control). These 
processors may, depending on their programming, select or reject information 
(filtering); expand or compress data (format); manipulate data (mask, shift, etc.); or 
route specified information as required by other processors in the cluster. Due to 
the pipelined structure, these operations are all performed at bus speeds. The need 
for specialized handling of 1/0 operations is also recognized in the Cedar 
architecture. That design, however, includes a separate processor cluster which is 
specialized for I/O operations instead of, as in case of MIDAS, utilizing special-
purpose I/O processors within each cluster. 

The Secondary CPU is responsible for supervising the operation of a 
Multiprocessor Array. Each has dedicated disc drives and can, therefore, compile, 
assemble, and link programs. To facilitate supervisory functions, the console-
control functions of all the standard CPUs (in the MPA) are interfaced into the 
Secondary, as shown in Figure 3. This provides it with the complete capability to 
monitor and control third level processors. It can run, halt, resume, or single-step 
each PAM independently or collectively, and can monitor or modify selected 
registers or memory locations. Examples of effectively utilizing this capability will 
be discussed in the section on Performance. 

The function of the Secondary is both varied and problem dependent. It can 
directly control processing at the third level of the system, function as an 
intermediary between the Primary Computer and the third level, and/or directly 
participate in the calculation itself. A Secondary could, for example, co-ordinate 
its computation with third-level processing in a master-slave relationship, using 
these processors to perform needed calculations as appropriate, and in parallel. In 
this mode it can obtain and act on results as they become available and perform or 
delegate further processing, as required, until the problem is completed. 
Alternatively, it may only be necessary for the Secondary to set up a problem for 
actual execution entirely on the third level. A data analysis problem is an example 
of the latter mode of operation. Initially the task would execute serially in the 
Secondary to perform the setup and initialization of the problem (e.g., calibration, 
etc.). Thereafter independent data events would be analysed in parallel at the 
third level. In such cases the Secondary might, during processing, be employed to 
monitor and/or control the overall performance kinetics within the third level, and 
to handle any abnormal conditions which might occur (informing the Primary 
Computer, if necessary). Additionally, it may dynamically allocate processor 
functions as the requirements of the executing problem change. 

The top level, and overall master, of the system is a Primary Computer whose 
main function is to handle system control and user communication. It implements 
instructions in a job control language which permits the user to define the problem 
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requirements and to allocate necessary resources. Interactive control of a task's 
execution is also provided at this level since the Primary can access the 
instantaneous results of the calculations ongoing at the lower levels. 

B. Memory Configuration 

Currently four classes of memory are included in the Distributed Subsystem 
design shown in Figure 2. These include local memory, switched memory, shared 
(or global) memory, and bulk memory. Each of these has different attributes and 
collectively can be employed both to minimize contention and to facilitate 
interprocessor communication. The utilization of these memories will be discussed 
in the section on Multiprocessor operation. Local memories, as indicated in Figures 
1 and 2, are dedicated to a single processor and are not directly accessible by 
other units. Figure 4 illustrates the schematic layout of memory from the 
perspective of a processor (or program). The Secondary also possesses its own local 
memory. In addition, however, it has access to both the global shared memory and 
the bulk memory units which will be discussed. 

Each of the sixteen independent switchable Memory Blocks, shown in Figures 2 
and 3, has a dedicated memory bus and may contain up to 256 Kbytes of memory. 
A 5 x 16 crossbar switch allows any memory module to be dynamically attached to 
any of the five processor busses shown. Since information transfer between a 
memory module and a CPU (PAM) is considerably faster than the cycle time of the 
CPU, it was possible to time-multiplex 8 independent memory-CPU connections on 
the same bus with essentially no degradation of access time. Time-multiplexing 
these connections was an implementation, not an architectural, decision. 
Functionally the multiplexed unit operates as a 12 x 16 crossbar switch. Any 
Memory Block may thus be attached to any processor at any time. Switching a 
memory module between available processors requires about 50 nsec. Once a 
processor-memory connection occurs, there is no functional distinction between the 
switched memory and the processor's local dedicated memory. The memory module 
is accessed by standard load and store instructions, rather than by 1/0 commands. 
Thus from a programmer's point of view, the switched memory is simply a 
particular common block. This use of bank-switched units in 

CPU MEMORY 
200n•, 12a KS 

OPERATION OF A 

PRO~RAMMABLE ARITHMETIC MODULE 

Figure 3. Schematic representation of the control and monitoring interconnections 
between the. Secondary CPU and a third level PAM. 
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multiprocessor configurations is similar to the S-1 Multiprocessor architecture under 
development at Lawrence Livermore Laboratory. The present S-1 design employs 
16 memory banks and 16 processors, and any processor may access any memory at 
any time. Unlike the MIDAS design, the S-1 processors use these common memory 
banks both for program operation and data storage, although access is enhanced by 
using individual cache memories. Simultaneous memory access conflicts, which can 
result from this scheme, are identified by special hardware circuits. 

MIDAS also provides a global, or cluster-wide, shared-memory unit (Figure 2). 
Access to this memory is given on the basis of a demand queue. For store 
operations longer than a single word, a processor may Jock out other processors 
until all memory updates are completed. Since heavy utilization of the global 
shared memory can slow the parallel operation of the processors, it should be used 
judiciously. The serious consequences of memory contention problems which can 
arise from over-dependence on shared memory was discussed in the Introduction. 
The programs currently running on MIDAS (and described in the section on 
Performance) have thus far not required the use of global memory. 

An independent bulk memory unit, with a 32 Mbyte capacity, is also available 
for data storage. CPU (PAM) access to this unit is indirect in that information 
must be transferred via the switchable memory modules. This mode of accessing 
bulk memory is quite efficient with respect to CPU utilization since a PAM 
continues operation immediately after releasing a memory module, and is not forced 
to wait until the data transfer to bulk memory is complete. The bulk memory has 
dual ports and can be utilized either in a standard OMA transfer or in an address-
incrementing (+l) mode. 

C. Communication 

A Distributed Subsystem is connected to the rest of the processing environment 
by four separate data paths, as shown in Figure 2. Two independent busses, as 
indicated previously, are used to handle high-speed data flow into and out of the 
Multiprocessor Array. The remaining links connect the Secondary to the Primary 
Computer and to a global switching network. This switching network is controlled 
by the Primary and serves to interconnect clusters and the global mass storage 
system. Between the two levels of the subsystem, separate communication channels 
connect all processing elements of the MPA with the Secondary Computer. 

Communication between units within an MPA may be handled in a variety of 
ways. Information may be broadcast to all processors via the shared memory. 

SWITCHED 
MEMORY.._, A 

LOCAL_ 
MEMORY 

PROCESSOR #1 

GLOBAL MEMORY 

8 

#2 

Figure 4. Memory layout from the perspective of a processor or program. 
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Specific processor communication (particularly control information or imperative 
commands) may be sent via the Secondary. Finally high-speed communication can 
be obtained by utilizing controlled access to the switched Memory Blocks. This 
communications mechanism can take the form of either circuit switched or packet 
switched operation and will be discussed. 

A standard technique for handling interprocessor communication is by utilizing 
a common memory that all CPUs (third level in this case) have equal priority 
access to. Typically there is some queuing discipline manifested in hardware and/or 
software that ensures memory coherence. What this usually implies is that CPU A 
may not alter the contents of a memory location that CPU B is in the process of 
reading. Under these conditions, the system is termed tightly coupled. Such 
systems may exhibit severe degradation of performance in the event of a high rate 
of requests from all CPUs to common memory. Attempts to alleviate this problem 
through intermediate private cache memories must first solve the difficult cache 
coherency problem, and thereafter may still retain j degradation of performance as 
cache misses increase with total memory requests. Problems that wish to employ 
this mode of communication must be decomposed in such a manner that this 
bottleneck does r:izit represent the kinetic step of the solution. Mechanisms such as 
replace and add can be employed to minimize conflict and to ensure load 
balancing. 

D. Specialized Processors 

MIDAS offers the user the ability to employ specialized hardware processors 
which can assume functions of code that would otherwise need to be executed in 
the CPUs. The ability of the Input Processor to preprocess the incoming data 
stream provides a simple example of this capability. In many analysis problems, 
for instance, this information may consist of compressed data containing only non-
zero values. Reconstructing such compressed data is typically accomplished by 
using descriptive information contained within the data. In standard programs this 
information must first be decoded and then the data expanded into an array in its 
original form. In MIDAS, however, the expansion algorithm may, if well defined, 
be executed at bus speeds by the Input Processor and the equivalent code deleted 
from the program. In this example the reconstructed information would be placed 
directly in a switchable memory block at appropriate locations. The time required 
to complete analysis on a given body of information would thus be shortened by 
that fraction of the time previously associated with executing the deleted code. 
Analogously, sorting, filtering, shifting, masking, and similar operations may be 
programmatically handled in parallel on separate processors operating at high 
speeds. 

This example illustrates an important feature of the MIDAS design - that 
specialized hardware processors may easily be accommodated within a more general 
computing structure. Such devices can effectively be accessed, if required, as 
program subroutines. Utilization of these processors is thus flexible and codes may 
be both simplified and speeded up by their use. They may be independently 
programmed and their application controlled or defined by a threading sequence, 
which may be as complex or as simple as the particular problem demands. The 
future inclusion of additional hardware processors (such as boolean logic units, array 
processors, track reconstruction processors, and other specialized devices), coupled 
with the ability to dynamically redefine the threading sequence on data-dependent 
conditions, provides exceptional performance potential. 
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Multiprocessor Control 

The distribution of a problem among processing elements is currently handled 
by specific constructs w~131in the program and by interaction with the user (via job 
control structures, etc.). In order to achieve an efficient and flexible operational 
environment and to permit fault-tolerant err~r recovery, a functionally distributed 
operating system structure was developed. System functions were distributed 
among specialized hardware devices (including microprocessor control units) as well 
as to the software in different processors. Since there are frequently several ways 
to delegate specific system responsibilities, often at the discretion of the user, a 
high degree of flexibility is maintained and a certain degree of fail-safe operation 
made possible. 

The switched memory provides an example of distributed functions and 
multiprocessor control. The Secondary Computer is responsible for overseeing the 
operation and utilization of the switched memory (including the handling of 
failures). It, however, is too slow to directly control the high-speed, asynchronous 
memory switching required in the MPA. The actual switching of memory modules 
is handled by a special hardware device termed the Conductor. The Conductor is 
functionally controlled (and even programmed) by the Secondary. It can, when 
requested, supply the Secondary with detailed information on system activity. 

A. Macroscopic Data Flow 

Each memory module is equipped with both zeroing hardware and a directory 
indicating the processor sequence or destination (Fig. 2). Thus when a module is 
released by a processor, the directory pointer is incremented and the memory is 
switched to the next class of processor specified. If all processing elements of the 
required class are busy, the memory will remain unattached until one becomes 
available. The ability of each Memory Block to carry with it an independent 
processing sequence permits the Multiprocessor Array to function in what might be 
described as a 'macroscopic data flow' mode of operation (for a discussion of data 
flow, see, for example, Ref. 12). 

When MIDAS operates in this manner, system software prohibits a memory 
module from being simultaneously accessed by more than one processor. A 
processor, therefore, has exclusive access to the attached memory until it 
relinquishes the module (or until the supervisory CPU forces a relinguish). This 
avoids conflicts and processor contention problems. In this approach, a particular 
Memory Block is transferred from one type of processing element to another in a 
manner and at a speed dictated by the information it contains. Note that in this 
mode of operation, Memory Blocks are switched to the first available processor of 
the type required, not in general to a particular processing element. This is 
important since the number and classes of processors available may vary 
dynamically. Reassignment of processor function during problem execution may be 
carried out either by the Secondary or by a processor itself and facilitates load 
balancing on the system. 

The exact manner in which this cluster of processors and memory blocks co-
ordinate their activity is flexible and may be defined through a user-specified 
threading sequence. The following limited example of a data analysis problem 
serves to illustrate one such sequence and some of the capabilities of the various 
processors. Execution of a data analysis program would begin in a Secondary 
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Computer. During this setup phase the program obtains the basic descriptive 
information on the problem (from the user or elsewhere), performs any requisite 
initialization, and establishes all calibration information needed for subsequent 
analysis. Up to this point execution of the code is serial. After completing 
initialization, in this example, exact binary copies of the program (as it exists in 
memory) are downloaded into each CPU in the Multiprocessor Array. Execution of 
the program on these CPUs then proceeds both asynchronously and in parallel. 

The functions of input and output operations for the Multiprocessor Array are 
assumed by the Input and Output Processors respectively. Information is carried by 
switchable memory blocks. Zeroing memory in any data stack may be carried out 
by special hardware Zero Processors. A threading sequence determines the 
processor order in which a memory block is switched through the system. In this 
example, a user specified threading sequence of Zero Processor, Input Formatter, 
CPUs, and Output Formatter designates that all memory blocks will be connected 
in a cyclic manner to each of these processor classes (in this example all CPUs are 
assumed to be identical). Thus each block would first be attached to a Zero 
Processor to be cleared, and then switched to the Input Formatter. 

The Input processor is designed to receive external data whose description, 
characteristics, and origin are specified initially at the job control level. This 
processor may simply store this data directly into attached memory blocks or, 
alternatively, process the data in a specified fashion prior to storage. The filled 
block would, as defined by the threading sequence, then be attached to any 
available CPU requesting data. After connection the memory block appears to the 
CPU (and resident programs) as directly addressable memory, thus permitting 
instant access without any of the attendant dead time that input or output usually 
implies (a memory block switch requires about 50 ns). 

After completing the calculations, an analysis code typically stores the results 
back into its current memory block and the program requests more data. This 
memory block (with results) would, as specified by the threading sequence, then be 
attached to the Output Formatter. This processor may block or unblock 
information, as required, and transmit the results to to a variety of user (or code) 
specified output devices. On completion of this final process, the entire threading 
sequence is repeated. All processors in the sequence are, of course, operating 
independently and in parallel. The actual memory block/processor cycle and co-
ordination is controlled by hardware and supervised by a microprocessor called the 
Conductor. 

B. Circuit and Packet Switched Operation 

Operation of the system can also take the form of a circuit-switched network 
in which interprocessor connections can be made or broken as necessary to 
accomodate exchanges of information. In this environment the switched memories 
play a static role in that they serve as communication pipelines. The processors 
play the active role and switch between specific Memory Blocks to establish 
(buffered) communication channels. In 'data-flow' operation, the system software 
prohibits multiple processors from simultaneously attaching to the same memory. 
Exactly the opposite is true in this case, since any number of processors may be 
attached to the same Memory Block. Access to the memory is controlled by 
system routines which select and partition the memory according to the global 
interconnection requirements requested. A dedicated region of a particular Memory 
Block is established to handle communication between two specific processors. This 
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region is, in turn, divided into two parts to separate read and write operations -
the write area for processor A is the read area for processor B and vice versa. 
Utilizing this mechanism, it is possible to create most connection topologies. 
Partitioning a Memory Block into four regions (8 parts) permits four processors to 
be connected in a square lattice (with a minimum communication bandwidth of 5 
Mbytes/sec). Six such Blocks ,rould then be used to form a cubic topology such as 
employed in the Cosmic Cube. 

The memory partitioning is, of course, transparent to the user. A connection 
topology is supplied to the Secondary. System handlers which utilize this topology 
are then loaded with the problem. If a processor wishes to communicate with 
another, the sender's ID, the receiver's ID, and whether the operation is a read or 
write, is supplied in a call to the system routines. These routines determine the 
appropriate Memory Block, the address within the block, and, if necessary, request 
a system interconnect to the block. In this mode of operation Memory Blocks 
themselves are thus invisible to the user. The system support for the mode of 
operation is, at present, not complete. 

The system can also be utilized in a packet-switched mode of operation. In 
this case the Memory Blocks are used to carry information between processors and, 
more importantly, between processor classes. After placing information in an 
attached memory, the processor would store the destination code in the memory 
sequence directory associated with the Memory Block (Figure 2). A system call 
would release the memory which would be directed by the system hardware to the 
first available processor of the class specified. If none were available, the block 
would remain queued until satisfied. If all processors are different classes, then 
information can be directed to a specific processor and two way exchanges are 
possible. 

Single Cluster Performance 

The original development of the MIDAS project began in the fall of 1979. A 
prototype was operational in January 1982 which consisted of 4 CPUs, 8 memory 
modules, input and output processors, a bulk memory unit, and the high-speed 
switching hardware (Conductor). This system was used to test the basic switching 
network, the communication system and the control capabilities. A single complete 
cluster, similar to the configuration shown in Figure 2, was completed in February 
1983. This system has been used for performance studies, software development 
(system, language, and application), and to investigate the application of real 
problems to a multiprocessor structure. Although some modifications10of the 
original programs were required to operate in a parallel environment, these 
changes generally were not extensive. 

To date a variety of codes have been run on the MIDAS system, with 
requirements varying in characteristic from 1/0 intensive to CPU intensive. In the 
following we describe two general classes of problems which serve to illustrate 
important areas of programming for this system. The first is a scientific data 
analysis program. This example illustrates the programmed use of the bank 
switched memories for problems that have high 1/0 requirements and how the 
inclusion of hardware processors within the threading sequence may enhance solution 
performance. The second area deals more with a class of problems that may be 
loosely grouped under the heading of Monte Carlo codes. These examples will 
serve to show how coordinated calculation between the Secondary and the third 
levels may be achieved. 



-157-

A. Analysis Problems 

One class of problem examined involved scientific data analysis. These 
problems are usually characterized by requiring frequent input of information, 
utilizing moderately heavy integer and floating point calculation, and requiring 
access to large global arrays. Interprocessor communication requirements are nil 
and output requirements may vary from little to significant. Typical results of one 
such test are shown in Table 4. This illustrates how the problem execution time 
and external I/O requirements vary with the number of processors. If processor 
contention is negligible and each processor is able to contribute its complete 
capability towards the solution of the problem, the relative speed would simply 
equal the number of CPUs employed. As indicated, the speed increases observed in 
the problem tracked exactly with the number of CPUs used in MIDAS. This result 
was, with one exception, obtained in all the analysis problems examined. 

The single exceptiP.51 consisted of a gamma-ray analysis program written in a 
language called EVAL. This program primarily sorted large volumes of data and 
required only logical and integer operations. The test results for this problem are 
given in Table 5. Using more than 6 PAM units failed to produce any significant 
increase in performance. Analysis of this situation indicated that the commercial 
disc controller used in the test was not able to supply information fast enough to 
keep up with MIDAS 's processing capability. This controller was unable to sustain 
a continuous data transfer rate of greater than 640 Kbytes/sec, and six processors 
were sufficient to completely handle this rate of information transfer. 

The error bar indicated in Table 5 represents the uncertainty (or lack of 
reproducibility) of the execution time due to random factors (e.g., disc latency, 
head position, etc.) in the measurement. These factors become more important as 
the amount of disc I/O increases. The fact that relative speeds are slightly 
greater than n, the number of processors, is not considered statistically significant 
although it does suggest that the pipelined I/O processors in MIDAS may become 
more efficient as the rate of data transfer increases. Possible restrictions in 
handling highly I/0-intensive problems were anticipated, and will be alleviated when 
the construction of a specially designed Multiported Programmable Controller is 
completed. This unit is part of the planned parallel Mass Storage Subsystem. The 
controller features 3 independent channels of look-ahead, dual-track buffering and is 

Table 4 
MIDAS Phase 2 - Relative Performance 

Problem: Average CPU and 1/0 Mix 

1 PAM 
2 PAMs 
3 PAMs 
4 PAMs 
5 PAMs 
6 PAMs 
7 PAMs 
8 PAMs 

Time Relative UO Rate 
(sec.) Speed (KB/sec.) 

372 (1) 34 
186 2.0 69 
124 3.0 104 
93 4.0 139 
74 5.0 174 
62 6.0 209 
53 7.0 243 
46 8.0 277 
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expected to sustain transfer rates of over a Mbyte/sec. per drive. 

One Fortran analysis program, typically requiring about an hour of CDC 7600 
CPU time per 1600 BPI tape of data, was adapted to the MIDAS system. This 
code was u1'4d to perform the initial analysis of data collected by the LBL/GSI 
Plastic Ball. The program analyzes up to 3000 parameters which are measured 
every time a relevant event occurs within the spherical system. This analysis 
essentially includes the reconstruction of the physical occurrence, involving the 
determination of particle identities, energies and spatial co-ordinates within the 
ball. It is heavily dependent on floating point calculations and was used to 
benchmark the current MIDAS system. Details of Fortran extensions implemented 
on the MIDAS system and the softwar0 modifications necessary to adapt this 
program have been discussed elsewhere. Three tests were conducted with this 
program. In the first case the code was converted with minimal changes, and 
specialized processors were not used. Under these conditions MIDAS executed the 
program at 70% the speed of the CDC 7600. (The CDC execution times measured 
only CPU seconds and excluded both system overhead and I/O time; the MIDAS 
times were total processing time, including I/O.) This code was then modified 
slightly (about 10 Fortran lines) to utilize the hardware zeroing processors and 
buffering capabilities of the architecture. This modified code executed at 87% the 
speed of the CDC 7600. The final modification involved using the Input Processor 
to carry out the formatting and expansion operations (on the initial compressed 
data) that originally was performed in the program. This function is done in 
parallel with the CPU operations, and the corresponding code was deleted in the 
program. Under these conditions, MIDAS will perform about 16% faster than the 
CDC 7600. In each of these cases the relative MIDAS speedup equaled the number 
of CPUs utilized. 

B. Monte Carlo Simulation Problems 

There has, in recent years, been considerable discussion as to whether Monte 
Carlo programs could be efficiently converted to parallel operation on SIMD or 
vector architectures. The Monte Carlo approach is a technique, not a program, and 
whether a program utilizing this technique is amenable to SIMD (or MIMD) 
decomposition depends primarily on the application itself and how the technique is 

Table 5 
MIDAS Phase 2 - Relative Performance 

Problem: 1/0 Intensive 
Time Relative 1/0 Rate 
(sec.) S!!eed (KB/sec.) 

1 PAM 130 (1) 99 
2 PAMs 61.4 2.1 210 
3 PAMs 41.2 3.1 314 
4 PAMs 30.6 4.2 420 
5 PAMs 25.5 5.1 510 
6 PAMs 21.0 +0.5 6.2 +0.2 620 
7 PAMs (20.3 6.4 640)* 
8 PAMs (20.3 6.4 640)* 

*Performance limited by commercial disc controller 
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employed. It is usually true, however, that Monte Carlo techniques tend not to run 
efficiently on vector processors. 

Several Monte Carlo programs were investigated and adapted for the MIDAS 
system. The results for three such problems will be briefly examined. The first 
used Monte Carlo techniques to study reactions in a many-body system. The 
distinctive aspect of this problem was that calculation produced relatively frequent 
bursts of information at random intervals which had to be stored on disc. In an 
asynchronous environment, frequent random output requests from the different 
processors could lead to instantaneous bus contention or delays. This difficulty was 
avoided in MIDAS by utilizing the switched Memory Blocks to derandomize the 
requests. The actual output was handled by the Output Processor from completed 
Memory Blocks, and in parallel with CPU activity. The CPUs simply switched to 
an empty block and continued operation. Test results showed the problem executed 
with 100% efficiency on the single cluster system (8-fold speed up for 8 
processors). Since each cluster contains its own independent 1/0 busses and Output 
Processors, the architecture would be extensible for this problem. 

The second case involved a simulation of the decay of equilibrium and non-
equilibrium dinuclear systems. In contrast, this problem involved essentially no 1/0 
activity. A distinctive feature was that it required frequent random access to 
large arrays. Although the problem itself was easy to decompose into independent 
parallel code, the requirement that all processors have full access to a single global 
memory could not be partitioned - either in terms of time or locality. This is due 
to the nature of the Monte Carlo technique itself and meant that each processor 
would frequently, at random intervals, need to address and update random memory 
locations. Classic problems of memory contention and conflict arise when more 
than one processor simultaneously attempt to access or update the same locatiorz 
Indeed the intelligent "fetch-and-add" capability of NYU 's Ultracomputer project 
was specifically designed to avoid such conflicts. 

These problems were avoided in MIDAS by using the Bulk Memory unit (Figure 
1) to store the global arrays. Contention was resolved by using the switched 
memory in each processor to buffer multiple address requests, and conflict was 
eliminated by using the Output Processor to serialize the actual memory operations. 
Since this is a 20 Mbyte/sec. pipelined processor, it is capable of simultaneously 
reading a 32-bit word of information from a switched Memory Block, processing 
information (e.g., routing, reformatting, calculating address offsets, etc., if 
required), and outputting a word of information, every 200 nsec. Information in the 
bulk memory unit can be updated efficiently since this device has a read-modify-
write cycle. Thus in the MIDAS implementation of this problem, contention was 
avoided, CPUs were never delayed waiting for pending requests, and the system was 
again able to operate at 100% efficiency and delivered an 8-fold speed up with 8 
processors. 

The third problem of this type calculated the eigenvalues of many electron 
systems by utilizing a Monte Carlo approach to the solution of the time-dependent 
Schrodinger equation. The problem had essentially no 1/0 requirements and could 
be decomposed so that memory accesses could be localized to each processor. This 
problem required neither the switched memories nor any of the specialized auxiliary 
processors. It was decomposed into a master/slave configuration with the 
Secondary Computer as master. All communication was carried out between the 
master and respective slave units10 Details of the implementation of this problem 
have been described elsewhere. It is mentioned here because the initial 
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implementation of the problem required periodic synchronization of all parallel units 
by the master. With this condition, test results indicated the system performed at 
95% efficiency with eight processors (or a speedup equivalent to 7.6 processors). 

A test case of the calculation was performed for H3, an important transition 
complex whose eigenvalue determines the rate of free radical exchange i'ls the 
reaction H + H7 -> Hz + H. On a VAX-780 this calculation took 434 hours of 
CPU time to re~ch an error bar on the eigenvalue of 0.0004 hartrees - a level of 
confidence that is needed to make thermodynamic estimates on rates. The same 
calculation, implemented as indicated above on MIDAS, using 8 CPUs on the third 
level, took 67 hours to .reach the same statistical significance, a factor of 6.5 
times faster. This speedup is consistent with previously benchmarked estimates of 
the speed of individual MIDAS processors (ModComp 7860) versus the VAX-780, i.e., 
the 7860 is about 85% the speed of the 780 for this code. A similar calculation 
for the NZ molecule, which is currently in progress, is estimated to require 
approximately 1000 hours of MIDAS time to reach needed statistics. The addition 
of more memory to the processors (currently in progress) should permit the problem 
to be handled in such a way that only one global synchronization will be necessary. 
In this case the efficiency should be essentially 100%. 

Future Directions 

Test results indicate that the 1/0 capability of a single cluster can support 
more than the present 8 processors. The number of processors can easily be 
doubled or tripled by duplicating the current time-multiplexed handler on the two 
unused busses (Figure Z). New and faster CPUs will also be used to replace the 
current processors. The addition of other special-purpose processors, including array 
processors, is also under investigation. These devices can perform specific 
calculations, or algorithms, which are not amenable to parallel approaches (either 
vector or multiprocessor). Such processors can easily be incorporated on a vacant 
memory bus (Figure Z) and accessed through a switched memory from code in a 
manner analogous to a hardware subroutine. 

The performance discussed thus far has been for a single cluster. Plans are 
underway to develop the 3-level structure which will be able to accomodate 
between 5 and 10 multiprocessor subsystems (as illustrated in Figure 5). By 
controlling the second-level switching network, the Primary can then use multiple 
clusters on individual problems in a similar fashion to the way a Secondary uses 
multiple processors. The subsystems could either be working on independent 
problems or different aspects of the same problem, depending on the setup 
conditions specified by the Primary, and like individual processors within a 
subsystem, they can be flexibly employed in any parallel or pipelined configuration. 
A full three level system could support up to Z70 processors. Using more than 
about 10 subsystems might require adding a fourth level to the system. The Phase 
3 effort will, in addition, require the development of a multi-bussed, parallel-
processor mass storage environment and a high-speed, interactive system. 

Summary 

The objective of research on the MIDAS project is to demonstrate the viability 
of a multiprocessor approach to computing and to develop a general purpose, 
extensible architecture which can be used to address the growing computational 
requirements of the scientific community. To be successful in this endeavor, 
however, requires more than simply designing, or even constructing, new hardware 
structures. To achieve high performance on future systems will require software 
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approaches which can exploit parallel architectures as fully as possible. A critical 
issue, therefore, is to understand the functional requirements of a large class of 
applications. The requirements must be critically examined and, in many cases, 
new approaches to old algorithms investigated. For highly parallel systems to be 
effectively utilized, they must be flexible and adaptable to specific application 
requirements. In particular, they will probably need a variety of control and 
communication mechanisms to facilitate load balancing of a problem and to 
minimize bottlenecks in performance. 

The effective utilization of highly parallel architectures, however, raises many 
new questions. Traditional operating system structures must, for example, be re-
examined. Fault-tolerant environments, with error recovery capability, become 
increasingly important as the number of components and processors increases. 
Language extensions to support parallel operations are obviously required, and 
ultimately new languages are needed to explicitly exploit parallel constructs. A 
new generation of development and debugging tools will be necessary in order to 
examine program performance and operation in an asynchronous parallel 
environment. Even areas such as mass storage must be re-examined to accomodate 
the high-speed performance implicit in the new systems. Finally, new computer 
architectures must take into account the growing demand for highly-interactive 
computing environments. The architecture itself should reflect this capability in 
order to minimize its impact on system performance. 

The development of the MIDAS structure has, to some extent, required 

Figure 5. A three-level structure containing 5 multiprocessor systems. 



-162-

investigation into all of these areas. The current 11 processor cluster supports a 
distributed operating system and has demonstrated the ability, under program 
control, to recover from processor failures. New tools have been developed to 
facilitate program development and debugging. A structured environment permits 
highly interactive code to directly interact with running problems in such a way 
that neither system nor problem performance is degraded. Difficulties in 
conventional mass storage technology have been encountered and parallel approaches 
to the problem are being developed. 

A variety of existing applications programs have been investigated and language 
extensions developed to both Fortran and XPL. The system performance for these 
problems (which had 1/0 requirements spanning several orders of magnitude) was 
found to be approximately equal to the CDC 7600. The problems examined initially 
exhibited a high degree of inherent parallelism. In these cases the system 
performed at 100% efficiency, achieving n-fold speedup for n processors. A few 
problems with lower inherent parallelism exhibit less than n-fold speed up. These 
problems are being critically analyzed to determine which approaches can achieve 
maximum parallel efficiency and the architectural implications of those techniques. 
Based on detailed performance measurements with a variety of real data analysis 
programs (and on simulations projecting these results to systems with a large 
number of processors), we find that the MIDAS architecture will perform at 100% 
efficiency and is completely extensible. 

The MIDAS project should not, however, be viewed as a particular architecture, 
but rather as a system which is evolving both in terms of performance and 
applications as the results of experimental tests and investigation dictate. Work, in 
collaboration with a number of scientific research groups, continues on applying as 
diverse a mix of problems as possible on MIDAS. The system's evolution will, to a 
great extent, depend upon achieving success in such disparate areas as Al 
applications, economic modeling, tomographic imaging, hydrodynamic modeling and 
lattice-gauge theory. Codes in all of these areas are currently either being closely 
examined or actively run. The main questions addressed are of fundamental 
importance to any system that is parallel in nature, i.e., how do the problems 
decompose and what mechanisms are available to effect parallel problem solving. 
The main objective is to provide a structure that will not only run these problems, 
but is extensible and capable of providing hundred and thousands of times today's 
computing power. To this end, a collaborative research effort is also being 
conducted with Digital Equipment Corporation on the development of Applied 
Multiprocessor Architecture. Such joint efforts are important if we wish to bridge 
the gap to the next generation of computing. 
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QUESTIONS AND ANSWERS 

Q: What does the cost estimate include? 

W. van aUden 

A: Let me answer in several parts. There is about 20 man years 
of effort and $350K in the present system. This includes large disc 
drives, 6250 BPI tape, high resolution color graphics terminal, etc. 
Each processor, however, is only about $10K. The cost of adding 8 more 
processors to the system is about $90K. One should also remember that 
the total cost I quoted of $350K is a 1980 figure. The cost of memory 
has dropped significantly in this time span and would be much cheaper 
to duplicate now. 

Q: What and how many CPU's are you now using and planning to use 
in your next phase? What production running has been done on the 
existing system? 

T. Nash 

A: We are currently using a total of 10 Mod Comp Classic 2 CPU's 
with 64-bit floating point and capable of holding 4MB of memory. They 
are about 15~ slower than the VAX 11/780. Eight more processors are on 
order and will be added to the existing cluster. In about 12 months 
the current cluster will be stabilized and used only for production. A 
new cluster will be built at this point with 20-30 processors, each of 
which will be about 4x the current processor speed - a total increase 
of about an order of magnitude. We will then begin multi-cluster 
operation for another order of magnitude increase. What processor we 
will use is not determined at this point since most of the likely 
candidates are not currently running. Two possible candidates are 
obviously the 308/E or the super VAX processors. We have an open 
mind on this. MIDAS has been doing production running for about the 
last 9 months. Within the past 3 months it has been devoted 10~ to 
production, 24 hours/day. This cannot continue, however, since we will 
be upgrading the cluster in the near future. The problems on the 
system have included a variety of data analysis programs, Monte Carlo 
simulations, quantum chemistry calculations, multi-dimensional 
minimization, free search, etc. There is currently a waiting list to 
get on the system. 

Q: When you increase the number of processors, does cost 
(including extending I/O) go up linearly, or worse? 

M. Fischler 

A: Better than linear. 
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Q: What effort was required to modify the operating system to 
take advantage of the parallel architecture? 

A. Brenner 

A: 3 man years. 
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WORK IN AMSTERDAM ON LOCAL INTELLIGENCE 

J. Dorenbosch ( 1), D. Gosman ( 1), L. 0. Hertzberger ( 2), 
D .J. Holthu:izen ( 1), F. Tuynman ( 2), J.C. Vermetilen ( 1), Presenter 

( 1) NIKHEF-H 
(2) Facultaire Vakgroe_p Informatica, University of Amsterdam 
P. 0. Box 41882, 1009 DB Amsterdam, The Netherlands 

1. The FAMP system 

Work on local intelligence at NIKHEF-H was started in 1979 with a propoul to design a 
multi mi"oprocessor system for real-time event Hlection in high-energy physi'> 
experiments. The outcome of this is the Fast Amsterdam Multi Processor (FAMP) system 
[ 1] which has the following properties: 

a high degree of modularity, facilitating easy system expansion 
the possibility to realize hiera"hical structures of processing elements 
use of comme"ially available mi"oprocessors 

The system consists of modules that mechanically fit into a CAMAC "ate. From the 
CAMAC standard only the CAMAC power supply lines are used. A special backplane, 
forming the internal system bus, has been designed for communication between modules. 
A processing cell consists of a CPU module (based on the Motorola MC68000) and other 
system units like memories and interfaces. Only one CPU module can be connected to 
the internal bus; more than one processing cell can be fitted into one crate, provided 
that the internal bus is divided and properly terminated. Processing cells are connected 
with each other via dual port memories (DPM' s) (fig. 1), that are constructed as 
separate modules. The DPM' s can be a"essed via the internal system bus and via the 
so-called external bus, which consists of a 64 lines flat cable. The CPU module has 
also access to the external bus via a front panel connector. 

A three processor FAMP configuration has been used for real-time event selection in a 
study of indusive phi-meson production in the NA11 /NA32 experiment at the CERN SPS 
[ 2]. A seven processor configuration, which will be further extended this year, is 
installed in the UA1 experiment at the SPS. This last application will be discussed in 
chapter 2. Because of its general nature and the availibility of good software 
development facilities, FAMP is also used for other applications than real-time event 
selection, for example: 

A FAMP configuration with special interfaces is used as a fast data,-link between the 
NIKHEF-H CYBER-173 and NORD-100 computers. The NORD-100 is used as the 
front-end machine for the CYBER-173. In the near future personal workstations will 
be coupled to this configuration vi a an Ethernet connection. The communication 
software is written in C. 
A FAMP configuration, extended with a video display controller, is used for 
interactive graphics analysis of experimental data of the NA11 experiment. The 
physics analysis program, written in FORTRAN, was originally used on a mainframe 
computer with a TEKTRONIX storage display as graphics device. The graphics routines 
needed were also written in C. 
The Computer Science Department of the University of Amsterdam will make use of a 
5 processor FAMP configuration as a "testbed" system for research on multi proces-
sor systems. 

For all these applications UNIX@ is used as the software support environment because it 
has become a standard especially for 16 bit microprocessors. To improve the real-time 
run-time environment the FAMP Distributed Operating System (FADOS) [3] was written 
for the FAMP multi processor environment. FADOS has been used for the last two 
applications described above and will be discussed in chapter 3. 

® UNIX is a trademark of Bell Laboratories 
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2 The FAMP system in the UA1 experiment 

2.1 Present situation 

The UA1 experiment [4] is installed at the CERN SPS proton-antiproton collider. Proton-
antiproton collisions take place in the center of the UA1 detector at energies of 540 
GeV. The FAMP system is used as part of the muon detection system. Muons that are 
produced traverse several drift chambers, an electromagnetic and a hadronic calorimeter 
and additional absorber steel. They are identified by drift chambeo that enclose the 
full detector. Muon tracks are measured in two projections. The drift times are 
measured by so-called Multiple Time Digitizers (MTD' s). 
The FAMP system has liCVeral functions: 

Read-out of the drift times in the MTD' s. 
Second level triggering on muons. 
Monitoring of the behaviour of the muon chambers. 

At present a configuration of six slave processors and one supervisor is used (figure 
2). Each slave reads the data from several MTD crates with a FRI (FAMP REMUS 
Interface). The distribution of the MTD crates is optimised to spread the data load 
evenly over all slave processors. The data are transferred to the supervisor vi a DPM 1 s 
(Dual Port Memories). An operating system [1] has been developed supporting the 
communication between the processors. The data are passed to the Data Aquisition 
System under supervisor control vi a a FAMP-ROMULUS Output Buffer (FROB). 
Communication with the trigger supervisor proceeds via I /O registers in the supervisor 
system. Switches are provided that can connect a back-up readout system to the MTD 
crates. 

For the second level trigger decision two projections of the tracks are reconstructed. 
Data from the different projections are read by different slave processors, where track 
reconstruction is done in parallel. Information on tracks found in the projections are 
passed to the supervisor, again via the DPM 1 s. The supervisor combines the projections 
in space. Tracks that point to the interaction point in the center of the detector are 
assumed to be genuine muons. Events with such tracks are accepted. The total decision 
time of the second level trigger is of the order of several milliseconds. Most of this 
time is used to sort the muon data by wire number. Because the event rate has been 
relatively low until now (a few Hz), no rejection was necessary and accordingly FAMP 
has only been used to flag events with a muon candidate. 

Monitoring of the behaviour of the chambers is performed by background programs that 
run in the supervisor processor. A sample of the event data is analysed and 
information is stored in histograms in local memory. These histograms can be inspected 
via a terminal connected to the supervisor or by the on-line NORD computer. 

2 .2 Future develoements in the UA1 FAMP system 

In figure 3 the FAMP configuration as planned for the future is shown. The slaves are 
equipped with hardwired coprocessors (RM: Reordering Memories) that read the data 
from a MTD crate and sort the data by wire number. This takes about 20 microseconds. 
Thereafter the MTD 1 s are avail able to accept the next event. Th is double buffering 
method reduces the deadtime of the experiment at high event rates. It also trees the 
processing power in the slave processors to perform more elaborate trackfinding 
algorithms. 

In the future system the data will be passed to the data aquisition system via FAMP-
REMUS (FAREM) interfaces containing among others a 2 Kwords deep FIFO memory. The 
data transfer will be interrupt driven via I /O units. Data from the streamer tubes that 
are added to improve the UA1 muon detection will also be passed to the FAMP system. 
This will be realized via a dual port memory coupling (not shown in the figure). An 
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extra slave system will be added to provide an independent back-up readout system. Data 
from the MTD crates can be passed to it via the switches. In the back-up system data 
can be reordered under software control; no track finding will be attempted. The 
monitor task will be moved to an extra processor system running under FADOS. This 
operating system will be discussed in chapter 3. The monitor processor is connected to 
the supervisor via a dual port memory. Event data and trigger decisions are passed to 
the monitor program via the DPM. This opens the possibility to monitor both the 
behaviour of the muon chambers and of the second level trigger. An MC68000-based 
system running under UNIX wil I be connected to this monitoring system to improve 
program development facilities, to store monitoring results and to act as a user 
interface. 

In figure 4 a comparison, as determined from a Monte Carlo simulation, is presented of 
the data taking efficiency of the UA1 data acquisition system with and without the use 
of a second level trigger. For the event rates anticipated for the future (50 - 100 Hz) 
local event selection yields an improved data-taking efficiency, because no useless data 
have to be transported. 

3. The FAMP Distributed Operating System (FADOS) 

3 • 1 • Overview 

FADOS [3] is a real-time operating system for multi processor systems operating in 
close interaction with a UNIX host. Using a host-target approach for software 
development it creates a friendly programming- and test environment. FADOS supports 
access to a remote file system on the host running UNIX, inter-process communication 
(also between processes running under UNIX and processes running in the real-time 
system) by message passing and interrupt handling by user processes. It provides 
facilities for the loading of cooperating processes. At present support for debugging is 
tested. FADOS can be used on any FAMP configuration provided that one of the 
processors is connected via a dual port memory to a host computer running UNIX. 
Because inter-process communication is done by message passing, other methods of 
coup I ing processing ce I ls, such as Local Ar ea Network coup I in gs, can in principle be 
supported. The use of message passing also allows communication between arbitrary 
processing cells which do not have to be coupled directly, i.e. the inter-process 
communication is independent of the system configuration. The®initial version of FADOS 
was supporting a terminal connection to a Motorola EXORmacs computer with UNIX V7 
as operating system. 

The FADOS software (fig. 5) consists of a part residing in ROM on the target system 
and another part on the UNIX host. The ROM contains: 

A real-time nucleus which takes care of message passing between processes. It also 
includes a driver for a local terminal. The messages which have to be sent to this 
driver are identical to those for the file server. 
A load program 

A debug monitor has been developed, and is at present under test. 

On the UNIX host the following software is available: 
A file server which operates under UNIX as an ordinary user program. 
A "command interpreter" operating together with the load programs in the target 
pro'Cessors, providing facilities for loading and k ii ling of processes. 
A modified version of the UNIX startup file and a modified LIBC library containing 
the message sending variants of the UNIX file system calls. 

A debugger has been developed and is at present under test. 

® EXORmacs is a trademark of Motorola 
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The file server, command interpreter and debugger are comprised in a driver, added to 
the UNIX kernel. 

3 .2 Access to the UNIX file system and automatic loading 

Important facilities that FADOS offen are complete access to the UNIX file system from 
any target processor as well as automatic loading of files from the host. This enables 
users to work with FADOS as if it is an extension of the UNIX system. The access to 
the UNIX file system is completely transparent for the user because the normal 1/0 
statements can be used in a program written in a High Level Language running under 
FADOS. This is realised by translating UNIX file system calls to messages to the UNIX 
host. A file server on the host interpretes these messages and takes the appropriate 
action. Terminal I /O can be done to a terminal connected to the UNIX host or to a 
local terminal whose behaviour is similar to that of a UNIX file. 

FADOS makes it possible to load a group of 
cooperating processes. When a process is loaded it 
the FADOS nucleus. When the load program loads 
sends all identifications to all processes. These 
addresses for the messages. 

3 .3 Inter-Process communication in FADOS 

independently compiled programs as 
receives a unique identification from 
a group of cooperating processes it 
identifications have to be used as 

Cooperating processes communicate with each other by exchanging messages. It does not 
matter whether these processes have been loaded on the same or different processors. 
In defining the message passing primitives it has been att~pted to provide as much as 
possible the same facilities as those offered by the ADA® [5 J programming language, 
In FADOS the following primitives are used: 

send: send a message and wait for a reply 
receive: wait for a message 
reply: send a reply 

When sending a message it should be given a name. When issuing a receive call, the 
names of the messages one wants to receive have to be specified. Messages with other 
names are queued. It is not possible to wait for messages from a specific source. The 
messages have a maximum size of 512 bytes. After a receive call the size of the 
message received, the name of the message and the source (to be used in a 
corresponding reply call) are available in global variables. 

3 .4 Interrupts 

Interrupt handling has been integrated with process communication. This is accomplished 
by transforming an interrupt into a message to a process. Before a process can receive 
an interrupt with a particular interrupt vector as message it has to call the nucleus in 
order to indicate that it wishes to do so. This call has as effect that the process will 
be awakened after a receive call not only when a message arrives, but also when the 
interrupt occurs. After the interrupt the process will start to execute immediately. 

3 .5 Scheduling 

The nucleus uses a simple algorithm for scheduling. It maintains a ready queue in which 
all processes not waiting for a message or a reply are placed. The process at the head 
of the ready queue will actually run on the processor. When a process is waiting for a 
message (not caused by an interrupt) or a reply it will be placed at the tail of the 
ready queue as soon as a message or a reply is received. When a process receives a 
message caused by an interrupt it wil I be placed at the head of the ready queue and 
start to execute immediately. A more complicated scheduling mechanism, where tasks get 
different software priorities has been developed and is at present under test. 

® ADA is a reg. trademark of the US Government, ADA joint Program Office 
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4. Future systems 

4.1 Local intelligence and data-acguistion systems 

The application of FAMP in UAl illustrates the possible tasks of local intelligence in a 
data-acquisition system. In such a system the following tasks can be distinguished : 

data transport, data manipulation (sparse data scanning, reformatting, reordering, 
conversion) and control of buffering 
triggering and on-line analysis 
monitoring (including monitoring of the triggering and data transport processes) and 
calibration. 

From our experience with the FAMP system we believe that it is desirable to perform 
these tasks locally (fig. 6,7). Our experience with FAMP has also shown that it is 
attractive to couple processing cells to each other with dual port memories. Moreover, 
in order to avoid bus contention multiple data pathes within a processing cell may be 
desirable, causing a demand for multiple-port memories. A communication link with a 
coordinator which rec!liVes the results of the triggering processes and which commands 
which data should be transported should exist. For monitoring only a subsample of the 
events is needed; however, access to the original data as well as the processed data 
should be possible. It should also be possible to modify the monitoring programs without 
disturbing the data transport and triggering processes. A Local Area Network connection 
offers good possibilities for communication between the real-time environment and the 
program development environment, which can also be used as user interface and for 
storage of monitoring and calibration results. 

4 .2 Hardware aspects 

At present standardized bu sses, like VME and FASTBUS, are available that support 
multiple busmasters. In FASTBUS also crate interconnection facilities are defined. For 
VME and other industrial bus standards no such facilities exist, however multiple 
information-paths are sometimes defined (e.g. VMX and VMS for the VME-bus). For 
moderate speed requirements Local Area Networks may solve the problems due to the 
lack of standardization of crate interconnections. Powerful processors like the MC68000, 
the MC68010, the NSl 6032 and the NS32032 are available. Furthermore an entire new 
generation of processors is appearing at the horizon: e.g. the Motorola MC68020, the 
I nmos T4 24, the Zi log Z80000, the Intel iAPX386. It can be expected that the 
introduction of those processors will soon lead to processor cards for the industrial 
busses, like VME. 

4 .3 Software aspects 

At present advanced programming environments (UNIX, APSE [6]) are or are becoming 
available. Many High Level Languages can be supported (C, PASCAL, FORTRAN-77, 
MODULA-2, ADA). The industrial push for use of High Level Languages on advanced 
microprocessors causes the development of better and cheaper compilers. Furthermore 
personal computer systems based on microprocessors with sophisticated and cheap 
software tools are appearing on the market. Programming in High Level Languages 
creates some overhead, but with the new generation of fast processors this does not 
need to be problematic. For FADOS, which is written completely in C, the overhead is 
estimated to cause a loss less than 25% in execut:on speed. 

The use of multi processor systems for which all processors are contributing to the 
same real-time task gives rise to the need for a real-time kernel supporting multiple 
processes running on multiple processors as wel I as for software controlling the 
multi processor system. Real-time kernels which support multiple processes running a 
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single processor, like RMS68K ®, are available. FADOS has also facilities for inter-
process communication between processes running on different processors and is a step 
in the direction of the integration of a real-time embedded system with a sophisticated 
p rogr amm ing environment. As such it is better adapted to the needs in high-energy 
physics experiments. On top of such a system the need for a software layer can be 
envisaged, that should e.g. take care of data transport across the data-acquisition 
system, still allowing manipulation of the data, and of making the data available for 
monitoring, triggering and calibration purposes. 
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Figure captions 
fig. 1: Schematic view of a simple 3-processor FAMP configuration 
fig. 2: Present FAMP configuration in the UAl experiment (MTD=Multiple Time 

Digitizer, FRl=FAMP REMUS Interface, MEM=memory, DPM=Dual Port Memory, 
FROB=FAMP ROMULUS Output Buffer, TERM=Terminal) 

fig. 3: Future FAMP configuration in the UAl experiment (RM=Reordering Memory, 
MEM•= Memory with battery back-up, FAREM=FAMP REMUS interface, 
VFl=VME-FAMP external bus interface, GRAP H=Gr aphics interface, 
DISP=Display; see also caption of fig. 2) 

fig. 4: Results of a Monte Carlo simulation of the UAl data-acquisition system 
(Decision time second level =2 ms, decision time emulator <30 ms, read-out 
time second central detector buffer =30 ms, double buffering of the data 
assumed) 
curve 1 - no rejection, tape writing speed limiting factor 
curve 2 - rejection factor of emulators = 50, no second level 

reduction, data transport limiting factor 
curve 3 - rejection factor of emulators = 10, rejection factor 

of second I eve I trigger = 5 
fig. 5: Schematic representation of FADOS and of some of the information flows: 

1 - Commands from debugger 
2 - Responses from debug monitor 
3 - Stop or kil I a process 
4 - Debug monitor's confirmation of 3 
5 - Start a process (arguments are the name of an executable file, 

stacksize and priority) 
6 - Return process identification of started process 
1 - Filenames and data to disk 
8 - Data from disk 
9 - For a process to be started standard input, output and error 

files are opened 
10- Returned file descriptors 

fig. 6: Possible structure of a data-acquisition system (MEM=memory, PROC=processing 
cell) 

fig. 1: Schematic representation of information flows in and tasks of a processing cell 

@ RMS68K is a trademark of Motorola 
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SOFTWARE FOR EVENT ORIENTED PROCESSING ON MULTIPROCESSOR SYSTEMS 

M. Fischler,*H. Areti, J. Biel, s. Bracker, G. Case, 
I. Gaines, D. Husby, and T. Nash 

Advanced Computer Program 
Fermi National Accelerator Laboratory 

Batavia, Illinois 60510 

ABSTRACT 

Computing intensive problems that require the 
processing of numerous essentially independent events are 
natural customers for large scale multi-microprocessor 
systems. This paper describes the software required to 
support users with such problems in a multiprocessor 
environment. It is based on experience with and development 
work aimed at processing very large amounts of high energy 
physics data. 

Introduction 

We describe here the support and system software that has been 
developed by the Fermilab Advanced Computer Program (ACP) for users 
with event oriented problems to be run on ACP multiprocessor 
computers. 1 Supporting a system of over one hundred individual 
processors requires a set of efficient, flexible, and simple routines 
that control the movement of data within the system. To meet these 
requirements, the routines must be designed with particular types of 
applications in mind. Specifically, the software described here 
supports event oriented applications where the problem is naturally 
divided into a process requiring a single intelligence (such as 
reading tapes, forming statistics, etc.), and a process done once for 
each of many hundreds of events, which uses most of the CPU time. In 
high energy physics event reconstruction, the second process is the 
actual reconstruction procedure, which does no I/O and which takes at 
least 99% of the CPU time in most cases. 

We are dealing here with a software structure in which a host 
program feeds events down to a node program, which is replicated on 
many node processors. The user must provide the information as to how 
the particular program is to be split into a part to be run on the 
host and a part for the node. However, the user does not have to 
explicitly control the detailed logic of data transmission such as 
deciding which node is finished and should receive the next event. 
Rather, a set of FORTRAN callable subroutines is provided which are 
simple to learn to use and which handle the transmission of events to 
and from the nodes. FORTRAN was chosen because of the strong 
commitment to FORTRAN in the physics community and the large 
collection of existing FORTRAN code. 

* Presenter 
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The concepts described here apply to any problem which is 
separable into many subproblems requiring little intercommunication. 
These include many lattice gauge theory applications, high dimensional 
integrals, tracking of particle trajectories through proposed 
accelerators, as well as problems outside physics such as animation 
and even (surprisingly) finite element calculations. 2 The system 
architecture that is natural for such problems is a host computer 
attached to the I/O devices and to a bus on which many node processors 
reside. 

ACP Support Software 

The ACP Support Software allows three modes for transmitting data 
between host and nodes: Constant Broadcast Mode, in which data, such 
as calibration constants, calculated by the host is loaded into all 
the nodes; Event Processing Mode, in which individual event data is 
loaded by the host into a single node, and the results collected by 
the host from . the nodes as they finish; and Statistics Collection 
Mode, in which the host retrieves and accumulates results from all the 
nodes. 

A typical program will have the flow shown in Figure 1. 

Figure 1 

PROGRAM FLOW 

Set up constants 

Read in an event 

Process the event in the node, 
updating statistics and 
histograms 

Output results to tape 

Determine if finished 

no yes 

i 
Output statistics and 
histograms and terminate 

TRANSMISSION ROUTINE 

BROADCAST 

SEND EVENT 

GET EVENT 

ALL DONE 

SUMNODE 
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The transmission routines shown in the figure have the following 
functions: 

BROADCAST Broadcasts constants to all nodes 

SENDEVENT Sends the event to a node 

GET EVENT 

ALL DONE 

SUMNODE 

Retrieves the result from a node 

Will see if all the nodes are finished 

Collects and accumulates statistics 
from all nodes 

In Figure 2, on the following page, is an example that 
illustrates how a program is modified to take advantage of the 
routines provided. Note that about a dozen statements have been added 
to a program which is typically many thousands of steps long. 

The user support routines have been gathered into three layers of 
increasing complexity. This way a user needs to be familiar with only 
the simplest possible set of routines. A set of Layer 1 routines, 
including those referred to in Figure 1 will satisfy the needs of many 
users with programs having basic and simple requirements. Other users 
may need somewhat more flexibility. Layer 2 routines allow more 
choices for the programmer (and have, therefore, somewhat longer 
descriptions to absorb). The Layer 2 routines that correspond to the 
Layer 1 routines listed above are: 

GBROADCAST 

SENDBLOCK 

GETBLOCK 

CHECKNODE 

GSUMNODE 

Generalized broadcast for inhomogeneous arrays. 

Allows multiple block transmissions to nodes 
of one or more classes. 

Retrieves multiple blocks of data from nodes of 
one or more classes. 

Examines the complete status of nodes. 

Generalized collection of inhomogeneous data with 
variable accumulation rules. 

For example, if it is necessary to transmit multiple blocks of data 
for each event, calls to the Layer 2 routine SENDBLOCK replaces the 
single call to SENDEVENT. Particularly sophisticated users will be 
able to use Layer 3 routines for direct control of the traffic on the 
global bus, without having to write their own device drivers or system 
calls. 

Documentation is provided in a complete and extensive "Software 
User's Guide." 3 A sample of a Layer 1 subroutine description from 
this guide appears in Figure 3. 
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Figure 2 

Illustration of Modifications Required in User Program Running in Host 

ORIGINAL CODE 

COMMON/RAW/DAT(20000) 
COMMON/ANSWER/RESULTS(10000) 
COMMON/CALIB/C1(100), C2(100) 
COMMON/STATS/HIST(10000) 
INTEGER DAT, RESULTS 

INPUT, SETUP, CONSTANTS 

EVENT LOOP START 

10 CONTINUE 

20 

CALL READEVENT 
IF (ENDOFTAPE) GO TO 20 

PROCESS EVENT 
CALL PROCESS 

CALL WRITEEVENT 

EVENT LOOP END 
GO TO 10 
CONTINUE 

OUTPUT HISTOGRAMS, 

CALL HISTDO 

END 

ETC. 

c 

MODIFIED CODE 

COMMON/RAW/DAT(20000) 
COMMON/ANSWER/RESULTS(10000) 
COMMON/CALIB/C1(100), C2(100) 
COMMON/STATS/HIST(10000) 
INTEGER DAT, RESULTS 
LOGICAL LASTEVENT, SEND_DONE, 

ALLDONE, GET DONE 
INCLUDE '(ACP) ACPUSER. INC' 
INPUT, SETUP, CONSTANTS 
CALL ACPINIT 

C BROADCAST CONSTANTS TO NODES 
CALL BROADCAST (3, C1, 200, REAL_4) 

C INITIALIZE NODE STATUS VARIABLES 
SEND DONE = .TRUE. 

c 

c 

GET DoNE = .FALSE. 
LASTEVENT = .FALSE. 

EVENT LOOP START 

10 CONTINUE 
IF(.NOT.LASTEVENT.AND.SEND DONE)THEN 

CALL READEVENT -
IF(ENDOFTAPE)LASTEVENT:.TRUE. 

ENDIF 

PROCESS EVENT 
IF(.NOT.LASTEVENT) 

CALL SENDEVENT(DAT,20000,SEND DONE) 
IF(LASTEVENT)THEN -

IF(ALLDONE(NODE))GO TO 20 
END IF 
CALL GETEVENT(RESULTS,10000,GET DONE) 
IF(GET_DONE)CALL WRITEEVENT -

C EVENT LOOP END 
GO TO 10 

20 CONTINUE 

C OUTPUT HISTOGRAMS, ETC. 
CALL SUMNODE(4, HIST, 10000, REAL_4) 
CALL HISTDO 

END 
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SEND EVENT Fig. 3 SEND EVENT 

SENDEVENT passes a block of data to the first available node and starts 
that node running. SENDEVENT passes data to block number 1. The data will be 
passed, unconverted, as 32 bit binary words. (At user option a global parameter 
can be set at compile time to cause the routine to pass down data as unconverted 
16 bit binary words.) 

CALL SENDEVENT (ARRAY, LENGTH, SEND_DONE) is equivalent to the following Layer 2 
call: 

CALL SENDBLOCK(ARRAY,LENGTH,block_number=1,ANY_NODE,ALL_CLASSES,GO). 

SENDEVENT (ARRAY, LENGTH, SEND_DONE) Layer 1 

Arguments: 
Input only: ARRAY, LENGTH 
Input/result: 
Result only: SEND_DONE 

Return Variables: RETURN STATUS 

ARRAY: 

The first word in an array or block of 
program on which the subroutine will act. 
the common block to be passed to the node. 

LENGTH: 

data available to the calling 
This must be the first variable in 

In standard usage, this is an integer scalar with the number of 32 bit 
words of data to be transmitted. Note that a double precision variable is two 
32 bit pieces of data, and that a pair of 16 bit integers is a single 32 bit 
piece. LENGTH is an integer greater than zero, except in GETEVENT and GETBLOCK 
where LENGTH.LE.a signifies variable length transmission. 

SEND_DONE: 

This is a logical variable, returned as 
node was found, and as .FALSE. otherwise. 
variable in the host program. 

.TRUE. if an available finished 
This must be declared a LOGICAL 

The following are return variables available in COMMON/ACPUSER/: 

RETURN_ STATUS: 

An integer variable that is returned to indicate the status of the 
subroutine's activity. For details see the section entitled, "Reserved Name 
Parameters and Return Status Variables." 
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Error Handling 

Error handling for a multiprocessor can and should be more 
sophisticated than on a uniprocessor. Upon detecting an error, the ACP 
support system provides a description of the error and where it occurred. 
It also makes available, at user option, a memory dump of the faulting 
node. A third output is needed in multiprocessing environments which is 
not needed in uniprocessor computers. Since each node processes a 
different sequence of events, it is necessary to maintain a history file 
of which events a processor has done previously. This is made available 
when an error is detected so that a diagnosis can be made on the 
development system using utilities that automatically reproduce the errant 
node's history. The support software on a production multiprocessor only 
provides information about an error. Analysis of why the error occurred 
is done on a separate development system (described below) since time on 
the many-node production system is likely to be at a premium. 

The user can specify one of the following levels of action to be 
taken on detection of an error: ignore the error; print a warning, but 
continue running; kill the node statistics, but continue running; excise 
the offending node from the system for the remainder of the run; or abort 
the run immediately. 

Error detection falls in five categories: hardware failures detected 
by automatic bus, node, and hardware diagnostics; node software errors 
(divide by zero, etc.); node time out; user defined exceptions; 
verification exceptions. The last one is available only in a system with 
multiple nodes, and is a new type of error detection which can be very 
helpful. The same event is sent to two nodes and the results compared; 
we call this "verification." Verification enables the system to catch rare 
software "time bombs," where a logic error in the program running one 
event causes some area to become invalid, but the invalid area is not used 
until many events later. Verification will also catch infrequent 
non-fatal (soft) hardware errors, and enable the studying of soft error 
rates. This can be inconvenient to do on uniprocessor systems. 

The Development System 

The development system is available for writing and testing new 
programs as well as for analysis of errors detected in the production 
environment. This system will consist of a host and a few samples of each 
type of node that exist on production systems. The host, a commercial 
super-mini (VAX or similar), has compilers, a symbolic interactive 
debugger, file handling, editing, and all the other features of such a 
computer. The nodes have a node compiler and a node symbolic debugger, 
when available; otherwise, a cross-compiler for the node is supported on 
the host. (The production nodes have only a stripped-down "operating 
system" called the Tight Loop Monitor, which waits for the host to tell 
them an event is ready to be run and jumps to a program which had been 
downloaded over the global bus.) 

Additional software is provided on the development system to support 
error analysis. This includes a convenient way to work through the node 
memory dump available when errors occur, a facility for reconstructing a 
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particular sequence of events from the history file to duplicate the 
conditions under which errors had occurred, and support for I/O directly 
from the node. 

There is also a set of quick and simple automatic procedures for 
users to compile and link the node programs forming node executable images 
and download node programs under the control of the host FORTRAN program. 
These are available for use in both the development and production 
systems. They allow the user to select options both at compile and run 
time concerning how the system is to behave when handling errors, passing 
data to nodes, etc. 

In conclusion, Fermilab's ACP has developed, in addition to the 
hardware, user friendly software for using its multiprocessor systems. 
The same software concepts can be employed over a broad range of problems, 
and with various implementations of the hardware architecture. 
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QUESTIONS AND ANSWERS 

Q: Have you considered separating your arrays in sections and assigning these 
sections to different users? 

R. Poutissou 

A: Yes, the nodes have a class number associated with each item and this can 
be specified in the level 2 subroutines. 

Comment: This is possible in the development system but the production 
systems are intended to be single-user systems. 

T. Nash 
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The Fermilab ACP Multi-Microprocessor Project 
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ABSTRACT 

We report on the status of the Fermilab Advanced Computer Program's project 
to provide more cost-effective computing engines for the high energy physics 
community. The project will exploit the cheap, but powerful, commercial 
microprocessors now available by constructing modular multi-microprocessor 
systems. A working test bed system as well as plans for the next stages of the 
project are described. 

Introduction 

High energy physics experiments have become more and more complex and are 
accumulating ever increasing amounts of data. The need for computing to analyze 
these experiments has expanded enormously. Elsewhere in high energy physics 
computing problems, such as beam-orbit simulations for the design of the SSC and 
lattice-guage theory calculations, are also expected to require large amounts of 
computing time. We can no longer afford enough conventional computers for the 
overall high energy physics workload. Many experiments have already had their 
ability to do physics compromised by limitations in the amount of off-line 
computing power made available to them. With the turn-on of a number of even 
more complex colliding beam detectors in the immediate future, the problem has 
become so acute that it has spawned several high level review committees. 

In response to this problem, Fermilab has established the Advanced Computer 
Program (ACP) I with the primary mission of developing new approaches to 
computing that will represent more cost-effective alternatives to conventional 
mainframes for the compute-bound problems of high energy physics. The ACP's 
first project is the development of a flexible and modular approach to 
multiprocessing based on 32 bit microprocessors of near VAX class power. We 
describe this project, its goals, plans, and status, in the following. 

Design Goals and Concepts 

One method of providing more cost-effective computing is to design 
dedicated special purpose processors for particular problems. In the high 
energy physics community such devices are in common use as trigger 
processors. 2 Such devices have almost no limit to the increase in 
cost-effectiveness that can be provided, but suffer from the disadvantage of 
being relatively inflexible and difficult to program. Changing to a different 
algorithm requires a large amount of work by system experts. 

* Presenter 



-184-

On the other hand, commercial computer manufacturers and university 
computer scientists usually focus on designs of fully general parallel 
processing systems, where large numbers of processors can all be brought to bear 
on an arbitrarily general problem. Such fully general systems must solve the 
difficult problems of shared memory, interconnection networks, and 
synchronization mechanisms. The complexity inherent in the goal of generality 
implies a long delay in bringing the designs to practical fruition. 
Furthermore, much of the cost of such systems goes into pieces other than the 
processing elements themselves, reducing the potential cost-effectiveness. 

The ACP project is neither fully general nor dedicated special purpose. 
Rather, it is attempting to exploit the characteristics of the relatively well 
understood high energy physics computing problems to design a simple and 
straightforward architecture that gives -near maximal cost-effectiveness for 
these problems while maintaining the flexibility and programability of general 
purpose computers. In particular, the most important feature of the high energy 
experiment computing problems is their event oriented nature. A typical 
experiment may have tens or hundreds of millions of events, each of which is an 
essentially independent analysis problem. The natural and trivial parallelism 
inherent in the problem leads to a multiprocessor solution with no global memory 
and simple interconnections, but where each processor has sufficient local 
memory to process a complete single event. 

The ACP project will exploit additional characteristics of the problem to 
yield improved cost-effectiveness. These include the existence of compute-bound 
kernels (inner loops in the programs which use very large fractions of the 
overall CPU time), structured blocking in the programs with minimal 
communication between the blocks, and very long (weeks to months) run times for 
the same program on different data tapes. This makes it sensible to design 
special purpose "hardware subroutine" coprocessors for efficient execution of 
the inner loops of particular types of problems. It is also appropriate to 
allow for reconfiguring the connection topology and the distribution of memory 
and special coprocessors for the needs of a particular program with a long 
production run. 

The critical goal of very high cost-effectiveness for the ACP system, 
therefore, is met by the following features of the design: an extremely simple 
architecture; small, mass-produced VLSI (and thus cheap) CPUs; and 
(eventually) from high-speed special purpose hardware attached to the CPUs for 
particular problems. Another important design goal is modularity, which allows 
the system to be optimally reconfigured for a given problem and allows the use 
of newer and faster CPUs and other components without redesigning the entire 
system. For this, it is important to construct the'system out of commercially 
available VLSI and board level components whenever possible. This reduces 
initial design effort, can reduce costs and will make it easier to make copies 
of the system with minimal expert assistance. A third important goal is user 
friendliness, which is realized by supporting FORTRAN-77 on processing CPUs and 
making available program development and debugging tools on a convenient host 
machine. 

The ACP system can be summarized in a long-winded phrase, as a flexible, 
loosely-coupled multi-microprocessor system, with optional customized special 
purpose hardware subroutine coprocessors. It is broadly applicable to a large 
class of compute-bound problems which share the important characteristic of 
being "event-oriented," that is, having a natural simple parallelism inherent in 
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the problem. These include a number ouside of high energy physics such as 
process simulation, robotics, animation, and finite element analysis. 

System Overview and Phasing 3 

The core of the ACP system is the individual processing node (shown with 
some optional additions in Figure 1). The node always consists of a processor 
which supports user software written in a high-level language (FORTRAN-77) and 
sufficient memory to contain an entire event (at least 1 Mbyte). Optionally, as 
required for particular problems, the node may also contain additional memory up 
to 16 Mbytes, floating point hardware coprocessors, special purpose coprocessors 
optimized for the compute-bound kernel running on that node, and nearest 
neighbor node communication interfaces for problems requiring fast grid-like 
internode communication. 

Each node lives within a dual bus structure. It is a slave on a global bus 
over which programs and data are downloaded to all the nodes. The node's CPU 
accesses its own local memory as a master over a private local bus. Thus, each 
node can address its own memory simultaneously without any contention on the 
global bus. High-speed hardware coprocessors may even require a third 
super-fast bus to process data in memory with a much faster cycle time than that 
of the local bus. 

The software within such a node is simple because the node is a slave on 
the global bus. The node waits for events to be delivered to it and processes 
them on command. The primitive "operating system" which runs on the individual 
nodes must only support the FORTRAN run time environment (but not I/O), trap 
exceptions, and handle communication with a host CPU through dedicated memory 
locations. This node software system jumps to the user code when a flag is set 
indicating the presence of an event. It sets a second flag indicating 
completion when the user code returns. Further details on ACP work on support 
software are found in the companion paper, "User Software for Event-Oriented 
Processing" by M. Fischler et al. 4 

Arrays of such nodes can be configured in a variety of topologies, 
depending on the problem at hand. These range from the most simple (Figure 2) 
where a collection of identical processors are lined up each to receive 
individual events, to the more complicated arrangement of multiple ranks of 
processors shown in Figure 3, Other arrangements, suitable for accelerator 
beam-orbit simulations, are discussed in Reference 5. 

We require a CPU node to have the processing power for reconstruction codes 
of at least 0.5 VAX 11/780 (or else too many nodes are required), and to run 
high level language programs (specifically, FORTRAN-77). It should use cheap 
memory technology (high production MOS dynamic RAMs) so that comfortable amounts 
of memory can be made available in each node. Upward compatability to higher 
performance parts without major system redesign is also required as is easy 
coprocessor interface. All of these considerations point clearly to the use of 
commercial microprocessors for the CPU nodes, provided they can meet the 
performance goals. 

Fortunately, at least six different vendors (AT & T, DEC, Intel, Motorola, 
National Semiconductor, and Zilog) have announced 32 bit microprocessors with 
expected performance well above the ACP goals. Three vendors (AT & T, Motorola, 
and National) already have working 32 bit chips. The ACP group has benchmarked 
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a full-scale physics track reconstruction program written in FORTRAN on existing 
16 bit processors. Performance was measured relative to a VAX 11/780 as 0.1 for 
the Motorola 68000 1 and 0.12 for an Intel 80286. Taking into account the 
performance improvements available in the 32 bit versions of these chips, it is 
clear that the 32 bit commercial processors to be widely available in early 1985 
will easily meet the ACP performance goals. As of this writing, we are in the 
process of benchmarking the new 32 bit Motorola 68020. 

The project is proceeding in three phases, each of which is described more 
fully in subsequent sections. Phase I, now all but complete, consists of the 
development of support and error handling software on a test bed system using 16 
bit processors and a 16 bit bus. Phase II, scheduled to be complete in summer 
1985, is the first full-scale production system, consisting of at least 128 
full-performance nodes. Phase III includes the development of special purpose 
hardware coprocessors, more complex node interconnection and host fuction 
schemes, and higher performance nodes. 

System Components 

The components of the ACP system in each of its phases consist of the 
following items: 

1. Crate/bus - The crate must support at least two busses, a crate wide 
global bus and a separate segmented local bus for each CPU node in the 
crate. After Phase I, the global bus should support transfers at a 
rate of 20 Mbyte/sec with an address space sufficient for 16 Mbytes of 
memory for each node in the crate. The local bus should support memory 
accesses at a speed sufficient for the processors which will run with 
no wait states, and should have 16 Mbytes of address space. Only the 
crate controller needs to be a master on the global bus, while the 
individual node CPUs are each masters on their own local busses. The 
local bus should be reconfigurable to allow for different numbers of 
cards in each node at different times. Optional desirable features are 
a serial bus for low-speed or diagnostic transfers, and provision for a 
high speed coprocessor bus. Both MULTIBUS II from Intel and VME/VMX 
from Motorola are commercial busses that meet these requirements. 

2. CPU board - The CPU board should be a commercial 32 bit microprocessor 
that is a master on its own local bus and can be controlled from the 
global bus. It must run FORTRAN-77 programs. The initial Phase II 
system will contain at least two different types of CPUs. It is 
expected that commercially produced boards will be available at 
competitive prices. The ACP is a "beta site" for a 68020 board under 
development by Motorola's Microsystem Division. 

3. Memory board - The memory board needs to be dual-ported on the 
and local busses, although the arbitration between the ports 
very simple (the global bus can be given absolute priority). 
expected that commercially produced boards will become available. 

global 
can be 
It is 

4. Crate controller - Used as the only master on the crate global bus, the 
crate controller must be able to do full-speed (about 20 Mbytes/sec) 
reads and writes to anywhere in the crate memory space. It is a slave 
to the host on a bus linking crates. 
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5. Host interface - This must provide data and control paths to allow the 
host CPU to download programs and event data to crates full of a total 
of up to 255 nodes. After Phase I, this system must link the host to 
up to 64 crate controllers. It may include the intelligence to find 
nodes available for new events and detect nodes with completed events. 

6. Development host - A minicomputer supporting multiple users must be 
provided as a development host. Small numbers of nodes of each variety 
will be attached to this computer to allow the user to develop and 
debug programs for use in a multiprocessor environment. The system, 
most likely a VAX 11/780 running VMS, includes file editors, compilers, 
symbolic debuggers, etc. for both host and node user software. 

7. Production host Linked to the development host via a network 
(DECNET), the production host is a single user system supporting 
running programs on the multi-node system. It provides the user the 
functions of event input/output and control of the nodes in a 
transparent manner. The host portion of user programs, as well as 
system control functions, run in the production host. It is often 
referred to as the "roots" of the tree-like ACP multiprocessor system 
(see following discussion). 

8. System software Software components include: development tools 
(compilers and debuggers); user support subroutines to allow programs 
to be split into a host piece (which does event I/0 and printout) and a 
node piece (which executes the CPU intensive portion of a user's code 
simultaneously on many nodes); diagnostic and verification tools; and 
simulators of the overall system. The system software runs on the 
development host and various components of the production host as well 
as on the nodes. This is more fully described in References 4 and 6. 

The Phase I test bed system, now in operation, was built to develop and 
test the user support multiprocessor software described in References 4 and 6. 
Since high performance was not required, it consists of low-speed 16 bit 
hardware. It includes a full software prototype with node "operating systems", 
user support subroutines, and command procedures for compiling and debugging. 
Error handling and verification capabilities are presently being developed. 

The test bed hardware contains 6 CPU nodes: 5 Motorola 68000s and one 
Intel 8086 with an 8087 floating point coprocessor. The 8086 has 256 Kbytes of 
onboard RAM, while each 68000 has a 512 Kbyte memory on a separate card. The 
system is implemented in a MULTIBUS I crate, with MULTIBUS being used for the 
global bus. A commercial SAM bus manufactured by SGS Corporation (Milan and 
Phoenix) is used as the local bus for the 68000s. The 8086 has no local bus 
since all memory is on-board. The 68000 boards were designed and built by the 
ACP group, while the 8086 board and the memory boards (dual ported MULTIBUS and 
SAM bus) are commercial products, as is the crate. All five memory boards can 
be put on the local bus of a single 68000 to test programs requiring up to 2.5 
Mbytes of memory. A VAX 11/780 is being used as the host for the test bed 
system, with a DR11W UNIBUS DMA interface connecting the host to the crate. An 
ACP built board interfaces the DR11W to the MULTIBUS and acts as the crate 
controller. 
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Both types of processors are supported with FORTRAN-77 compilers and 
run-time libraries. The 8086 compiler, from Intel, is a cross compiler which 
runs on the VAX. The 68000 compiler, from Absoft Inc. (Royal Oak, Michigan), 
is a native mode compiler which runs on one 68000 node. The 68000 software also 
includes a powerful interactive symbolic debugger which can be used to debug 
programs running on the nodes. 

ACP software on the test bed system is the full complement of routines and 
utilities described in References 4 and 6. This includes the operating systems 
on the individual nodes, user subroutines to allow the user to split his program 
into a host and a node piece, automatic routines to download the user's code 
into the nodes and handle all host-node communication, command procedures on the 
VAX to compile and link the users programs for execution on the nodes, and VAX 
routines to support the 68000 compiler and the run-time system. Several 
different large high energy physics FORTRAN programs have run successfully on 
the test bed system. Test users are finding the support software convenient to 
use. A major reconstruction package was successfully brought up by two 
physicists with no prior knowledge of the ACP system in a little over two 
working days. 

The performance of the system is limited because of the small number of 
nodes and the fact that the nodes are low-speed 16 bit processors. However, two 
important aspects of the test bed system performance that can be investigated 
are the efficiency of utilization of the nodes and the possibility of bus 
contention on the global bus. The first issue was checked with a typical 
reconstruction code by evaluating the fraction of time the individual nodes 
spend executing user programs compared to the time they spend waiting for events 
from the host. In all cases this was greater than 90%, and could be made to 
approach 100% by having the user software double buffer events. The second 
issue was checked by comparing the performance of the system with all six nodes 
running to the performance with a single node running. Six times the 
performance of an individual node was obtained. Similar tests will be carried 
out on the Phase II system in 1985. 

Full-scale Production Systems 

The first full-scale production system is scheduled to be operational in 
summer, 1985. It will consist of at least 128 nodes using full-speed 32 bit 
microprocessors of at least two types (Motorola 68020 and DEC MicroVAX are the 
leading candidates at the moment). At the crate level it will use the 
high-speed 32 bit bus most appropriate for the processor in use in that crate. 
Clearly, VME/VMX is appropriate for the 68020. Either MULTIBUS II or VME/VMX 
may be suitable for other processors. 

The crates, CPU nodes, and memories in this Phase II system are simply 
higher speed versions of the existing Phase I components in the test bed system. 
However, the crate interconnections are necessarily more complex to allow the 
use of a larger number of nodes. A tree-like system (see Figure 4) will be 
designed for the Phase II system. The host CPU functions, including I/O and 
system control, are in the root. The node crates are connected by simple, ACP 
designed, high-speed branch busses. These multiple branch busses, capable of 
operating simultaneously at 20 Mbytes/sec each, are interconnected via a bus 
switch which allows any one of several root masters to be connected to any one 
of the branches. This will support the highest performance requirements of 
future data storage devices and on-line high level trigger applications with 
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Figure 5. Example of root arrangements for ACP multiprocessors. 
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over 100 Mbytes/sec data bandwidth capability. The only overhead for this 
powerful multiple branch system is the relatively low cost of one bus switch, 
presently estimated at less than $5000. For the simplest implementations, with 
a limited number of nodes, a single branch bus can be used to connect all crates 
of nodes with a simple host interface as in the Phase I system. 

As soon as the more pressing design issues at the node and branch level 
will allow, the single host CPU of the Phase I design will be replaced by a 
sophisticated root with a group of individual CPUs each performing a separate 
function (see Figure 5). LSI 11s (or similar devices) sitting on a Q-22 bus 
will act as input and output controllers for tape (or disk) operations. Each is 
connected through a UNIBUS converter to one or more tape drives and disks. They 
will operate under the familiar RT11 system to pass data between tape and the 
nodes through a Q-bus DMA I/O device and a branch bus controller (BBC), the 
master on the branch bus. 

The user's production host software will run on a separate CPU, most likely 
a MicroVAX running MicroVMS. This CPU sits on a second (global) Q-bus. A 
memory with two Q-bus ports services its local LSI 11 and the MicroVAX. This 
allows the user high level software in the MicroVAX to initiate execution of the 
I/O and node communication primitives in the LSI 11. System control software 
monitors the status of the nodes, sets the bus switch, and transmits the node 
address cycle before each block of data cycles. This software also resides in 
the MicroVAX which is connected to the switch control port. 

Also shown in Figure 5 is a root connected to a FASTBUS on-line data 
acquisition system through a special processor interface module (SPI), which is 
a master on the branch bus. In this environment, the host MicroVAX is informed 
by FASTBUS of a ready event and its type. The MicroVAX, under control of user 
software, sets the switch and transmits the node address just as it does when 
operating with a tape drive as described above. It then instructs the FASTBUS 
system to transmit the event over the appropriate root channel. The bus switch 
can support up to eight such root channels operating concurrently, each carrying 
up to 20 Mbytes/sec. This can include one or more FASTBUS channels, along with 
tape or disk I/0 channels. This flexible and modular root system provides a 
cost-effective implementation of host CPU functions for off-line systems, as 
well as a conveni• nt way to use the same cn'1P.ction of nodes with unchanged user 
software in both 0.1-line and off-line environments. 

In some sense, this has been a description of a Phase 2.1 system since, as 
already alluded to, the ACP may not have the design resources to develop the 
components of the root which are not commercially available on the time scale 
planned for Phase II. Early testing of the first full scale system may take 
place using a single rather than double Q-bus system, or even a VAX 11/780 as 
the production host much as has been done for the test bed system. However, the 
latter configuration would only take advantage of about half of the full data 
rate capabilities of 6250 bpi tape drives. For this reason, because of the 
large cost savings, and because of its importance in on-line activities a 
multiple micro-CPU root will be brought on-line as early as possible. 

Conclusion and Future Directions 

Phase III, starting in the second half of 1985, will build on the modules 
developed in Phase II to provide higher performance and more specialized 
versions of the ACP hardware. This will include implementing the production 
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host with more cost-effective processors, the incorporation of higher 
performance nodes, and the development of special purpose hardware coprocessors 
for a variety of particular algorithms. The flexible bus switch, and a nearest 
neighbor connection module which may be developed in Phase III, will be 
exploited to provide more complex node interconnection schemes in both grid-like 
and multiple rank systems. 

A large amount of industry effort, including both minicomputer and 
semiconductor manufacturers, is converging in the direction of making VAX class 
VLSI products available at the chip and board level. The ACP is developing the 
hardware and software structure to take early advantage of this most 
cost-effective and flexible solution to high energy physics production computing 
needs. It has demonstrated user support software that makes it relatively 
comfortable for physicists to take advantage of multiprocessing. In the course 
of these activities, the ACP is testing multiprocessor architectures and solving 
system problems, both in hardware and software, that are relevant to many 
computer research activities outside of high energy physics. 

1. Thomas Nash, et al. 
Development Program," 
Impact of Specialized 
Padova, 1983, p.227. 

References 

"Fermilab's 
Proceedings, 
Processors 

Advanced Computer Research and 
Three ~ In-Depth Review on the 

in Elementary Particle Physics, 

2. See other papers in the Proceedings of this conference as well as 
Proceedings of Topical Conference on the Application of Microprocessors 
to HigC Energy Physics Experiments, CERN, Geneva, Switzerland, May 4-6, 
1981 CERN 81-07), and Proceedings of Three~ In-Depth Review on the 
Impact of Specialized Processors in Elementary Particle Physics, 
Padova, Italy, March 23-25, 1983. 

3. Hari Areti, et al. "ACP Modular Processing 
Specifications," Rev. April 2, 1984, FN-402. 

System: Design 

4. Mark Fischler, et al. "Software for Event Oriented 
Multiprocessor Systems," Proceedings, this 
FERMILAB-Conf-84/64. 

Processing on 
conference, 

5. Mark Fischler and Thomas Nash, "Computing Tools for Accelerator Design 
Calculations," Report of DPP Workshop, Accelerator Physics Issues for '! 
Superconducting Super Collider, Ann Arbor, December 12-17, 1983, UM HE 
'!l'Il-1, page 113. 

6. Advanced Computer Program, "ACP Software User's Guide for Event 
Oriented Processing," Rev. June 18, 1984, FN-403. 



-196-



-197-

THE 3081/E PROCESSOR* 
t P. F. KUNZ, M. GRAVINA, G. OXOBY, P. RANKIN, AND Q. TRANG 

Stanford Linear Accelerator Center 
Stanford Univerait11, Stanford, California 94905 

and 

P. M. FERRAN, A. FUCCI, R. HINTON, D. JACOBS, 
B. MARTIN, H. MASUCH, AND K.M. STORR 

CERN 
1211 Geneva 29, Switzerland 

1. Introduction 

Since the introduction of the 168/ E, 1 emulating processors have been used over 
a wide range of applications2 including both offline event reconstruction and Monte 
Carlo applications, and online triggering and filtering. 

This paper will describe a second generation processor, the 3081/ E. This new 
processor not only has much more memory space, incorporates many more IBM 
instructions, and has full double precision floating point arithmetic, but it also has 
faster execution times and is much simpler to build, debug, and maintain. 

Nonetheless, with the 168/ E, valuable experience has been gained on how to 
make efficient use of this kind of processor which, unlike computers or commercial 
microprocessors, does not run an operating system nor have a direct connection 
to 1/0 devices. The 3081/ E takes advantage of this experience by maintaining 
the same style of flexible but simple interface as the 168/ £. This paper will also 
describe how such processors have been and will be used. 

• Work supported by the Department of Energy, contract DE-AC03-76SF00515 

t Presenter 
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2. The Processor 

The architecture of the 3081/ E is shown in Fig. 1. The details of the processor 
have been given elsewhere,3 so only a brief summary will be given here. The pro-
cessor has a modular structure. There are four execution units interfaced to two 64 
bit wide busses, called the ABUS and the BBUS. The busses each carry 8 bytes of 
data and 1 parity bit per byte. Also interfaced to these busses are the control and 
register unit, data memory, and the interface. The control and register unit serves 
four functions: it contains the microprogram address counter, conditional branch-
ing logic, the data memory address logic, and the register files. A microinstruction 
can transfer two operands simultaneously on the ABUS and BBUS busses from data 
memory and/or registers to an execution unit. The results from an execution unit 
are transferred on the BBUS to a register, to memory, or along with a new operand 
on the ABUS to another execution unit. Instructions are fetched on a third, 32 bit 
wide bus, the PMD bus (not shown in Fig. 1). There is a single clock which has a 
cycle time of 120 nsec. 

ADR 

Contol 
& 

Register 

32 

Data 
Memory Interface 

64 
ABUS ZZZ".:;7,ZZ2i.il'z2~ ~?,?ZL'/ZZ.zz'Zl tllz;?,::;'22ZZZ272:'.j ~7,ZZ27ZZ2 
BBus~~r---1;;1----"--rA---+-~~---v1----~--vl----

3-83 
4480A1 ~---~ 

Fig. 1. Block diagram of 3081/ E 

An important goal of the 3081/ E processor project is to produce a processor 
that is simple, reliable, and easy to debug and maintain. The choice of the modular 
architecture helped tremendously to reach these goals. The design of the processor 
is much simpler than the 168/ E. The design is much more conservative and uses 
off-the-shelf multiple source TTL components. Every effort was made to reduce the 
man-power cost to build, debug, and maintain the processor. FORTRAN simulations 
have been done of each execution unit which have made a valuable contribution to 
the designing and in debugging. For example, the Add/Subtraction execution unit 
with over 200 MSI circuits, had only one design error when it was debugged, and 
this error was just one signal that had the opposite polarity in the hardware due to 
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an error in the simulation. The cost of the processor, power supply, and chassis is 
expected to be under US$ 10,000 excluding the cost of memory. 

2.1 MEMORY 
Memory is one of the most important aspects of any computer or processor. In 

the high energy physics field, both the size of analysis programs and the quantity of 
data per event have grown so that the memory space needed is measured in units 
of Megabytes. 

The memory oft.he 3081/ E is implemented using the less dense but faster static 
memory circuits. Today they have 55 nsec maximum access and cycle time, come in 
packages of 16 Kb its, and cost about US$ 5,000 per Megabyte. The speed of memory 
is important because even with the best of compilers, a processor still obtains one 
operand (of the two for an arithmetic instruction) from memory over 75% of the 
time. Thus the speed of a processor tends to be dominated by its memory access 
time. The fast memory and 64 bit data path to it is also the best solution for online 
applications which must support FASTBUS 1/0 rates. 

A 3081/ E memory board at present contains one half Megabyte of either pro-
gram or data memory with byte parity. The processor can accept a maximum of 
fourteen memory boards or 7 Megabytes. It is expected that 64K static memory 
circuits will be introduced in rn84 so by rn85 they will be reasonably priced. Their 
use will lower the cost of the processor's memory and make it possible to have a 
processor with 28 Megabytes. 
2.2 EXECUTION UNITS 

For high energy physics code, good floating point performance is essential, es-
pecially due to the heavy use of trigonometric functions in most analysis codes for 
solenoidal detectors. Attempts to use commercially available microprocessors with 
their floating point co-processors have led to disappointingly poor performance. 

The following sections give a short description of each of the execution units. 
Floating point add/subtract 

A REAL*4 or REAL*8 add/subtract is done in 360 nsec, including reading 
one operand from memory. The floating point compare instruction needs only to 
generate the condition codes and not a result, thus it is one cycle shorter. This 
execution unit is also able to do an integer to floating point conversion in 360 nsecs. 
Multiply 

The implementation of the multiply execution unit has been optimized for sin-
gle precision execution time. INTEGER*4 and REAL*4 multiplies take 360 nsec 
including reading one operand from memory. Modern, multiple-sourced (thus cost 
competitive) 16 by 16 multiplier circuits are used. To implement double precision 
multiplication in the same way would take a considerable number of circuits, there-
fore, an iterative technique is used that is reasonably fast. The results of a REAL*8 
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multiply is available after only 4 internal cycles for an overall time Co 720 nsecs 
including reading one operand from memory. 
Divide 

The divide execution unit does division iteratively, 2 bits per cycle which leads 
to a INTEGER•4 divide in about 2 µsecs and a REAL•4 divide in about 1.5 µsecs. 
Integer 

All integer instructions except multiplication and division are done in the in-
teger execution unit. This unit handles the four-byte (INTEGER•4) and two-byte 
(INTEGER•2) arithmetic operations, and also the instructions with one-byte 
operands (LOGICAL•l and CHARACTER•n). This is especially important for im-
plementation o( the instructions required by the FORTRAN '77 compilers. Both 
single word (32 bit) and double word (64 bit) shifts by any number of places are 
done in one cycle. Shift instructions are important for online trigger applications, 
when packed binary information needs to be expanded to individual words. 
Optional units 

It is possible to add other execution units to the 3081/ E busses. For example, 
one could add a matrix multiplier/accumulator for lattice gauge theory calculations, 
PROM based look up tables, or other specialized 'hardware subroutines'. For the 
moment such devices are beyond the scope of the 3081/E project. They are also 
less necessary as the processor is already inherently very fast. It will also be possible 
to upgrade any of the existing execution units, when sufficient technology advances 
warrant the change, thus achieving higher performance and/or lower cost. 
2.3 INSTRUCTION PIPELINING 

The separation of execution units, each capable o( operating on its operands 
internally, allows for instruction pipelining. First there is pipelining of memory 
address calculation on the control and register board. Secondly, the Add/Subtract 
and Multiply execution units are capable of pipelining internally. That is, they 
can accept a new operand pair every cycle, then output the results in the next two 
cycles. Thirdly, one cycle can send an operand pair to say the add/subtract unit, 
and the next cycle can send an operand pair to the multiply. Fourthly, in the same 
cycle an execution unit can output results and another execution unit, or memory, 
can accept the results, thus overlapping input and output cycles. In addition, the 
separation of program and data memory and the separate program data bus means 
that program and data memories are accessed simultaneously. 

Pipelining leads to substantial performance improvements in typical high energy 
physics code. For example, the following line o( FORTRAN code: 

XC =VIX * (XA- XZERO) + VIY * (YB - YZERO) 

would require 23 cycles without pipelining, but only 14 with the pipelining capabil-
ities or the 3081/ E-
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2.4 THE MICROCODE AND THE TRANSLATOR 
The processor's instruction set is not that of the IBM, but is its own microcode, 

which resembles that of a Reduced Instruction Set Computer (RISC).4 One could 
in principal write a compiler to generate the microcode, as done with IBM's 801 
project,5 instead it is generated by a software program, called the Translator. This 
program reads IBM object code modules, translates them to object microcode, links 
them together to form an absolute load module for the processor, thus using the IBM 
object code as an intermediate language. The source of the IBM object code could 
be the output of a FORTRAN compiler from any IBM compatible vendor or that of 
a linkage editor on either the VM/CMS, MVS, or MVT operating systems. For all 
practical purposes the translator step has little impact on the user. It can be looked 
on as a modified compile or link step. The user will be no more concerned with the 
3081/ E microcode then he would be about the object code from the compiler. 

The microcode requires more memory space then the object code. The ex-
pansion factor is three in the worst case of no pipelining, and 1.2 in the case of 
complete pipelining. Nevertheless, at least 30,000 lines of FORTRAN source code 
can be accommodated per Megabyte of program memory, and many more lines 
when pipelining is generated. 

The advantage of using a translator is the elimination of the complex hardware 
that decodes IBM instructions into microinstructions. This hardware, called the 
I-unit by IBM engineers, can consume well over half the total design and debugging 
effort of a processor. A further advantage of using the translator with the 3081/ E 
is that instruction pipelining will be generated with a full knowledge of the context 
of each instruction. 
2.5 INTERFACE 

The interface to the 3081/ E processor is of the same style as the 168/E's. 
That is, either the CPU or the interface has control of the internal busses. When 
the processor is not running, all of the processor's memory is directly addressable 
through the interface. The processor thus appears as a simple slave device on, say, 
a FASTBUS cable segment. The transfer rate to or from the processor could be 
over 32 Megabytes per second if FASTBUS cable segments were sufficiently fast or 
64 Megabytes per second if a 64 bit interface bus were used. VME and CAMAC 
interfaces are also being considered. 

There are features to make it easier to debug the processor and/or program. 
The interface halts the processor if there is a parity error on the ABUS, BBUS, or 
PMD bus. The interface also has registers to allow one to halt the processor when 
certain conditions arise in a way similar to the Program Event Recording (PER) 
registers of IBM mainframes. For example, there is a stop on a Store within an 
address range, a stop on modification of a certain register, etc. Debugging some 
kinds of program error may be more user friendly on the 3081/ E processor than it 
is on a mainframe computer. 
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2.6 PERFORMANCE 

To accurately predict the execution speed of the 3081/ E is rather difficult, as, 
in common with many processors, it will depend on program's instruction mix. The 
pipelining of instructions makes predictions even more difficult. However, three 
studies have been made to predict the upper and lower bounds of the expected 
performance. 

The lower bound of processor performance can be estimated by assuming that 
instruction pipelining never occurs. With this assumption the execution time of each 
IBM instruction is known. Ten different event reconstruction and other programs 
were traced while in execution to measure the frequency of instructions executed. 
With these numbers, the performance of the 3081/ E processor would be o.g8 to 
1.01 times that of an IBM 370/168. 

An upper limit is estimated by assuming that pipelining occurs to such an extent 
that every instruction takes effectively l cycle. With the same samples of code, this 
implies execution times 2.5 times faster than an IBM 370/168; a figure that can not 
be realistically expected. 

A third measure was obtained by translating an inner loop of one of these pro-
grams. The loop consisted of 82 FORTRAN statements containing 32 IF statements. 
Since IF statements break instruction pipelining, it was important to try a loop with 
a typical number of them. This loop also consisted of several divides and memory 
references with a non-zero index register. The calculated execution time for one 
pass through the loop for the 3081/ E is 47 µsecs, while for an IBM 370/168 the 
time would be 71 µsecs. Thus the processor would be 1.5 times faster for this loop. 

One can conclude, therefore, that the performance of the 3081/ E will be at 
least that of an IBM 370/168 for typical high energy physics event reconstruction 
code, or about four times that or the VAX 11/780, and up to 50% raster under 
the condition that most of the execution time is spent in floating point loops. The 
performance of the 3081/ E is comparable with a well known array processor. The 
FPS-164 6 has a theoretical maximum execution speed or twelve MFLOPS, while 
the 3081/ E theoretical maximum is 8.3 MFLOPS. In practice,7 Lattice gauge pro-
grams, implemented in microcode of the array processor, achieve about six MFLOPS, 
while examples or that same code, implemented in FORTRAN, would achieve four 
MFLOPS on the 3081/ E. 

3. Use of Processor 

In the high energy physics environment, the use of computing resources could 
be put into two broad categories. The first consists of the thousands of short jobs to 
write and debug analysis programs, do alignment and calibrations, do physics anal-
ysis on processed events, etc. This category includes editing, compiling, generation 
of load modules, using interactive symbolic debuggers, etc. The second category is 
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the long production jobs on raw data or for generation of Monte Carlo events, or 
in the online environment running filtering programs or analysis programs. Usu-
ally there are adequate computing resources for the first category and the limits 
on productivity are set by user friendliness of the operating system, response time 
to small needs of CPU time, the fast access to disk files, printers, graphic devices, 
and the memory paging of the computer. For the second category, the limits on 
the number of events that can be processed or Monte Carlo generated are set by 
the available CPU power. It is this category of processing where the inexpensive 
powerful emulating processors can play an important role. 

As the 3081/ E is a processor and not a computer, it, like other processors, 
requires support from a host computer to handle input and output operations to 
physical 1/0 devices. When multiple processors are to be used (as is frequently 
the case since one processor is only a fraction of a mainframe computer), this I/O 
support must be carefully designed for performance.8 A multi-processor system 
consisting of five 3081/ E processors, for example, will have the CPU power of a 
3081K, and its 1/0 support system must be able to supply the data bandwidth to 
keep the processors busy. In practice, this means tape drives, disks, and channel 
rates comparable to those found on mainframe or supermini computers. 

Much experience has been gained on multiple processor systems with the 168/ E 
in both the offiine and online environments. The planned uses of the 3081/ E will 
build on this experience by preserving the same style of interface as the 168/ E which 
worked well and making a few improvements in areas that only became apparent 
after much 168/ E experience. The remainder of this section describes how 168/ E's 
have been used and thus how we expect the 3081/ E will be used. The interface of 
the 3081/ E is designed for both the on line and offiine multi-processor environment. 
The offiine environment will be discussed first as it is easier to understand. 
3.1 MODEL OF 0FFLINE EVENT ANALYSIS 

Consider the following model of how an event analysis program is structured. 
The typical program has the following steps: 

1. Initialize. Initialization starts with the loading of BLOCK DATA statements 
into memory and continues with reading constants from disk and perhaps call-
ing some subroutines to calculate fixed arrays that will be used in 
event processing. 

2. Read Event. An event is read from a mass storage medium, usually tape. 
Checks are made to see that the record is an event record and not some 
other type of record on the tape. 

3. Process Event. Event processing involves unpacking the raw data, generating 
coordinates, finding tracks, fitting tracks, de. It is important to note that this 
processing uses much more memory for temporary variables than the initial 
size of the raw data. At the end of event processing, data is compressed into 
a block for writing to an output tape. 
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4. Write Event. The event is written to the output tape and the program loops 
back to read the next event. 

5. Print Job Summary. When the event processing is complete, the program 
prints a summary of the job in the form of statistics gathered, histograms, de. 

Four remarks can be made about this structure. First, only the event processing 
step is CPU intensive. That is, even if the initialization or summary steps take a 
considerable amount of CPU time, they are only done once, thus don't really matter 
for a job that will run for many hours. Second, all the steps except the event 
processing step are 1/0 intensive. That is, the event processing step usually only 
has a few print statements for an occasional error message. Third, the program as 
shown above was written to run on a single processor. That is, it will process events 
on the same processor doing the 1/0 and the events are processed sequentially 
in the same order that they appear on the input tapes. Fourth, there is a large 
amount of temporary memory space used in the course of analyzing an event and, 
typically, a complex interrelation between this space and the program in various 
stages of processing. 

It is therefore natural to move the event processing step to the processors, and 
leave a skeleton program on the host CPU for the other steps. For a single processor, 
the original program is modified by: 

1. inserting 1/0 calls to download the processor with program and constant data 
after initialization is completed .and before the first event is read. 

2. replacing the processing step with 1/0 calls to send and receive event data 
with the processor. 

3. and inserting 1/ o calls to receive the job summary data from the processor 
after the last event is written to tape and before the printing of job summary 
is started. 

These modifications can usually be made with little difficulty by anyone with 
some knowledge of the program. 

For a multi-processor environment, the program can be further modified so that 
it reads events and sends them to a processor until each processor has an event, then 
for each event received back from a processor the host program writes it to tape, 
reads another event, and sends to the next available processor. At the end of the 
job, the host program would just receive events and write to tape until all processors 
are empty. Also the job summary data would be received from each processor, and 
combined before the printing of job summary. 

This model of using multiple processors allows a single host program to make 
efficient use of all the processors while requiring only a single set of input and output 
devices working on a single data stream. Letting each processor completely handle 
an event on its own, from input to output, avoids the difficulty of breaking up the 
program into stages with each stage being run on a different processor. It also allows 
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multiple slave processors with a simple interface to be attached to a single bus for 
transferring data. 

When the host computer is an IBM compatible mainframe, then there are the 
following additional advantages: 

1. The initialization step can remain entirely on the host. After initialization 
is done, the labelled COMMON blocks with the initialized data can be down-
loaded to the same labelled COMMON blocks in the processors 
without translation of any kind. Thus the initialization code does not need 
any modification. 

2. The output event data received from the processors can be written to tape 
directly without translation of any kind. 

3. The job summary data can be received Crom a processor by direct copy Crom 
labelled COMMON blocks in the processor to the same labelled COMMON 
blocks on the host, thus the print summary routines do not need modification 
and can be called directly. 

This model has in fact been realized in the use of 168/ E processors at many 
laboratories and universities.9 The reorganization of the original program has not 
been radical, indeed it is logical, and once done it has presented little problem even 
when, at a later date, major changes have been made to the code. In practice, the 
host computer may be attached to the processors via another computer with event 
buffers for further efficiency. The buffers allow event data to be unloaded Crom 
the processors as soon as it is ready, and new event data to loaded into processors 
immediately, thus causing minimum idle time on the processors and overlapping 
physical 1/0 with processing. At SLAC,10•11 and CERN,12- 14 PDP-lls were used 
for attached 168/ E processors as early as 1979. A Nord computer was used at 
DESY. 15 It is also possible for the tape drives to be on a superminicomputer, such 
has been done with attached 168/ E processors at Toronto16 and Saclay, 17 with 
some loss of ease due to differences in floating point formats. 

3.2 ONLINE USE 
Multiple 168/ E processor systems have been used in the online environment 

in a configuration that closely resembles that of the offiine systems.18•19 Similar 
online systems are being planned for SLC and LEP detectors.20- 24 In the online 
environment, the input data comes directly Crom the detector, being processed by 
the emulators before it reaches the data acquisition computer. The bus interface 
to the processor is, for example, FASTBUS. Everything else about the running of 
'jobs' is virtually the same as the offiine environment. 

The 3081/ E has many important characteristics for the online environment. 
Being an emulator of a mainframe, programs can quickly be moved Crom the off-
line to the online environment. It also has high 1/0 data capability to minimize 
deadtime, fast integer instructions including shifting and multiplies for unpacking 
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data, large memory space to buffer data blocks from different parts of the detector, 
memory parity checking, etc. The separation of program and data memories helps 
avoid accidental overwriting of program in complex data acquisition systems. Dual 
port interfacing, which allows simultaneous loading of one processor and unloading 
of another is easily accomplished8,l8. Part of the data acquisition system can plug 
into the internal busses of the processor as has been done with the 168/ E. 25,25 

3.3 OTHER USES 
It is clear that event orientated jobs fit well into the structure described above. 

But other types of job, such as simulations based on lattices or numerical integra-
tion, can also use such a system. Although one's first inclination is to put one 
processor per node in a lattice simulation, it has been pointed out by Fox27 that 
one processor per node will lead to large inefficiencies in the processor communi-
cating with nearest neighbors. At SLAC, nine 168/ E processors have been used 
by running the entire lattice on a single processor, but having different sets of pa-
rameters, such as coupling constants or lattice size, running on different processors 
simultaneously. 28 

Thus, for this type of job the 'event' is a set of parameters, each processor may 
work on a single 'event' for hours and the job summary printing is the comparison 
of the results with different parameters. These kinds of jobs require no hardware or 
software changes to a multiple processor system that can also run the event analysis 
jobs, thus various kinds of jobs can be submitted to the system just like one would 
submit jobs to a batch queue on a computer. 

In some cases, some limited 1/0 capability is desirable, 'limited' is important 
because if 1/0 capability becomes very important one probably doesn't have a CPU 
bound job and such a job would run best on a real computer. 1/0 capability if 
it is physically done on a host computer and only virtually done on a processor 
is mostly a question of the software interfacing and not the processor hardware. 
For example, limited PRINT statements can be accommodated by the processor 
writing to a buffer in it's own memory, with the buffer only being read out at 
the end of processing an event as has been done at Saclay with the 168/ E pro-
cessors. In the other extreme, a processor could run part of the operati~g system; 
such is the case with IBM's XT/370 where the 370 processor runs the CMS com-
ponent of the VM/SP operating system while the 8088 processor of the IBM PC in 
which it is housed handles the physical 1/0 by emulating the 1/0 component or the 
operating system. 

4. Conclusion 

The 3081/ E project was formed to prepare a much improved IBM mainframe 
emulator for the future. Its design is based on a large amount of experience in 
using the 168/ E processor to increase available CPU power in both online and 
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oflline environments. The processor will be at least equal to the execution speed 
of a 370/168 and up to 1.5 times faster for heavy floating point code. A single 
processor will thus be at least four times more powerful than the VAX 11/780, 
and five processors on a system would equal at least the performance of the IBM 
3081K. With its large memory space and simple but flexible high speed interface, 
the 3081/ E is well suited for the online and offline needs of high energy physics in 
the future. 

The project is being carried out as a collaboration between SLAC and CERN DD 
division. The work has been divided equally between them. Final debugging should 
occur at SLAC soon with processors being genera.lly available for use by early IQ85. 
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QUESTIONS AND ANSWERS 

Q: How big is (the 3081/E) physically? 

A. Charlesworth 

A: - 15" x 19" rack width. 

Q: Can one translate SIN-COS and Assembler Code? 

D. Notz 

A: SIN, etc., can be translated like on the 1681E because 
instructions and data are separated. Assembler routines will generate 
holes in the code which does not matter. 

Q: ts SIN-COS also re-entrant? 

D. Notz 

A: Yes, the runtime package is re-entrant. 

Q: How hard is it to write a fully optimized translator? Have you 
already done so? 

D. Kaplan 

A: The translator has been written. It is not truly an optimizer 
but makes a single pass through the code, so it's not so complicated. 
Full advantage is taken of optimizations done by the compiler. For 
each 3081 machine instruction, the translator searches forward for the 
first available cycle in which to put an instruction. 

Q: What is the time schedule? 

A. Brenner 

A: Prototype, summer 1984. 
Availability, end 1984 
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[La Duree poignardee (Time transfixed), 1939, Rene Magritte, 1898-1967) 
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THE 370/E EMULATOR AT DESY 

Hanoch Brafman 
Weizmann Institute, Hehovot, Israel 

Dieter Notz +) 
Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany 

Abstract 

A fast general purpose processor which emulates the IBM 370 code is 
described. 

Introduction 

There is an increasing demand for computer power in high energy physics. In 
the era of the forthcoming accelerators people speak about a data production 
rate of 400 tapes {6250 bpi) per day. All these data have to be analysed 
and compared with theoretical predictions. In order to support physicists 
with cheap and IBM 370 compatible c~~puter power the 370/E Emulator has been 
developed at the Weizmann Institute . Emulation is defined as "the desire 
to equal or surpass a rival". In this sense the 370/E is a computer which 
is from the user's point of view indistinguishable from an IBM 370. 

Description 

The main components of the 370/E are shown in Fig. 1. The 370/E consists of 
14 boards with the dimensions 39.4 cm* 23.5 cm. The whole processor 
therefore fits into a box of a typical crate size 45 cm* 30 * 40 cm. 

The eight memory boards may contain up to 2 Mbytes of memory. If desired 
the backplane could be easily increased to give space for 4 Mbytes. From 
the address space point of view the processor can be equipped with 16 Mbytes 
of memory. The addressing of memory extends across the boards to minimize 
boundary condit~Qns during instruction fetch. In contrast to other emulators 
like the 168/E J data and program code are loaded like at the IBM into a 
combined memory. 

The arithmetic and logic unit is divided into five parts: An integer CPU, 
a dedicated multiplier, two floating point boards and a control unit. The 
emulator is a synchronous machine with a basic microcycle time of 150 nsec 
which is narrowed to 100 nsec during shift, multiply and divide. The cycle 
time of 150 nsec can be decreased to 120 nsec if memory chips with 55 nsec 
access time instead of those with 70 nsec are used. 

+) Talk given by D.Notz in A Review of Triggers and Special Computing 
Hardware at DESY and talk given in Guanajuato, Mexico. 
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1Mbyte 

Multiply 
Floating Point Mantissa 

Floating Point Exponent.Ctr! 
Integer 

Control 
Interface 

Fig.1 Main components of the 370/E. 2 Mbytes of memory can fit on the 
eight memory boards. 

The design is based on TTL logic making extensive use of the FAST series. 
In order to achieve high speed the processor contains a multilevel pipeline 
for prefetching instructions. The pipeline minimizes the contention involved 
in a combined memory between data and program. It allows to calculate the 
address of a second operand and fetching it while another instruction is 
being executed. It also allows microcoding the machine language instruction 
in preparation to its executive. 

The integer CPU contains the 2901B arithmetic and logic unit, a multiplexer 
for data or addresses and byte oriented right/left shifters. The control 
unit gets its addresses from the general purpose registers of the integer 
unit. 

The floating point unit performes single and double precision floating point 
operations. It occupies two boards and includes a dualport register file 
(29705A) containing the 4 floating point registers, an exponent logic 
including an alignment encoder and a mantissa ALU with zero detection and 
encoding logic. 

The multiplier performs both integer and floating point multiplication. The 
basic element consists of a 4 x 4 PROM multiplier. 
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Input/output of programs and data is performed by the interface. After load-
ing the program and starting it the interface behaves like an IBM channel 
to local peripherals. File transfer takes place under OMA on a cycle steal-
ing basis. The 370/E emulates SVC, LDSW, SID and TIO instructions and accepts 
I/0 interrupts. 

Input/Output for IBM FORTRAN programs 

Via its interface the 370/E is connected to a host computer. At DESY the 
370/E is attached by a TMS9900 microprocessor and the online net to the 
IBM 30810 mainframe. In order to support the user's I/0 requests in FORTRAN 
programs a set of interface routines has been written which makes the online 
net transparent to the user. 

User Program I BM. control processor 

Main Program 
I 

CALL Subroutines 
I 

READ(5J .. .) READ(5J 10,END=20)CARD 
I 

READ (1JEND=40)EVENTS READ (1) 
I 

WRITE (2) RESULT WRITE(2) 
WRITE (6,60)SUMARY WRITE(6J . ..) 
REWIND 1 REWINDl 
ENDFILE2 ENDFILE2 
STOP 
END 

Fig.2 I/0 requests of a FORTRAN program in the 370/E are transferred and 
executed in the host computer. 

Fig. 2 indicates the user program on the 370/E written in FORTRAN. All I/0 
requests to files which reside at the IBM or at another host must be trans-
ferred in such a way that the user does not know whether his program runs 
on the IBM or on the emulator. This is done in the following way: Each 
FORTRAN program which was generated by the IBM compiler generates a call 

~ 

'--' 

n 
0 

to #IBCOM for each READ or WRITE (Fig. 3). A lot of parameters like addresses 
and FORMAT statements are exchanged between the program and the FORTRAN I/0 
package. #IBCOM then does the formating and transfers buffers to #FlOCS. 
Here only a few parameters like the unit number, I/O request, buffer address 
and buffer length is exchanged. 



Compiler 
generated 
Code 

Define File 

Read IBCOM -...;...;..;;;_..;._;_ __ 
Write IHOFCOM 

Endfile.Rewind, 
Stop.Backspace 
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----.i IHDIOSE SVC 
irect access 

Operating 
System 

Namelist FIOCS SVC 
IHONAMEL ---IHOFCOS 

IHOFCVTH 

List-
,,_D_i_rec_ted __ I HOLD FIO 
Read/Write 

L-..-----' 

Fig.3 Organization of the IBM FORTRAN runtime library. Each user I/O 
request gives control to #IBCOM. #IBCOM exchanges buffers with 

---~#FIOCS. #FIOCS calls the operating system. 
Compiler 
generated 
CODE 

IBCOM* 

FIOCS• 
(F!OCS3) 

FI0370 
!NIT 

FINIT 

FREAD 

FWRITE 

CONTROL 

BFFRIB 

INSSEG HECOM 

RE CA DR BUFSWI 

ONLINE 
PROGRAM 

IBCREQ 

INPUT 
INCBUF 
RDFIOCS 

OUTPUT 

PIOCS* 
(FIOCS*) 

CCOM CLOSE FPRINT itJBCOM 
BACKSPACE 
REWIND 
ENDFILE 

STOPS 
ERRORS RE CA DR 

MVCOM 
INSSEG 

STOP4 

Fig.4 The FORTRAN I/O package for the 370/E. Routines on the lefthand 
side of IBMTRA run on the 370/E, the other routines on the IBM 
or on another host (VAX, NORD, LSill). 
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In the case of the 370/E the FORTRAN runtime library has been split into 
two partsjl: #IBCOM runs on the 370/E processor and #FIOCS runs on the IBM 
or host. The interface routines are shown in Fig. 4. IBMTRA is the actual 
transfer routine between the 370/E and the Host. As the information which 
is exchanged between the 370/E and the IBM is well known the IBM can be 
easily replaced by a minicomputer like LSill, VAX or NORD as long as the 
files are delivered in the IBM format. 

Status and performance of the 370/E 

The various 370/E installations and their interface techniques are shown 
in Table 1. 

370/E Installations 

Institute Host and Interface 

Weizmann, Israel 2 LSI 11 
Rutherford, UK 2 VAX 11/780 Ethernet 
Imoerial College, UK 1 " " 
Birmingham, UK 1 IBM 4341 IBM 2901 
DESY, Germany 1 IBM 30810 PADAC 

1( +2) VAX 750 PADAC 
1 PDP 11/40 UNIBUS 

Bonn, Germany 1 VAX 780 Ethernet 
Aachen, Germany 1 LSI 11 
Siegen, Germany 1 VAX 750 PADAC 
CERN (DELPH]) 1 VAX 780 Ethernet 
CERN (OPAL) 1 " " 
Corne 11 , USA 6 " " 
Table 1. Installations of 370/E's 

At DESY jobs can be submitted to the 370/E from each IBM terminal. The user 
only has to link his program again including the 370/E I/0 modifications 
( INCLUDE TSOL(SYST370E) ). The load module is then loaded to the 370/E. 
Files reside on IBM disks. Lineprinter output is first stored on disk and 
then moved to the lineprinter. The user can therefore inspect the 370/E 
output while the job is running. The 370/E behaves like an IBM, the user 
does not see any difference whether he runs this job on the IBM or on the 
emulator. Also error menages like negative SQRT or dumps are generated as 
on the IBM. 

Up to now 1600 jobs with 917 hours (370/E) computer time have been executed 
on the emulator. The speed of the 370/E processor is 3.8 (Real x 4) to 
5.2 (Real x 8 operations) times slower than the IBM 3081D. 

Summary 

We have described a general purpose processor which emulates the IBM 370. 
User's load modules are loaded directly without extra translation or linking. 
The speed of the processor is 3.8 to 5.2 slower than the IBM 3081D. The 
price is 6000 i I CPU + 6000 i I Mbyte memory. 
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A REVIEW OF TRIGGERS AND SPECIAL COMPUTING HARDWARE AT DESY 

Dieter Notz 
Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany 

Abstract 

The DESY computer center, its services and the local area networks will be 
described. In one example we discuss a trigger processor and how data are 
taken and analysed in an experiment. 

Introduction 

The experiments at PETRA and DORIS are now in operation since several years. 
Only a few trigger processors were added meanwhile and most of the triggers 
have been presented in the CERN Microprocessor Conference 1981 (Ref. 1). We 
will therefore describe in this paper how data of an experiment are trans-
ferred to the computer center via a network and how they are processed and 
recorded. One trigger processor which uses an integrated NORDlOO/E Emulator 
will be discussed at the end. 

DESY Computer Center 

DESY has two IBM 3081D mainframes each with 16 megabytes of real memory and 
16 channels. The hardware configuration is shown in Fig. 1. Batch programs 
are processed on both machines. The experiments which send their data via the 
online net to the IBM are connected to one machine while NEWLIB is running on 
the other one. NEWLIB is the Editor system written at DESY. It allows to compile 
and link programs, to submit jobs to the batch queue or to run jobs in fore-
ground for debugging. Both computers have access to the library disks, user's 
disks, tape units, line printers and plotters. 
The DESY Computer Center offers an excellent service for tapehandling. 12000 
tapes are stored in the machine room, 50 000 tapes are in the archive. When-
ever a user needs a tape he simply defines UNIT=TAPE in his job card 
//GO.FT02F001 DD DSN=FlCYAA.EXl,DISP=(NEW,CATLG),UNIT=TAPE. The operator then 
mounts a scratch tape with standard label and write ring, At the end of the 
job the tape is catalogued by the operating system and the operator removes 
the write ring. Whenever the user wants access to his data he defines the 
name of the dataset in his job cards and the catalogue references to the tape 
number. The correct tape can then be mounted. As the data set name has the 
user identification in the first six letters the computer center knows who 
has occupied the tape. When the user does not need the dataset any longer he 
may delete it. In this case the entry is deleted from the catalogue and the 
tape will be placed in the scratch poolequippedwith a write ring. 
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Desy Computer Center 

System System 
and and 

Scratch Scratch 
Disks Disks 

I I 
IBM IBM 

308-1 D 30810 

Batch Newlib - 150 
Full screen 

Online Batch Terminals 

I Printer, Plotter 
I Cardreader 

I User Disks 
I Files 

I Online Disks 
I Spool Disks. I/O 
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I 1680-3300Disks 

1 Tape Drives 24 

: Desy net 
\ r-

1 Online Experiments 

Fig.1 DESY Computer Center. The online experiments 
are only connected to one computer. 

Connections to other Universities 

DESY has leased telephone lines to seven other universities or institutions: 
MPI-Munich, IPP-Garching, KfK Karlsruhe, GSI Darmstadt, University Aachen, 
University Siegen and Rutherford Appleton Laboratory with SERC net. These 
lines are used to submit jobs from other institutions to DESY and to trans-
fer files. IBM is installing the European Academic Research Net (EARN) which 
gives access to Rutherford, Dublin, Paris, Geneva, Madrid, Rome and the US. 
Inside Germany EARN connects the computer center to more than 10 institutions 
with IBM computers allowing file transfer, mail and logging on. 
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Networks on DESY Site 

There are several contradicting demands for networks which resulted in the 
development of four local area networks at DESY. 

For the experiments the most important network is the online net. All experi-
mental computers are connected via this net to the IBM. Data are taken by 
the online computer and then transferred to the IBM disks and tapes. This 
network is organized like a star and is shown in Fig. 2. Up to 44 computers 
or microprocessors are connected to the IBM at present. The net is controlled 
by a TMS9900 microcomputer and seven headers. The TMS9900 sends continuously 
telegrams to all stations asking the minicomputers for transfer requests. 
If a computer wants to transfer data the TMS9900 gives an interrupt to the 
IBM via a 2701 unit. During that time data are already transferred to the 
header with a speed of 10 µsec/16 bit word. Data transfer between the online 
computer and the corresponding header is independent of transactions to 
other headers. When all data have reached the header and the IBM can accept 
the request data are moved from the header to the IBM via a second 2701 unit 
with parallel data adapter with a speed of 4 µsec/16 bit word. 

In average the experiments may send one to two data blocks per second to the 
IBM with 32 000 bytes/block. 

NORD 

Logical 
Address 
Space 

A(100) 

D(980) 

BIT(50) 

10/S 

Physical 
Address 
Space 
Page 
Table 

T 

List: ADDR (A) 
100 
ADDR(D) 
980 
ADDR (31T) 
50 
0 
0 

DESY Online Net 

Interface 

~ -20\ fm 

TMS9900 
+Memory 
32k Byte/ 

header 

-1 µsec/word 10 µsec/word 

1Word = 16Bit 

2701 
PDA 

Data 2701 
PDA 

::::E 
CD ..... 

I 
4µsec/word 

Fig.2 DESY Online Net. The TMS9900 controls the net consisting of 44 mini-
computers. The computers are connected via multiplexers and seven 
headers. The interface gets a copy of the pagetable to map logical 
and physical address space. 
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In order to connect several computers within one control room or experiment 
a fast packet switching system (FPSS) has been developed. The layout of this 
system is shown in Fig. 3. In the central node of that system a Micropro-
cessor controls several buffers. Each computer is connected by a single coax 
cable to a pair of buffers, one for receiving and one for sending packets. 
The transfer rate between computer and buffer is 2.4 µsec/16 bit word and 
between buffers within the node 0.1 µsec/16 bit word (Ref. 2). 

~ c:::J 
CJD 

8KBytes 

,......_--+-Send 
<:t+----+-Receive 

SCM=O SCM=1 SCM=1 
DCM=1 

NORD 1Cable VAX 
150 nsec/Bit 
2. 4 µsec/16Bit 

Fast packet switching system. 
Fig.3 The fast packet switching system is used to connect several computers 

of an experiment or control room. Transfers between computers and 
their buffers in the node are independent of each other. 

In preparation is a net for terminals allowing a connection between terminals 
and several computers. 

In addition OESY has a net which connects 25 graphic work stations and the 
services of the Bundespost to the two IBM computers. This net is controlled 
by 23 NOVA computers and the speed varies from 0.5 Mbit (up to 1.2 km) 
to 7 Mbit (up to 300 m). 

Data Taking, Filtering and Recording 

Fig. 4 shows a typical set up for an experiment at DESY. Data are taken by 
a PDP, NORD or VAX online computer and stored in buffer or on disk. The 
online computer monitors the experiment with the help of event displays and 



-221-

Experiment 
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I Online'----t---=- 66Mb 
1sec Computer - 456 Mb 

1min 
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Dump tape I 
100 Doto Gener. 3 h =------~---.1------+--=-='-'I 
Tapes I 
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-1d 

Hodronic event 
candidate 

Fig.4 Typical online application. Data are taken, buffered 
and filtered by the online computer. After transfer 
to the IBM the first analysis jobs are started 
automatically. 

histograms. Before data are sent to the computer center they are filtered 
and analysed by fast processors. The JADE experiment uses a NORD50 and a. 
Fast Amsterdam Multiprocessor {FAMP) system with 3 MC68000 processors 
(Ref.1, Ref.3) while IBM compatible emulators 168/E (Ref.4) and 370/E 
(Ref.5) are used in the TASSO experiment. The analysed events are then 
moved to the IBM and written to disks with 100 Mbytes capacity. When the 
disks are nearly full a dump job copies data to tape and catalogues the 
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tape number. In addition the dump job activates a check job, a job for 
event reconstruction and an archive job. As all collaborators have access 
to the IBM catalogue one can easily check the status of the analysis pro-
grams and activate own programs. For normal event rates event reconstruction 
is finished one day after data taking, track fitting and event scanning is 
completed after one week. 

A Trigger Processor for the Vertex Detector 

A small, high precision drift chamber is used in the TASSO experiment as 
vertex detector. The inner radius is 6.5 cm, the outer radius 15 cm, the 
active length 58.6 cm and the drift distance varies from 3.5 to 4.5 mm. 
For track reconstruction in the r~ plane three memories are used. One memory 
is connected with its 10 address lines to the 4 inner layers, the second one 
in the same way to the 4 outer layers. These memories generate for each 
possible track combination in the corresponding address a track element 
number on the output pins. A third memory combines track elements from the 
innrer and outer layer and generates a trigger signal. The time needed to 
produce a fast trigger signal is 100 nsec drifttime + 150 nsec in first 
memory+ 300 nsec in the second memory and trigger logic= 550 nsec (Fig.5). 
This trigger processor does not introduce any deadtime as the repetition 
rate of PETRA is 3.8 µsec. In addition to the r~ trigger the vertex detector 
is also used to determine the position of the vertex along the beam by using 
charge division on the wires. The charges which appear at the end of the 
sense wire try to equalize during the gate time by the internal circuit. There-
fore the charges which are measured by the ADCs must be corrected depending 
on the gate width. In addition one has to subtract pedestal and correct for 
ADC gains. All these computations are performed by a NORDlOO/E emulator 
with the help of look-up tables. The ADCs are addressed like a memory in 
order to save time for readout. After the gain correction the position on 
a wire and finally the vertex is computed. The program to find a vertex has a 
time out of 10 msec. 25 msec are needed to format the data. The total time of 
35 msec is comparable to the readout time of a complete event. On a second 
trigger level the event may be rejected before sending it to disk. 
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R/11> TRACK FINDING LOGIC 

Vertextrigger with charge division. 

Fig.5 Vertex detector trigger. The fast r~-trigger is 
ready after 550 nsec. In the charge division trig-
ger a NORDlOO/E emulator determines the result 
in 10 msec. 25 msec are needed to format the 
data. 
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QUESTIONS AND ANSWERS 

Q: Can you mention the current plans and development projects 
concerning HERA? 

S. Conetti 

A: We will do it similar to PETRA and PAOAC. The experiments 
might use VAX with CAMAC and FASTBUS. 

Q: Since you already have 2 IBM 30810's, the one 370/E is a 
very small increment in computing power. Are you planning to install 
many more 370/g's, or is there some other advantage to using the 
370/g? 

O. Kaplan 

A: TASSO will be happy with 4 370/E's. Since PETRA will shut 
down in 2-1/2 years, there is little incentive to add, say, 20 
370/g's to system, unless HERA is built. 

Q: How many 370/E's can you put onto your 30810 before the 
requests for I/O saturates the 30810? 

K. Fischler 

A: About 10, thus - tripling the 30810 power . But the computer 
center might not like it. 

Q: Could you comment on the relative use of emulators 
(373/g and NSRO/E) and single board micro computers (like the Intel 
286 reported on by Paolo Franzini in the last talk). 

I. Gaines 

A: No Answer 
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THE ARGUS TRIGGER PROCESSOR "LITTLE TRACK FINDER" 

H.D. Schulz 
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany 

Abstract : A fast secondary trigger processor has been built that finds and counts 
circular tracks in the r-~-plane of a large drift chamber. The trackfinding process 
takes 12 µs plus 4 µs for each encountered track element. The device consists of a 
table driven ECL-processor connected to the experiment's computer for table preparation 
and checking. In this way speed and flexibility can be reconciled. 

The "Little Track Finder" (L TF) is part of the trigger system of the ARGUS detector. 
ARGUS is a magnetic 4n-detector set up in one interaction region of the 5 GeV e+e-
storage ring DORIS at DESY in Hamburg. Its solenoid magnetic field is centered on 
the interaction point and the particles generated by an e+e-- interaction pass subse-
quently through the following detector components within the field : 

- A drift chamber (DC) with in total 6000 drift cells arranged in 36 cylindrical 
layers. Half of the signal wires are stretched parallel to the beam line, the 
other half being stereo wires. 

- A cylinder of 64 scintillation counters to measure the time of flight (TOF) of 
charged particles. 

- A lead scintillator calorimeter to measure the energy of showering particles. 

Trigger system :_Since the rate of e+e- bunch crossings is l Mhz, whereas the number 
of good events is expected to be only of the order to l Hz a fast selective trigger 
system is mandatory. The ARGUS trigger is a two step trigger making use of all the 
above mentioned detector components. The primary trigger relies on fast coincidences 
between TOF and shower counters and makes use of the total energy deposited in the 
shower counter system. Its total rate of 50 - 100 Hz is an order of magnitude larger 
than is tolerable both from the expected rate of good events and the detector readout 
time of 30 ms. To further reject background events the primary trigger starts a secondary 
filter, the LTF which finds and counts good tracks in the r~-plane of the drift chamber 
and eventually classifies the event to be read out. 

Design idea : The operation time of the LTF is severely constrained by deadtime con-
sideration to be less than 50 µs. This rules out a pure microprocessor application, 
but also a pure hardware solution was rejected because of its inflexibility and clumsi-
ness. To compromise between the speed of a hardware device and the flexibility of 
a programmable processor, we built the LTF as a table driven ECL-device that is connected 
to the online computer of ARGUS for software support. The tables that control the 
operation of the LTF are prepared by running a FORTRAN program on the online computer 
once for an experiment. The program requires simple physical input information and 
is flexible enough to cope with different experimental requirements. The constructed 
tables are then loaded into the memories of the LTF which is now able to do high speed 
operations without further intervention of the computer. In this way the flexibility 
of a software solution and the speed of a hardware device could be reconciled. 
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The layout of the LTF is schematically shown in Fig. 1. There are four types of internal 
memories : 

1) the wire input boards (WIB), one for each drift chamber layer plus one for 
the TOF-layer. The WIBs are connected to hit-registers within the TDC-modules 
(LeCroy 42918) of the DC and TOF-layers and hold the hit information of the 
actual event. The drift time information is not used since the drift cells 
are small (18 x 18 mm2). 

2) The mask memory (MM) is loaded from the online computer with precalculated 
information. It contains up to 2 k masks. Each mask consists of a sequence 
of words, as many as there are layers connected to the LTF. These words contain 
the addresses of wires in the WIBs computed such that together they constitute 
a possible good track in the detector. 

3) The contents addressable memory (CAM) of 64 words, preset with fixed inform-
ation from the computer, contains acceptable hit patterns for good tracks. 
(To account for DC inefficiencies there may also be good tracks with one 
or two hits missing.) 

4) The increment memory (IM), loaded with calculated information from the 
computer. 

Sequence of operations : Each primary trigger initialises the LTF and strobes the 
contents of the hit registers into the WIBs. Then a series of mask cycles is executed. 
The words belonging to one mask are in parallel used to address wires in the WIBs 
and the read hit pattern is compared to the contents of the CAM. If there is a match, 
a track counter TC is incremented. If the TC exceeds a preset value, the event is 
accepted. If the TC does not exceed the threshold and the end of the mask memory 
is reached a reset signal is sent to the detector electronics. 

Operation time : One mask cycle, consisting of 8 subcycles, takes 170 ns. Going through 
2 k masks strictly sequential would mean an operation time of 350 µs. This time can 
be considerably reduced by a simple trick. One notices that one signal wire (or group 
of wires) participates in many masks. Once it is detected that this wire is not hit, 
it is of no use to check on all the rest of the masks containing this same wire. 
With a suitable o~dering of masks it is possible to skip over useless cycles by letting 
the mask address incrementation depend on the result of the last mask cycle. The 
incrementation control is effected by the contents of the IM. The operation time 
of the LTF then depends on the number of hits in the DC. For an empty DC the operation 
time becomes 12 µs, each encountered track element adds 4 µs to this time. The measured 
mean operation time of the LTF during normal detector running is 20 µs, more than 
an order of magnitude less than in the strictly sequential mode. 

Results : The LTF reduces the trigger rate of ARGUS by an order of magnitude as com-
pared to the primary trigger if one asks for 2 tracks seen in the DC. In doing this 
it introduces less than 0.2% deadtime into the detector operation. Its track finding 
efficiency has been measured to be 97%, mainly determined by the DC efficiency. Double 
counting of one track is reduced to 3% by ignoring the second one of two consecutive 
matches in the track finding process. The LTF can be easily and thoroughly tested online 
by computer since all its registers can be accessed via CAMAC. The LTF met its design 
goals and has proven to be a very reliable tool. 
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QUESTIONS AND ANSWERS 

Q: a) What is the maximum number of wires than can be counted 
into mask? 

b) Can the first-stage region be changed in size? 

T. Brody 

A: a) Each word with an included wire set has one wire address 
and three bits for moving in neighbors. 

b) It can be moved anywhere, can be of size 1, 2 or 3 words, but 
must have a bit in the mask-defining word. 

Q: How much memory in the processor and what is the duplication 
cost? 

D. Kaplan 

A: 32K words (some 12-bit and some 16-bit). It cost 100,000 
Deutsch Marks originally; the duplication cost would be less. 
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The Use of MC68000 Microprocessors 
in the TASSO Experiment 

V. Mertens 
Physikalisches Jnstitut Universitiit Bonn, 
Nussallee 1 Z, D-5300 Bonn 1, W. -Germany 

Abstract 

A MC68000 based microcomputer system for the enhancement of CAMAC 
data acquisition systems has been developed al Bonn and DESY. Good 
software support is available including FORTRAN-77 with real-time exten-
sions and PASCAL. The system will be used in various applications in the 
on!ine system of the TASSO detector at the e+e--storage ring PETRA. 

1. Introduction 

In this paper the hardware and the software of a microcomputer system 
for data processing in CAMAC based data acquisition systems is described. 
!ls main purpose is the support of online computers in data acquisition 
and control of experiments. The system is called '68CAMICRO'. 

The 68CAMICRO system has a modular structure. It consists of several 
CAMAC modules which are grouped around a general-purpose processor 
module based on the microprocessor MC88000. Interface modules make 
the system applicable to different levels in CAMAC configurations, e.g. it 
can be employed as Auxiliary Crate Controller for processing in normal 
CAMAC crates or as a Front-End Processor, sharing the access to a com-
plete CAMAC assembly with the online computer. With real-time 
FORTRAN-77 and PASCAL good software support is available. 

The syst.em will be used in the online system of the TASSO detector /1/ for 
data reduction, formatting of events and for readout of full events into the 
onlme computer. 
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2. Hardware and Software of the 68CAMICRO System 

To date. the hardware consists of three different types of modules. The 
major goals during the design phase were modularity and expandability of 
the system. Therefore an important aspect is the introduction of a 
system-wide interconnection. Modules are linked together by a multipole 
connection at the front panel of each module thus forming different func-
tional umts. 

The modules are grouped around a fast general-purpose processor module 
named 'WS68K' ('WORK STATION based on MC68000 PROCESSOR'). The WS68K 
is mandatory in each application. Alone or in connection with extension 
modules, the WS68K can be used as a 'Personal Work Station' for general 
computing. CAMAC dala acquisition is achieved on the lowest level by a 
WS68K working together with an 'AUXILIARY CRATE CONTROLLER INTERFACE 
(ACCI)' This combination acts as an 'AUXILIARY CRATE CONTROLLER (ACC)' 
for the control of a single CAMAC crate. A 'BRANCH INTERFACE (BI)', which 
enables the WS68K to access a complete CAMAC branch consisting of up to 
seven crates is under development. Most recently an 'AUXILIARY SYSTEM 
CRATE CONTROLLER INTERFACE (ASCCI)' has been developed, which allows 
the WS68K to gain access to the complete multi-branch CAMAC configura-
tion of an experiment (up to 50 cratesf· when residing in a GEC Elliott 
'System Crate' /2/. The development of an 'UNIBUS INTERFACE' for a direct 
link to a VAX or a PDP 11 host computer is envisaged. 

The WS68K module employs the MC68000 in a 10 MHz version. It offers 
256 Kbytes of fast (150 nsec) dynamic RAM with byte-wi::1e parity check and 
a 192 Kbytes EPROM area for system programs or fixed user programs. In 
addition, the WS68K provides two RS232 serial ports for connection of a 
terminal and a host computer. It is built up on a multi-layer PC-board in 
a single slot CAMAC frame. 

The ACCI module allows accesses of the WS68K lo all CAMAC modules in the 
local crate via standard A-2 Crate Controllers. The data paths to modules 
are 16 bits wide (optionally 24 bits) during both read and write cycles. To 
the online computer the ACCI appears as an ordinary CAMAC module. The 
data paths lo the online computer are 16 bits wide. A buffer area consist-
ing of 2 x 128 bytes for both directions, made up by First-In-First-Out 
memories (FIFOs), serves as the communication area. The data exchange 
via this buffer is supported by dedicated hardware (control and status reg-
isters for both the online computer and the WS68K). An intelligent 
interrupt controller in the ACCI is able to handle 8 interrupt sources: 
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4 out of 24 possible LAM-signals from modules (selectable via 'jumpers'), 
3 NIM front panel inputs and an interrupt from a real-time clock. Two NIM 
trigger outputs are provided. A watchdog timer supervises the overall 
operation of hardware and software. The ACCI is also housed in a 
single-slot CAMAC frame and designed on a multi-layer PC-board. 

In order to provide access for the WS68K to all crates in a CAMAC system 
the ASCCI module was designed. The WS68K/ ASCCl combination has neces-
sa:ily to reside in e. GEC Elliott System Crate, where it has the same status 
as the interface to the main online computer. The ASCCI structure is dif-
ferent from that of the ACCI due to the different use of the System Crate 
Dataway during system cycles. In addition, the buffer area for communi-
cation with the host was enlarged to 64 Kbytes of dual-ported static RAM. 
The ASCCI occupies two CAMAC slots and has been assembled using the 
wire-wrap technique. 

Software development for the MC68000 can be made either on the TASSO 
VAX 11/750 or on the target system itself. As cross software we use mainly 
the FORTRAN-77 compiler 'RTF /68K' /3/ This compiler comprises, with few 
omissions, the full FORTRAN-77 specification, the extensions of the VAY.. 
FORTRAN compiler and special real-time extensions to take full advantage 
of the architecture of the MC68000 and the hardware structure of the 
68CAMICRO system A PASCAL cross compiler is also available. 

The system software consists of a 60 Kbytes stand-alone monitor written 
in FORTRAN and a run-time library. This library works together with the 
FORTRAN compiler and is partly written in FORTRAN and partly in MC68000 
Assembly language. 

3. Implementation of the System in the TASSO Experiment 

Fig. 1 shows schematically the application of the 68CAMICRO system in its 
ACC function consisting of a WS68K and ACCI. In several crates of the 
TASSO readout system ACCs will be installed to support the main online 
computer in reading out parts of the detector. One application will be in 
the pedestal subtraction and data reduction of ADCs. Another application 
is the formatting of data from the liquid argon electromagnetic 
calorimeter /1/, including the suppression of data caused by noise and 
pickup in the readout electronics. Athird application will be the efficiency 
check for the fast 'hard-wired' trigger processor which recognizes track 
patterns in the central detector /1/. 
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The most important application of the 68CAMICRO system however is in the 
main readout stream of the TASSO detector: At the moment, the TASSO 
experiment employs a coupled system of NORD10/NORD100 online comput-
ers /4/. Starting from summer they will be replaced by a VAX 11/750 with 
data acquisition running under the VMS operating system. Unfortunately, 
the real-time behaviour of VMS has some drawbacks. In the VAX 11/750 
the overhead from interrupt handling, i.e. entering and recovering from 
interrupt routines, takes about 4 msec /5/. The time required to set up a 
single CAMAC block transfer (DMA) has been measured to be about 
1.7 msec /6/. Since the readout structure of the TASSO detector involves 
some 50 DMA transfers this would give an unacceptable contribution to the 
readout time and increase the deadtime of the experiment. 

By introducing a WS68K and an ASCCI in the System Crate as Front-End 
Processor to the VAX one can eliminate these overheads. (fig. 2). In this 
configuration the WS68K/ ASCCI reads in the raw data via 4 branches, for-
mats the events and stores them in the 64 Kbyte buffer area of the ASCCI. 
Since the event length is typically 5 Kbytes multiple event buffering is 
permitted. The buffer of events may now be read by the VAX in a single 
DMA transfer. 

4. Remarks on Performance 

The new arrangement is expected to improve significantly the perform-
ance of the data acquisition system of the experiment. The reasons may 
be summarized as follows: 

The overhead from interrupt handling in the VAX 11/750 of about 4 msec 
compares to less than 100 µsec in the WS68K. No set-up time for DMA 
transfers is introduced because the data transfer between the MC68000 and 
CAMAC modules is done under program control. 

The CPU performance of the WS68K has been found to be approximately 
equal to that of a VAX 11/780, if the features of the FORTRAN compiler /3/ 
are fully exploited and if only integer arithemetic is used, as in this appli-
cation /7 /. 

In addition, two hardware features in the 68CAMICRO system provide for 
efficient CAMAC accesses. Firstly the complete CAMAC equipment is mapped 
onto the address space of the MC68000 and is not connected via peripheral 
I/0-channels. As a result, a CAMAC location is accessed immediately from 
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FORTRAN programs as an ordinary variable. Secondly during read transfers 
from CAMAC modules, which form the bulk of CAMAC accesses in the pres-
ent application, the MC68000 stores the read data under control of the 
CAMAC timing signal Sl. After the signal Sl the microprocessor can decou-
ple itself from the running CAMAC cycle and continue with further activ-
ities. This shortens CAMAC read accesses as seen by the MC68000 by roughly 
30 %. 

An important motivation for the development of 68CAMICRO was the possi-
bility of enhancing existing CAMAC systems at relatively low cost without 
having to wait for the development of new standards. 
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TRIGGERS AND SIGNAL PROCESSING AT CESR 

Paolo Franzini 
Columbia University 

ABSTRACT 

In the following we discuss the triggers and signal processing at the 
Cornell ~lectron ~torage Bings (CESR). Two detectors, CLEO and CUSS, reside 
at the two interaction regions of the accelerator where they each are exposed 
to an average crossing rate of 1.2 MHz. The individual strategems of reducing 
such rates to the acceptable rate of 3 Hz and the subsequent signal processing 
resulting in data summary tapes are discussed. 

1) INTRODUCTION 

CESR is an e+e- collider operating in the Is - 10 GeV energy region, 
where the majority of bound triplet S bb states, T's, are produced. Three 
such states lie below the free flavor threshold, and by observing the photon 
transitions amongst them, the six xb's were discovered by CUSS at CESR [1]. 

The fourth T, also discovered at CESR, lies above open b flavor threshold and 
serves as source for the study of the b-flavored mesons (B's) which were 
explicitly first reconstructed by CLEO [2]. All these activities happened 
since 1980, while the machine luminosity increased by over a factor of fifty 

and the detector triggers have continuously evolved in order to reduce data 
rate without loss of events of interest. Figure 1 shows the schematic layout 
of the CESR accelerator complex: a LINAC is the source of the electrons and 
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positrons, and a synchrotron accelerates them to the desired energy after 
which they are injected into the storage ring. The regions where the 
electrons and positrons collide are designated 
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Figure 1 CESR Accelerator Complex 

detectors. 

The CESR control system uses three PDP 11/34 connected to a VAX 11/750. 
It should be noted that CESR can individually set all focussing quadrupoles, 
as well as correcting sextupoles and steering verniers, thus having enormous 
freedom in setting tune and choosing lattice. The 11/750 is a recent addition 
and is used essentially as a clearing house for the 11/34's from which running 
conditions for the various components of the machine are down loaded and 
saved. Machine operations, computer assisted fine tuning and orbit 
corrections are handled by this cluster of computers. Calculations for new 
latti.ces which are human vernier assisted, and searches for safe places in the 
tune plane labyrinth, are done instead on a stand alone VAX 11/780 which the 
machine physicists share with other CESR developement programs. 

Table 1 summarizes the present running environment at CESR, which raises 
the question of why there is a need at all for trigger requirements at 
e+e- colliders (posed by physicists contemplating the formidable conditions at 
hadron colliders or fixed target machines). 
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Table 1: CESR Running Environment 
Peak Average (for ex. May 8th) 

Luminosity 0.03 nb- 1sec- 1 0.01 nb- 1sec- 1 

Hadronic event rate 0.75 to 0.12 Hz 0.25 to 0.04 Hz 
µ-pair event rate 0.02 Hz 0.007 Hz 
i:-pair event rate 0.02 Hz 0.007 Hz 

Bhabha event rate 0.2 Hz, and up 0.1 Hz, and up 

Total event rate 1 . 0 Hz , and up 0.35 Hz, and up 

The crux of the matter is however, that the crossing rate is 1.2 MHz 
while the maximum acceptable rate is less than (or equal to) a few Hz. 
Therefore one needs to reduce the 1.2 MHz rate to~ 3 Hz without losing the 
above listed real events. 

The modus operandi is typically as follows: 
1) At each crossing assume there is an interaction, therefore begin 

signal processing. 
2) Meanwhile, generate a trigger. 
3) If the trigger is valid, continue signal processing until event is 

deposited into computer. 
4) If there is no trigger, reset (if possible), and resume. 
In the next sections we discuss how each detector specifically accomplishes 
this. 

2) CLEO 

CLEO is a general purpose detector based on a large magnetic 
spectrometer. The basic components of the detector, viewed radially outwards 
from the beam line are: ~roportional ~ire ~hambers (PWC) surrounding the beam 
pipe, drift chamber (inner drift), superconducting coil, drift chambers (outer 

drift), dE/dx proportional chambers, !ime Qf ~light counters (TOF), octant 
shower detectors, magnetic yoke, hadron absorber, muon chambers. Luminosity 
detectors and various end cap complements of the abovenamed components are 
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located at their logical places [3]. The complete analog and digital 
electronics for CLEO is in crates attached to the detector inside the 
radiation area. In table 2 we list the detector elements of CLEO, each 
requiring analog processing and conversion to digital form. 

Tracking 

Table 2: CLEO Active Elements 
Active Elements 

12,000 
Electromagnetic shower detector 
Particle identification 

10,000 
10,000 

Total number of signals 32,000 

CLEO's trigger system includes four major components which allows 
triggering on charged or neutral particles through track recognition or energy 
deposition in the detector. The components are: (i) fast track segments from 
the inner drift chambers and from the PWC's that provide z coordinate 
information, (ii) fast logic signals from the TOF counters, (iii) analog sums 
of energy deposited in the shower octants, with variable discriminator 
thresholds, (iv) precision tracking processors outputs which arrive some 40-60 
µsecs later and is used if the fast tracker requests it. Figure 2 shows the 
block diagram of the CLEO trigger system. 

Figure 3 shows graphically the principle of operations of the "Precision 
Track Processor". Each cylinder of sense wires is mapped into shift 
registers. These registers are shifted past several positive, and negative, 
curvature windows to find the track. The "Fast Track Segment Processor",uses 
fewer cylinders, and a single window to detect track segments. 

In figure 4 the whole block diagram of CLEO data acquisition electronics 
circuits is shown. The 32,000 signals are packed 24 (or 60) to a card and 21 
cards to a crate, making a total of 85 crates. Each crate has its own bit 
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slice µprocessor, ADC, DAC, control and interface logic. The digital outputs 
for each detector element are gain normalized and empty channel suppressed. 
Gains can be calibrated. The digital data come out into the safe area via a 
16-bit data bus designated as the Y-BUS in the figure. An event thus consists 
of 2200 data words and 2200 address words, transmitted in 4-8 µsec/word 
through the Y-BUS driver into an PDP 11/34 which buffers and reformats the 
event, adding associated information which was transmitted to it through the 
8-bit X-BUS (high voltage, fast trigger, monitoring, precision pulser etc.). 
The latter and its sources, except for its bus driver, also all reside in the 
radiation area. The PDP 11/34 then sends the event to the VAX 11/750 for 
on-line analysis, where a series of cuts are applied and dubious events are 
tagged before being written on tape. The 11/750 also monitors the performance 
of the detector and histograms bhabha and hadronic events as a function of 
runs. The more refined analyses and final event reconstructions are performed 
off-line on the Cornell DEC system-1099, and at various collaborating 
institutions's computers. 
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3) CLEO VERSUS CUSB SIGNAL PROCESSING 

Before discussing the CUSB data processing proper, I would like to make a 
digression on the relative merits of analog versus digital signal transport, 
because CLEO and CUSB each typifies one school of thought, as shown 
figuratively in figure 5. We have noted that CLEO's electronics are mounted 
directly on the detector, in a high radiation area. Only digital data is 
transmitted out of the radiation area, to computers some 300 feet away. This 
means, incidentally, that to repair any electronics failure, of even a minor 
sort, requires turning off of the storage ring. Of course, then there are no 
more analog signals. CUSB, on the other hand, chose to transmit out of the 
radiation area all 5,000 of its analog signals, differentially transmitted and 
received, into a nearby safe area where the analog signal processing 
electronics, the high voltage power supplies and controls, trigger module and 
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source calibration modules, all reside. There each analog signal is 

integrated and held for the analog to digital conversion process while 

awaiting the trigger decision. If a trigger has occurred, the digital 

information is transmitted at a rate of one word per 0.2µsec (along a 350' 

transport bus whose length was dictated by the CESR geography) to the 

computers after digitization. 

Table 3 enumerates advantages and disadvantages of digital versus analog 

signal transport, based on the CESR experience. 

Table 3: Digital Versus Analog Signal Transport 

ADVANTAGES 

Digital transport Analog transport 

16 lines. 

Unlimited 
** dynamic range 

Analog eletronics 
*** more reliable 

Signals can be viewed. 

No switching noise 
on low level signals. 

Faster learning 
curve. 

Trigger evolution. 

DISADVANTAGES 

Digital transport Analog transport 

Digitizing noise 
prevents simple 
analog event 
buffering. 

* 5000 lines . 

Dynamic range 
< fewx 105 ** 

*For larger number of signals one can use 16 ~ 1 analog multiplexing. 
**Irrelevant in practice. 

***After burn-in (before installation) we ran 1.3x109 preamp hour 
without failure. 
~~~- -~~~ 
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4) CUSB 

CUSB is a nonmagnetic NaI-Pb glass calorimeter, supplemented with inner 
and interspersed tracking chambers [4]. The 5000 CUSB signals come in the 
following three catagories: 

-350 precision, large dynamic range (105:1) charge signals from 
Central Detector Crystals. 

-650 additional calorimeter signals. 
-4000 time or charge signals for tracking. 

All signals are digitized and transported to the computers, the empty channel 
suppression option is not used. We have full on-line analysis, this uses -25% 
of a VAX 11/780. Approximately 70% of the triggers are saved on tape because 
the trigger is very efficient. It is based entirely on analog information: 
(i) the total energy deposited in the central detector is> 0.9 GeV, or (ii) 
there are three clusters whose energies are > 70 MeV AND the total energy 
deposited in the central detector is > 600 MeV, or (iii) there are two muons 
and 120 MeV deposited in the detector. Another unique feature of CUSB is that 
the central detector is calibrated in real time during data taking. This is 
performed using advanced µ-processors to track changes in NaI output and 
photomultiplier gains. 

Figure 6 is a block diagram of the signal flow amongst the various 
components of the CUSB data acquisition system. The digitized output from 
some forty crates of electronics (containing calibration results, high voltage 
settings, TDC and ADC information etc.) communicate to one node (the 
downstairs node) of a data transport system which uses two sets of 28 
dedicated unidirectional lines, 16 for data, 8 for address and 4 for control 
information, to transmit at the rate of 1 word/0.2 µsec to the other node 
(upstairs node) located some 350 feet away. To the upstairs node are attached 
a PDP 11/20 which communicates at 3.5 µsec per word, a dual port memory which 
receives at 0.8 µsec per word, a unibus adapter which links a VAX 11/780 to 
the PDP 11/20 (data transfer rate 5 µsec/word), and also a 286/310 µ-Processor 
system which communicates at 1.6 µsec per word. The dual port memory writes 
only from the upstairs node, and can be read and written from the PDP 11/20. 
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A CUSB run begins when the PDP 11/20 receives information from the CESR 
computers that stable running conditions have been achieved. A word is sent 
to a register downstairs which controls the flow of data. The first twenty 
events are taken with the analog signals disconnected so that we can measure 
the offsets of the ADC's to check for changes. Then the analog signals are 
reenabled. While we are waiting for a trigger to occur, the PDP 11 has 
initialized a buffer in the dual port memory which is large enough to contain 

an entire event. Whenever an entire event is assembled , the PDP 11, while 
reinitializing for subsequent triggers, simultaneously transfers the event at 
the slower rate that the VAX can handle. When the VAX has received the whole 
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event, it performs preliminary filtering and catagorizes the event as whether 
it should be written on tape or discarded, and whether it should also be saved 
on disks for express off line processing. Whenever the VAX sees the beginning 
of a new run, it also initiates the calibration process, tells the calibration 
µ-processor that conditions have stabilized so that the latter can 
independently receive its own kind of triggers and look at its own histograms. 
When fitted values of those histograms are available, they are transmitted 
back to the VAX and stored on disk and used to update the calibration 
constants. The calibration data is collected for 16 crystals at a time and 10 

minutes are necessary to collect the data from the 352 crystals of the central 
detector, corresponding to 12x106 words. The calibration system digests 
20,000 words/sec in the transfer mode. One CUSB event has 5000 words, which 
takes 4 ms to transport. At an event rate of about 0.5 Hz, this introduces 
0.002 sec/sec of dead time. 

5) CUSB CALIBRATION SYSTEM 

One of the key to the success of the CUSB calorimeter is its real time 
calibration using radioactive sources imbedded between layers of the NaI 
crystals. Figure 7 shows the data path for one channel. Note that the PM 
signal is sent to two independent ADC's, one of which is 5 MeV full scale to 
accomodate source signals (as shown at the bottom of the figure from cs137) 

and the other has full scale at 2 GeV , typical of the amount of energy 
deposition in the crystals by real data (for ex. 5 GeV Bhabhas). We have 
performed these calibrations using an independent PDP 11/20, it takes 3 hours 
for 352 channels. The VAX 11/780, as we have mentioned, has to do on line 
analysis and off line computing. Thus it can not perform calibration more 
frequently than once every 90 minutes without severely degrading response 
time. 

We have therefore implemented a 286/310 µcomputer system, whose block 
diagram is shown in figure 8, specifically dedicated to perform the real time 
crystal calibration. It takes 19 sec to receive and histogram the incoming 
12x106 words, 44 sec for fitting the histograms with a polynomial plus a 
gaussian to obtain peak positions to 0.05%, and to monitor backgrounds. The 
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required effort to make this change over was small. It took less than one day 
to transfer the operations to the µ-P. The FORTRAN programs were compiled in 
the 286/310 using the Intel compiler and operating system. We could also have 
generated the code using the VAX, but it was simpler to debug this way. 

6) CESR PLANS FOR AUGMENTING COMPUTING CAPACITIES 

CESR is embarking on a program to increase its machine luminosity by 
another factor of four. The first factor of two comes from having 7 rather 
than 3 bunches in the machine, resulting in a crossing rate of 2.8 MHz. The 
second factor of two is expected from µ-S insertions. Therefore, the peak 
data rate will be about 4 Hz, with - 360 nsec between crossings. 
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The detectors meanwhile are also being upgraded, CLEO by adding a vertex 
chamber, implementing dE/dx in their inner drift chamber and eventually 
replacing their drift chamber, coil and implementing a CsI electromagnetic 
calorimeter (in - 1988). Their computing needs will go up by at least and 
order of magnitude. CUSB expects to install a Bismuth Germanate (BGO) 
calorimeter composing of 360 crystals within its NaI array. This combination 
of more events, more elaborate analysis and more calibration implies at least 
a four fold increase in computing needs. 

Both groups aim to solve part of their computing demands via emulators or 
micro computers. CLEO has several 370E's under construction. Because of the 
considerable efforts required to make such devices useful, plans at present 
are to switch soon to single board µ-computers. CUSB expects that 2 or 3 
additional 80286/80287 single board computers can handle the immediate burden 
and hopes to switch to 32 bit single board micros when they become available. 
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QUESTIONS AND ANSWERS 

Q: Elaborate on use of the 370/E e1lll.llators for CLEO? 

A. Brenner 

A: Two processors are operative for integers under test. There 
are difficulties in FORTRAN conversion from DEC to IBM. 

Q: What is CLEO's experience with 370/E? 

A. Brenner 

A: No experience running 370/E yet. Two processors are running 
integer code. Main problem is converting our programs running on DEC 
machines to run on IBM. 
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TRIGGER AND DATA-ACQUISITION PLANS FOR THE LEP EXPERIMENTS 

Wolfgang von Ruden 
CERN, Geneva, Switzerland 

Abstract 

Four experiments have been accepted for phase 1 of LEP: ALEPH, OPAL, L3, 
and DELPHI. These experiments have each of the order of 100,000 or more 
electronic channels producing more than 100 Mbytes of raw data per second. 
Extensive zero-suppression, data reduction and formating as well as 
intelligent triggers are needed to reduce the amount of data to be written to 
tape to 0.1-1 Mbyte per second. 

components 
in the US 

during the 

As the various detector 
distributed all over Europe, 
conununications are essential 
distributed data analysis. 

are developed in laboratories 
and in China and Japan, good 

development phase and later for 

We give a brief overview on the LEP accelerator and introduce the four 
detectors. We discuss the trigger and the data acquisition for the four 
experiments and sununarize the different techniques used. 

1. HISTORY 

During the years 1976 to 1979 preliminary discussions started in the 
European High-Energy Physics conununity about a follow-up progranune for the 
CERN Super Proton Synchrotron (SPS). Four alternatives were proposed, namely 
a 10 TeV Proton Synchrotron, a 400 x 400 GeV pp collider, an ep collider, and 
a large e+e- ring. The last option met with the greatest interest and the 
project was named LEP, the Large Electron-Positron Collider. 

In 1979 preliminary studies started in Les Houches, followed by the 
Uppsala conference in 1980 and the conference in Villars in 1981. The CERN 
Member States approved the project unanimously in December 1981. At that time 
collaborations had already been formed, and in January 1982 seven Letters of 
Intent were submitted to the LEP Conuni ttee (LEPC) whose task was to select 
four experiments. The first session took place in March 1982, where questions 
arose concerning the feasibi 1i ty of the projects. Referees were appointed, 
and in sununer 1982 the following experiments were accepted: 

Ll ALEPH 
L2 OPAL 
L3 
L4 DELPHI. 
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All four collaborations submitted detailed Technical Reports in April 1983. 
In addition, special reports on trigger and data handling were sent to the 
LEPC in January 1984. 

The present talk is based on the Technical Reports (1-4], the reports on 
data handling (5-8] and on private communications from the collaborations. 
The reader should keep in mind that we present the plans of the experiments 
and that some of the information contained in this presentation will be 
obsolete by the time this report is published. 

2. THE LEP MACHINE 

As the topic of the present talk is data acquisition, only a very small 
section can be devoted to the superb LEP accelerator project. Fig. 1 shows an 
aerial view of the Geneva area with the airport at the bottom of the picture 
and the Jura mountains in the back. The present CERN accelerators, the PS, 
the ISR and the SPS, can be seen as well as the planned implementation of LEP, 
which has a circumference of nearly 27 km ( ! ) . The locations of the eight 
access points are marked in fig. 2. Only the four even-numbered interaction 
regions will be equipped with experiments during the first phase of LEP; pit 2 
has been assigned to the L3 collaboration, pit 6 to OPAL, whilst the 
assignment for ALEPH and DELPHI is still under discussion. 

Figure 3 shows a vertical cut with the Jura on the left-hand side and the 
lake of Geneva on the right. Most of the LEP tunnel will be in the "molasse", 
a convenient material for tunnelling. Only a small part, which is under the 
Jura, consists of limestone and may therefore give some unexpected problems. 
The ring is inclined by 1.43 and the depth varies between 50 m and 150 m. 

The layout of an interaction region is shown in fig. 4. The "straight" 
pipe will receive the accelerator. The tunnel on the left is for machine 
equipment, mainly the klystrons for the RF. The experimental hall has a 
diameter of about 15 m and a length of 70 m. Three access shafts are 
provided: the leftmost for machine access, the large one in the centre to 
bring the experiment down, and the small shaft on the right will be used by 
the experimentalists. Two 40-ton cranes will be installed in the experimental 
hall to assemble the detector. The detectors (except L3) will be movable from 
the beam position to the "garage" position for maintenance work. The surface 
buildings provide storage room for equipment, cranes to bring it down and also 
space for control rooms, workshops, some offices, etc. Some of the buildings 
are devoted to machine equipment. 

The interaction region number 2, for the L3 collaboration, differs from 
the others as it is oriented parallel to the machine tunnel. Also, the L3 
detector has too much weight to be moved, so it will be assembled directly 
into its final position. 

Table 1 gives a few machine parameters. The particles will make 1 turn 
every 88 µs and as there are 4 bunches, the beam crossing will occur every 
22 µs at each interact ion point. According to the present planning, and if 
everything goes well, the beam for the experiments is expected for the end of 
1988. 
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3. THE FOUR LEP DETECTORS 

We give a short description at the four detectors to make the 
understanding of the trigger and data-acquisition easier. For details, the 
interested reader should refer to the Technical Reports issued by the 
collaborations [l-4]. 

The scenario for the detector construction is very similar for the four 
collaborations. The various pieces of the detectors will be constructed in 
institutes spread all over Europe and even to the United States, China and 
Japan. Therefore, all experiments are confronted with communications 
problems, which are in particular delicate for the on-line system. 

3.1 The ALEPH detector 

The ALEPH collaboration, spokesman J. Steinberger, is formed by 25 
institutes from 8 countries and counts today some 330 physicists and 
engineers. The detector Cll is shown in fig. 5. Looking from the beam-pipe 
outwards, it is composed of an inner trigger chamber (4), the time projection 
chamber .(5), the electromagnetic calorimeter (6), the superconducting 
coil (7), the hadron calorimeter (8) and finally the muon detector (9). A 
luminosity monitor (3) surrounds the beam-pipe at each end of the TPC. 

3.2 The OPAL detector 

The OPAL collaboration, spokesman A. Michelini, is formed by 180 
physicists and engineers, coming from 19 institutes in 9 countries. The 
detector [2] design is more conservative, and the components are based on 
known techniques, of course on a much larger scale than built up to now. 

starting from the beam-pipe (fig. 6) we recognize the central detector 
(vertex chambers and JET chamber), surrounded by the solenoid, followed by 
time-of-flight counters, the electromagnetic and the hadron calorimeters, and 
the muon chambers. 

The simulation of a two-jet event in this detector is shown in figs. 7 and 
8 (9]. 

3.3 The L3 detector 

This collaboration, spokesman S.C.C. Ting, is made up of 36 institutes 
from 12 countries and counts about 360 physicists and engineers. The 
arrangement of the L3 detector [3] in its e·xperimental hall is shown in 
fig. 9. From the inside to the outside, we find first a time expansion 
chamber, followed by electromagnetic shower counters made up of 12,000 BGO 
crystals. Thereafter come the hadron calorimeter and the muon drift 
chambers. All these components are surrounded by a very large magnet. 
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3.4 The DELPHI detector 

There are 34 institutes from 17 countries, with 280 physicists and 
engineers, forming the DELPHI collaboration, spokesman U. Amaldi. The DELPHI 
detector [4] has the largest variety of detector elements using different 
techniques. Starting from the beam-pipe (fig. 10), there are a vertex 
chamber, an inner detector, a time projection chamber, the barrel ring imaging 
Cerenkov (RICH), the outer detector and the barrel electromagnetic 
calorimeter. These components are surrounded by a superconducting coil, after 
which follow a scintillator hodoscope, the hadron calorimeter, and two layers 
of muon chambers. Going from the centre to the end-plates, we find after the 
TPC a set of three forward chambers (A,B,C) interspersed by a liquid RICH and 
a gas RICH, then the electromagnetic calorimeter and finally the end cap 
hadron calorimeter. 

4. THE TRIGGER SYSTEMS 

Because of the different properties of the four detectors, the trigger 
designs also vary in complexity, and response time. The information given 
here is based on the reports on trigger and data acquisition of January 1984 
(5-8). For more recent information, the on-line coordinators can be contacted: 

ALEPH 
OPAL 
L3 
DELPHI 

w. von Ruden, CERN, 
H. von der Schmitt, Bonn and CERN, 
M. Fukushima, DESY, 
J. Allaby, CERN. 

In the following, we present the basic principles of the different 
triggers. For the timing and rates, Table 2 provides a comparison of the four 
detectors. 

4.1 The ALEPH trigger 

The aim is to trigger on all physics events, whilst rejecting background 
as much as possible. Three independent conditions have been defined: 

1. ~ 2 minimum ionizing tracks; 
2. ~ 1 minimum ionizing track and one energy cluster (low threshold); 
3. total electromagnetic or hadronic energy above a (high) threshold. 

The trigger is performed at three levels: level 1 must respond within 
1. 5 µs (including cable delays) of bunch crossing, to open the gate of the 
TPC. This time corresponds to - 7.5 cm drift space being lost at the end of 
the tracks, for those passing through the end-plates. The detector components 
contributing to this level of triggering are: 

- the inner trigger chamber, 
- the electromagnetic calorimeter, 
- the hadron calorimeter, 
- the muon chamber, 
- the luminosity monitor. 
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Figure 11 shows a block diagram of the ALEPH level-1 trigger logic. The 
72 segments for the calorimeters are formed by grouping towers of the 
calorimeter into "super" towers. 

After the drift time of the TPC (- 40 µs), there is additional 
information about the tracks in the TPC pointing towards the vertex. This 
information is obtained by a special hardware processor during the TPC drift 
time using special trigger pads; therefore, no readout is needed to process 
this information, which is used to generate the second-level trigger. If the 
decision is positive the readout of the various sub-detector components is 
started. 

The last stage is the event processor, a computer capable of running the 
reconstruction programme, which will see for the first time a complete event. 
Its task would be to reject further background events and/or clarify events 
for the off-line analysis. 

A trigger supervisor will assure the proper gating and distribution of 
the trigger signals to the different sub-detectors; it will also be used to 
perform consistency checks and to guarantee the proper response of all needed 
components. 

4.2 The OPAL trigger 

The OPAL detector will trigger on 

1. hadronic jets, 
2. charged-lepton pairs, 
3. radiative production of zo -+ '" 

and also on two-photon processes and free quarks. As the decision time can be 
as long as 18 µs (4 are needed to clear for the next bunch crossing), a very 
sophisticated trigger, including all detector components, can be made. 
Indeed, information comes from 

1. 

2. 
3. 
4. 

the electromagnetic and hadron calorimeters: 
topological information; 
the tracking chambers: vertex, jet and z-chambers; 
the muon chambers; 
the forward detector. 

energy and 

This trigger is supposed to bring the 50 kHz bunch crossing rate down to 
' 4 Hz! 

4.3 The L3 trigger 

For the L3 detector, six different triggers are planned with the 
following properties: 

1. Muon trigger: ~ 1 track pointing to the vertex, PT ~ 2 GeV/c. 
2. Energy trigger: the sum of the electromagnetic shower counters (BGO) 

and of the hadron calorimeter exceeds 20'J. of the 
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centre-of-mass energy. 
3. Charged-particle trigger: ~ 2 tracks pointing to the vertex, 

PT ~ 0.3 GeV/c. If this trigger is too loose, 
ask for some energy deposit in the calorimeters. 

4. Single-photon trigger: defined by an isolated energy deposit in the 
BGO crystals. 

5. Small-angle trigger: requires some energy deposit in at least one 
side of the small angle calor irnefer and a charged 
track or energy in the central calorimeter. 

6. Luminosity trigger: energy deposit in both sides of the detector. 

Figure 12 gives details of the level-1 and level-2 triggers. Note, that 4,500 
input signals are used to construct the trigger, which might give an idea of 
the complexity of such a device. The timing and the rates for the different 
stages are represented in fig. 13. 

4.4 The DELPHI trigger 

The DELPHI trigger system is based on four levels. For the first level 
(- 2 µs) the requirements are 

1. 
2. 
3. 

~ 1 charged track of ~ 2 GeV/c momentum. 
An energy deposit in the calorimeters for neutral events. 
Two coincident track elements from the inner detector, 
detector, TPC end-plates and forward chambers (depending 
detector region). 

outer 
on the 

If these requirements are too loose (rate above 1 kHz), information from the 
electromagnetic calorimeter, the time-of-flight counters, or the towers of the 
hadron calorimeter can be used in addition. 

At the second level (- 35 µs) more detector components contribute to 
the trigger decision: 

1. the TPC: - a track points to the vertex; 
- cut on PT; 

2. the HPC: correlate tracks and energy clusters; 
3. the muon chambers; 
3. the electromagnetic and the hadron calorimeter for neutral hadrons. 

Level 3 requires information from the readout system. Each detector will 
have a microprocessor (GPM [10)) to perform a selective readout. The combined 
information will be transmitted to the main level-3 processor, likely to be a 
XOP [11). 

Finally, level 4 will use emulators for further filtering of events. 
Figure 14 gives an overview of the DELPHI trigger system. 

4.5 Trigger summary 

As each collaboration applies different terms for s irnilar i terns, and as 
the reports on trigger and data acquisition are organized in different ways, a 



comparison is difficult. 
together. 

-259-

Table 2 is an attempt to bring the information 

The different "levels" defined there do not necessarily coincide with the 
naming found in the reports: Level 1 includes actions taking place between 
beam crossings (22 µs). There is a large difference in the expected rates 
between OPAL (4 Hz) and DELPHI (1000 Hz). Slower detectors such as a TPC will 
contribute to decisions in level 2. Here the rates of the four detectors are 
about the same (4-20 Hz). Level 3 (if used) reduces the rates by another 
order of magnitude. 

Finally, the event processors will really see the "full" event and might 
take decisions based on sophisticated algorithms. In general, emulators or 
banks of microprocessors are supposed to deliver massive CPU power for this 
job, at a reasonable cost. The table also shows the expected event size and 
deduces from that the number of 6250 bpi tapes written per day. Note that for 
an expected running time of 100 days, each collaboration will produce about 
10,000 tapes per year! 

5. THE READOUT SYSTEMS 

Despite similar requirements, the readout systems of the four detectors 
have adopted quite different solutions. ALEPH, L3, and DELPHI have chosen 
FASTBUS as their data-acquisition standard; OPAL will use FASTBUS only at the 
level of the front-end electronics and base the readout and the processor 
modules on the VME/VMX bus standard. Using FASTBUS does not mean that the 
other three experiments would look alike. The flexibility of FASTBUS allows 
the user to dream up virtually any configuration. 

The location and interconnection of the mini-computers is also different 
for the four experiments, but at least all have decided to use the VAX family 
of computers running VMS. Ethernet seems to emerge as the preferred solution 
for the local area network (LAN). 

5.1 The ALEPH readout 

Figure 15 shows a typical ALEPH sub-detector arrangement during the 
development phase. The equipment or sub-detector computer is used to develop 
and understand the detector and to prepare the tools for the monitoring and 
calibration. The requirements vary from one sub-detector to another; for 
example, the TPC is the most demanding part, producing - 80~ of the data per 
event. Its electronics will fill more than 100 FASTBUS crates. The 
connection via the LAN to the international network allows close contact 
between the sub-detectors. In fact, such a sub-detector set-up corresponds in 
its complexity to today's large experiments. 

The connection to the central readout can be seen from fig. 16. During 
normal data taking the readout is controlled centrally, while the "local" VAX 
can "spy" on events from its sub-detector. The function of the event builder 
(EB) is to collect the pieces of an event from the different readout 
controllers, which are the masters in the front-end crates, and to store the 
combined information in its memory. Whenever a sub-detector computer needs 
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data, it might request a copy of the next event from the EB. The main data 
stream will not be affected by the speed at which a local computer can absorb 
data. 

The overall layout (preliminary) is sketched in fig. 17. The 
sub-detector computers and the main on-line computer are located in the 
surface building, at - 150 m from the detector. Optical-fibre links are 
required for the long-distance FASTBUS connection. This solution has the 
advantage that all computers can be connected via Digital's "Computer 
Interconnect CI", a high-speed serial link supporting shared disks and tapes 
via the "hierarchical storage controller HSC50". Also, this link will serve 
as a fast communication channel between the sub-detector computers and between 
these and the large VAX. The arrangement in one room gives the additional 
benefit of a clean "computer floor" and eases the maintenance. 

The Ethernet serves to connect terminals via concentrators, to provide a 
printer/plotter station, and a link to the "slow control" equipment (see 
later). It will extend down to the counting rooms, where terminals and 
printer are needed near the electronics. It should also provide the link to 
the CERN-wide network and through it the access to the international 
connections. 

5.2 The OPAL readout 

Figure 18 shows the latest version of the OPAL VME/VMX readout system and 
the connection to CAMAC. As this information was received just before the 
Symposium, the reader is asked to contact the OPAL collaboration for more 
information. 

5.3 The L3 readout 

Depending on the particular sub-detector, the front-end electronics is 
placed either on the detector itself and interfaced to FASTBUS, or it is 
directly built in FASTBUS. Taking the muon chambers as an example, L3 will 
use the Lecroy 1800 system with the 96-channel TDCs (model 1879) and the 
readout controller 1821. The overall control is done by a VAX 111780. For 
the hadron calorimeter, the ADCs are mounted directly on the detector and a 
private databus will end in a multiplexor interfaced to FASTBUS. 

The BGO readout deserves special attention, as each of the 12,000 
crystals wi 11 have its own microcomputer (Ml46805) for readout and control. 
They are connected in 150 groups of 80, controlled by 150 micros; these are, 
in turn, organized as 8 groups of about 20. The 8 controllers can be either 
CAMAC or FASTBUS modules, controlled by a machine with a CPU power equivalent 
to a small VAX. 

Without going into the details of every sub-detector, lt can be said that 
L3 will have, inside each sub-detector, several parallel data streams merging 
into a buffer memory, managed by an EB (fig. 19). The assembled sub-events 
are passed through a central EB to the emulators memory; from there they can 
be transferred (after treatment) to the host computer (VAX 111790) and/or to 
an extra emulator for full event reconstruction; they are then further 
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analysed by another VAX 11/790. 

5.4 The DELPHI readout 

DELPHI stresses the modularity of the data-acquisition system. Each 
major sub-detector component will have its own "equipment computer"; all these 
are interconnected via a LAN (fig. 20). There will be a "OPS" computer, a 
"large general-purpose computer facility serving the whole experiment", and a 
"DAC" computer whose task is the transfer of data from the main data 
acquisition to the tape. Extra computing power for both machines is foreseen 
in the form of emulators on a separate dedicated LAN. The general LAN will 
provide the connections to the CERN-wide and European-wide networks. 

5.5 Network connections 

Good conununications between the various home institutes and CERN are 
vital for all LEP collaborations. At the moment, the network is growing all 
the time. Kost of the machines at CERN are already connected via DECnet, 
which extends, via the INFN gateway, to Italy, where DECnet has been in use 
for several years already. For France, Switzerland and Germany, public X. 25 
networks are proposed. Great Britain has its own scientific network JANET, 
based on the "coloured book" software and X. 25. The network extends to CERN 
and it might even be possible to run DECnet over JANET to have a uniform 
connection. The GIFT project at CERN is supposed to provide gateways between 
incompatible networks. 

In the final layout there will be several levels of networking: local 
connections at the experiment, regional on the CERN site, and the European or 
world-wide. The example in fig. 21 shows how DELPHI sees the networking, 
which is representative of the other experiments systems. 

6. SLOW CONTROL 

This includes monitoring of voltages, currents, temperatures, regulation 
of power supplies, control of gas systems, monitoring of interlocks, etc. The 
intention is to use the equipment developed by the LEP control group for the 
accelerator. It is based on the K6809 microprocessor, the form-factor is a 
single-height Eurocard using the G64 bus. FLEX has been selected as the 
operating system. To connect multiple crates, two types of LAN are 
envisaged: UTI-net [12) or the KIL-1553 standard. 

For more demanding tasks, VKE-based K68000-type systems are likely to be 
used. The connection to the main data-acquisition system could go via 
VKE-based Ethernet controllers or via direct interfaces to the VAX. 

7. SUKKARY OF PROCESSORS 

For the first- and second-level triggers, special hardware machines are 
proposed, based on look-up tables, coincidence matrices and similar. For the 
higher-level triggers, some experiments propose to use fast bit-slice 
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processors such as XOP [11) or M68000-type machines in the FASTBUS standard. 

For data reduction and readout at the crate level, the M68000 is the 
favourite, either in FASTBUS or in VME (OPAL). L3 has a special solution for 
the BGO readout using one CMOS microprocessor per channel (12,000 units). 

At the level of the event processor or event filter three solutions are 
competing: emulators such as the 370E [13) or the 3081E [14), arrays of 
microprocessors (Fermilab ACP project) [15) or a set of microVAXs. The last 
one is very attractive because of software compatibility with the general 
system. However, the CPU power per dollar might exclude this solution. 

All four LEP experiments have decided to use VAX computers as the minis 
for the data acquisition and monitoring. 

For slow control applications the plans are to use the M6809 based on G64 
or the M68000 in VME. 

Last but not least, work-stations will be needed for on-line and off-line 
analyses and high-resolution graphics. Apollo is a candidate; LISA II is 
being evaluated by DELPHI; and there is the hope that DEC might show up with a 
competitive offer based on a microVAX running microVMS. 

8. CONCLUSION 

There is much activity at CERN and in the participating home 
laboratories. We have to find solutions for our communications problems which 
are caused by the distributed development. A lot of work still needs to be 
done, in particular in FASTBUS, VME, and for the emulators. The software 
problem has not been addressed at all in this presentation, which does not 
mean that it is solved! In fact, the opinions there are as divergent as the 
hardware solutions. 

Fortunately, there are more than four years left, so there should be time 
to get the work done. 
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Table 1 

GENERAL LEP PARAMETERS 

Machine circumference 

Average machine radius 

Minimum machine radius 

Maximum machine radius 

Bending radius 

Number of intersections 

Number of bunches per beam 

Horizontal betatron wave number 

Vertical betatron wave number 

Momentum compaction factor 

Harmonic number 

RF frequency 

26.658,879 m 

4,243 km 

4,204 km 

4,263 km 

3,104 km 

8 

4 

90,35 

94,20 

1,928 x 10-4 

31. 320 

352,21 MHz 
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Table 2 

TRIGGER SUMMARY AND RATES 

Beam crossing: 22 µs 

TRIGGER ALEPH OPAL L3 DELPHI Unit 

Level l 1. 5 18+4 10 2 µs 

~ 500 < 4 - 100 1000 Hz 

Level 2 50 NIA 100 35 µs 

~ 10 - 10 ~ 20 Hz 

Level 3 NIA 10 5 15 ms 

- 0.4 10 5 Hz 

Event - 2 ? a few ~ 2 Hz 
processor 

No. of channels - 300,000 86,000 ~ 50,000 - 150,000 

Event size *) - 100,000 140,000 70,000 200,000 bytes 

Time per tape 15 30-60 30 4 min 

No. of tapes 100 50-25 35-50 ~ 400 per day 

Expected running time: 100 days/year 

"' 20 tracks and 20 photons. 



Fig. 1 Aerial view of the LEP site 
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Fig. 4 Layout of an interaction region 
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Fig. 5 The ALEPH detector 

Fig. 6 The OPAL detector 
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Fig. 7 A two-jet event in the OPAL detector (side view) 

Fig. 8 Same event as in Fig. 7 (front view) 
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Fig. 17 ALEPH central readout (preliminary) 
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IVG= Interrupt Vector Generator 
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Fig. 18 OPAL VHE interface and second level trigger 
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QUESTIONS AND ANSWERS 

Q: You are building very sophisticated detectors and processors, 
but you still talk about writing magnetic tapes. There are new mass 
storage media available, like optical discs; are you looking into these? 

H. Delfino 

A: Yes, we are definitely looking into optical discs. If we can 
obtain commercial units, we will use them instead of tape, assuming the 
prices are reasonable. 

Q: How tmJch computer time will it take to process the 20-30,000 
tapes/year? 

H. Fischler 

A: Enormous 

Q: Can one use Ethernet for the Aleph computer interconnect? 

o. Notz 

A: Ethernet might be too slow. The main Ethernet is used for 
terminals and networks. 

Q: Can you comment further on the software problems of linking 
different systems? 

T. Brody 

A: The fast front-end processor will be single-tasked, mostly in 
assembly language; the problem will appear chiefly in the larger 
machines. We hope to avoid some of the problems through standardizing 
as far as reasonable on VAX/VHS. 
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THE FASTBUS MICRO-VAX 

Eric J. Siskind 
NYCB Real-Time Computing, Inc. 

Port Washington, New York 11050 

The advent of the cheap, high performance, 32 bit microprocessors has made 
the sophisticated manipulation of data within a Fastbus system appear attractive, 
whether for online preprocessing and/or filtering, offline reconstruction, or 
a variety of unique monitoring and control functions. The inuninent availability 
of VLSI microprocessors implementing the DEC Micro-VAX architecture at performance 
levels comparable to that achieved by the VAX-11/780 super-minicomputer has led 
the U. S. Department of Energy to support the development of Fastbus modules 
containing VLSI Micro-VAX processors via funding provided by the DoE Small 
Business Innovation Research (SBIR) program in the Office of Energy Research. 

The hardware architecture that has evolved features two main sections: (1) 
a microcomputer unit containing microprocessor, main memory, ROM bootstrap, and 
console terminal interface; and (2) an intelligent I/O subsystem containing a 
second microprocessor, ROM firmware, RAM buffers, an Ethernet port, and a 
simple unintelligent high performance buffered Fastbus interface. Several 
physical packaging options ("form factors") are being considered for this 
hardware, and will be described below. 

The microcomputer section of the Fastbus Micro-VAX is a standard DEC 
single board computer packaged as a quad height Q-Bus board, and is in fact 
the processor board of the future MicroVAX-II computing system. Although 
this project was initiated with the assumption that one would design with the 
Micro-VAX microprocessor chip directly, and in fact an architecture for the 
microcomputer section was developed before details of the MicroVAX-II board 
organization were forthcoming from DEC, subsequent discussions established 
the fact that the two architectures were essentially identical, especially in 
regard to the interrelationships between the microprocessor chip, the main 
RAM, and the I/O bus (here the Q-Bus). In addition, the design of the DEC 
board evidenced a great deal of attention paid to the details of RAM timing 
in order to minimize memory latency as perceived by the microprocessor chip, 
and thus maximize the computational performance of the system. Finally, the 
advantages of using a standard DEC board level OEM product, both in regard to 
certainty of availability, and in terms of additional support and maintainability, 
cannot be overestimated. 

The ROM bootstrap provided by DEC on this board contains programs to 
initiate the loading of a disk based operating system or to trigger downline 
loading of an application into RAM via Ethernet. The on-card RAM is sized 
to accomodate most reasonable single application programs, and can be extended 
via the inclusion of a number of additional Q-Bus boards. 

The I/O subsystem is centered around an Intel 80186 16 bit microprocessor, 
which is equipped with a pair of block DMA channels. Hardware in the I/O 
subsystem provides three independent 64 kilobyte page mapped windows into 
the 22 bit wide Q-Bus address space. These are used by the two DMA channels 
and the 80186 processor itself. The DMA channels are utilized to move data 
blocks between the Q-Bus and buffers in either the 80186 RAM or the Fastbus 
interface. An Ethernet port is provided by the inclusion of an 82586/82501 pair. 
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The prototype 80186 Fastbus interface is implemented with 13 ECL lOK 
drivers and receivers for the 80186 connection, 22 ECL lOK drivers and receivers 
for the Fastbus, 2 ECL lOK one-shots, 8 ECL lOK 16 by 4 bit RAMs, 16 ECL lOK 
1024 by 4 bit RAMs, 156 ECL lOOK control logic chips, and 4 MCA 2500 ECL data 
paths macrocell arrays. It is anticipated that the 156 ECL lOOK control logic 
chips will be replaced in a production version with 3 additional MCA 2500 ECL 
macrocell arrays. 

As a Fastbus master, the interface is capable of moving data blocks of 
up to 4 kilobytes between an internal RAM buffer and the Fastbus in handshake 
block transfer mode. As a Fastbus slave, the interface is capable of being 
accessed in data space as a second 4 kilobyte buffer. In addition, the slave 
hardware implements CSRs 0, 3, 8, A, B, and 100-lOF (the first interrupt receiver 
block). 

All control logic is of synchronous design with the exception of the 
Fastbus arbitration circuit. Clock speed for the prototype circuit in discrete 
ECL lOOK is 100 MHz, while the design specification for the production version 
utilizing macrocell arrays is 150 MHz. The slave circuitry features DS to DK 
latency of 3~ clock periods (average) and minimum cycle time of 4 clock periods, 
while the master circuitry features DK to DS latency of 3~ clock periods (average) 
and minimum cycle time of 4 clock periods. When the master section of one 
interface is attached to the slave section of another interface, the average 
cycle time is thus 7 clock periods plus a round trip propagation delay (including 
bus drivers and receivers) on the backplane. Using a conservative 10 ns figure 
for unidirectional propagation delay and 150 MHz clocking, this corresponds to 
a design goal for transfer bandwidth of 15 MHz, or 60 megabyte/second operation 
within a single Fastbus crate. 

The 80186 Fastbus interface is packaged as a single Fastbus board containing 
only ECL circuitry, and is accessed with 51 differential ECL signal pair on two 
60 conductor ribbon cables, which connect to the board via the upper Fastbus 
backplane connector. The remaining portion of the I/O subsystem, consisting of 
the 80186, its RAM and ROM, the Q-Bus interface, the Ethernet port, and level 
shifters for the connection to the Fastbus interface, consists entirely of TTL 
logic, and is expected to be available in two form factors. In the first of 
these, it is packaged a single quad height Q-Bus board to be inserted into the 
backplane of an existing MicroVAX-II computer. This packaging is expected to 
appeal to those users who already own MicroVAX-II computing systems, or who wish 
to equip their Micro-VAX with the largest amount of expansion memory. The other 
form factor for the 80186 is as the rear half of a Fastbus board, the front half 
of which contains a single Q-Bus slot into which the MicroVAX-II processor board 1 is plugged "piggy-back" style in a fashion similar to the SLAC Fastbus Controller. 
The complete Fastbus Micro-VAX module then consists of this hybrid Fastbus board 
plus the 80186 Fastbus interface board. It is expected that one could still 
expand the memory capacity of such a module by piggy-backing additional Q-Bus 
memory cards onto passive Fastbus boards, and by providing the necessary additional 
cabling via the upper Fastbus backplane connector and/or over-the-top cabling. 

The ROM firmware in the 80186 emulates the operation of 5 Q-Bus peripherals 
when viewed from the Micro-VAX: (1) list processing Fastbus segment driver, 
utilizing only the master portion of the Fastbus interface, (2) Fastbus interrupt 
receiver, (3) a flow controlled minimal network using both the master and slave 
hardware of the Fastbus interface, (4) an Ethernet interface (the DEQNA), and 
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(5) a standard small Q-Bus based disk. The disk emulation requires the presence 
on the Fastbus of a host VAX/VMS system with large disk capacity. A reasonable 
sized (e.g. 10 megabyte) file on the host system provides the actual storage 
medium, and is accessed with the aid of a Fastbus based protocol known to the 
80186 and a disk server process running in the host. Alternatively, a standard 
commercial virtual disk driver on the host may be used to access this storage. 
The host disk server process utilizes VAX/VMS system services to access the disk 
file and standard Fastbus access subroutines to manipulate the Fastbus. 

Exact emulation of the DEQNA and a standard DEC Q-Bus disk, although 
requiring a significant amount of 80186 programming effort, has the advantage 
of providing access to a vast amount of software which uses these peripherals 
as system devices. In particular, the disk emulation is sufficient to ensure 
that any disk based operating system for the MicroVAX-II will run on the Fastbus 
Micro-VAX with absolutely no modifications. This has the desirable effect of 
providing the convenient Micro/VMS operating system environment on the Fastbus 
Micro-VAX, albeit with a vastly reduced ability to support continual paging. 
Emulation of the DEQNA immediately equips that Micro/VMS node with a DECnet, 
Ethernet link to the host system, with all of the functionality provided by that 
additional network. DEQNA emulation also provides a means of downloading 
VAX/ELN applications to the Fastbus Micro-VAX with no changes to that software. 

Ultimately, the goal of the software effort is to make a number of Fastbus 
Micro-VAX systems appear to a user of the host VAX system as unused processors 
on a DECnet. A user of the host can then utilize the DECnet to provide remote 
virtual terminals on the micros, to submit batch reconstruction jobs to the 
micros, and to otherwise spawn remote processes with I/O interconnections 
("transparent inter-task communication") in order to minimize the programming 
effort required to utilize this additional processing power. The Fastbus is 
then used to provide a high bandwidth interconnection with which to furnish 
this processing system with the necessary data. 

This research is supported by the U. S. Department of Energy under SBIR 
contract DE-AC01-83ER80078. Additional support has been provided by North 
Shore University Hospital/Cornell University Medical College, and by Digital 
Equipment Corporation, Laboratory Data Products Group. The author wishes to 
particularly acknowledge the efforts and encouragement of J. Morrison, M.D., 
and of T. Rabe, M. Peterson, and J. Giudice. 

1. S. R. Deiss, "A Fastbus Controller Module Using A Multibus MPU," I.E. E. E. 
Trans. Nucl. Sci., NS-30, 216, (1983). 
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QUESTIONS AND ANSWERS 

Q: How do you get around the fact that VAX software assumes true 
virtual memory (that is, swapping not only of load modules)? 

M. Fischler 

A: You lock task into memory, using SYSLOCK. Therefore, memory 
must be large enough. It is expandable. 
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1. Introduction 

The CDC Cyber 205, because of its rich instruction set and certain 
other features, is the ideal supercomputer for carrying out lattice gauge 
theory Quantum Chromodynamics (QCD) calculations. Below, we present a 
brief discussion of some of these features. 

2. Make or Buy 

We wish to study the gauge theory of strong interactions known as 
QCD by formulating the theory on a space-time lattice. This is a very 
computationally intensive problem as has been indicated in a number of 
recent publications [1-3]. The emphasis of the present meeting is on 
making your own "supercomputer". We have decided not to build our own 
machine but to use a commercially available supercomputer because: 

*Presenter 
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l) in obtaining government funds it is probably as easy to obtain 
$20,000 as it is to obtain $20,000,000. Because the effort is the 
same, why not go for the larger amount? 

2) physicists should spend their time doing physics rather than becoming 
quasi-computer scientists. As a result of building their own computers, 
physicists are duplicating effort, there is no coordination of effort 
and many mistakes, already known in the industry, are repeated. 

3) in arriving at the cost of do-it-yourself computers faculty members 
salaries and equipment readily available in departments is not 
factored in. Thus, costs are undervalued. 

4) if we buy off-the-shelf technology from the main vendors and insist 
on certain enhancements, we can have an effect on future developments 
in the supercomputer industry. 

5) fields of physics change rapidly in the techniques used and we do not 
want these hardwired. Interest may be gone by the time special 
purpose processors are ready for use. 

6) a generic supercomputer has multiple uses and is easy to program in 
portable code. 

7) with the implementation of the 8X standard of FORTRAN, codes will be 
transportable across ~scalar and vector machines. 

8) certain sectors of the scientific community, e.g. the bomb makers, 
have lots of money and could therefore make their own machines but 
they do noto Why not? 

3. Supercomputer Features 

The major supercomputers currently available from commercial vendors 
are the CRAY-1, CRAY-XMP, CDC CYBER 205 and the Fujitsu VP200. Of these 
machines, the CDC CYBER 205 has the following features which make it 
attractive for Monte Carlo simuiations: 

l) Many "data motion" instructions, eog. GATHER/SCATTER, COMPRESS/ 
DECOMPRESS, MASK, MERGE etco, have been hardwired into the machine 
and thus proceed at machine rates. 

2) A virtual memory facility exists which allows one to easily move out 
of real memory and consider problems too big to fit into real memory. 
Software features exist to help to do this efficiently. 
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3) Memory locations are bit-, byte-, half-word (32-bits) and full-word 
(64-bits) addressible. Thus, when working in 32-bit arithmetic, the 
amount of real memory is doubled and the arithmetic operation rate is 
doubled. This is useful in view of the fact that much arithmetic in 
scientific calculations only requires 32-bit accuracy. 

4. Performance 

We have recently implemented pure SU(3) gauge field calculations 
[4,5] of the static quark force on a 16 3 x32 lattice on a 2-million word 
2 vector pipeline CDC CYBER 205. In upgrading link variables [5] much 
use has to be made of the GATHER/SCATTER instructions, e.g. in the 
32-bit arithmetic mode these amount to 30% of our execution time. In 
32-bit arithmetic, the sustained performance rate achieved is 130 MFLOPS 
with a burst performance rate of 182 MFLOPS. With four vector pipelines 
(one result ever 5 nanoseconds), these rates can be increased by about 
35%. In running a problem with about 9 million degrees of freedom 
utilizing only a little over l million words and using the virtual memory 
facility, 98% utilization of the machine results, a degrading of the 
machine of only 2%. These are impressive performance figures. 
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QUESTIONS AND ANSWEHS 

Q: Have you in fact been funded at the $20M level? 
M. Kreisler 

A: Yes 
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THE VLSI REVOLUTION IN COMMERCIAL NUMBER-CRUNCHING 
OPPORTUNITIES FOR IMPROVEMENT VIA SPECIALIZATION 

Alan E. Charlesworth 
Floating Point Systems 

Floating Point Systems manufactures what have been misleadingly named •Array Processons". They 
are often called APs for short. So far APs have not bean •arrays of processors•, but instead 
"processors of arrays.· In fact. APs are nothing other than low-end super-computers [Thel81]. 

Most APs, along with most commercial super-computers, have bean organized as pipelined Von 
Neuman machines (Norr84]. In particular, they are optimized to perform sums of products on rows 
and columns of matrices (Dong84). Multiply-adds are fundamental to most signal processing, In the 
time or frequency domain filtering of signals [Bowe82). And, of course, they are basic to scientific 
and engineering simulation, in the evaluation of continuous field problems via the solution of 
simultaneous linear equations (Vemu81 ). 

So far, most array processors have bean Intended for signal processing, as befits their 32·bit 
arithmetic, small memory, and primative software environment. The fPS.164, though, is a leglmate 
low-end super-computer, with 11 Million Floating point OPerations per second (MFLOP) arithmetic, 
several megawords of memory, pipelining compiler, and operating/file system. 
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CHART 1: RECENT REDUCTIONS IN THE COSTS OF NUMBER-CRUNCHING 

1.1 THE VLSI LOG JAM 
The integrated circuit technology for building number-crunchers remained almost unchanged from 
the mid 1970's up until vary recently. There are two prima.'Y reasons for this: 

1. High speed numeric cornputing Is a very small part ol the computer business. 
Semi-conductor industry effort has focused on the main-slr9am ol computing, which Is 
business record procesing, text editing, and personal computers. 

2. 64-bit wide floating-point arithmetic lill'ld data path components require much more 
silicon and packaging resource than those for non-numeric ei:iplicatlons. Only the most 
recent state of the art could possibly acc:omodate them on a single chip. Arithmetic, In 
particular, does not separate well into sub-chips. Thus it has been a case ol all or 
nothing, waiting for technolcgy to catch up. 

So, only bulk memories for number-crunchers got denser, since such memory is universal to all 
computing. Today's Very Large Scale Integration (VLSI), when applied to memory, allows up to 
256,000 logic devices on a chip - enough to hold a quarter million bits ol data. This has allowed 
computer memories to become quite small and economical ol power - Important for reduced cost. 

Processor components, though, have been stuck at Medium Scale Integration (MSI) - a f- dozen to 
a few hundred gates per chip. Thus, fast numeric processors have remained very large and power 
hungry, and hence expensive (typically one haH million to twenty million dollars). 

1.2 VLSI FOR NUMBER-CRUNCHING 
Finally, the number-crunching maricet has grown large enough to warrent applying VLSI to its needs, 
and \ILSI can now accomodate 64-bit functional units inside a single chip. The improvement over 
1979 technology is enormous. Size and power consumption (both good indicators of cost) have 
been reduced by 1.5 to over two orders ol magnitude. The challenge is to realize this major leap 
forward at the system level: either to make small low-erld crunchers, or else to Implement reasonably 
priced super-computers. 
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CHART 1: RECENT REDUCTIONS IN THE COSTS 

OF NUMBER-CRUNCHING 

64-BIT FUNCTIONAL UNIT SIZE: 
1979: a few boards --.. 1985: a few chips --.. 1988: fractions of a chip 

Functional Unit BipolarMSI MOS VLSI Improvement 1979 1984/5 

64-BIT 11 MFLOPs 11 MFLOPs 
FLOATING-POINT 1750 sq. Inches 15 sq. Inches 116x 

ARITHMETIC 540watts 10watts 54x 

adder & multiplier 

64-BIT 
INTERCONNECT 700 sq. Inches 24 sq. inches 29x 

220watts 8watts 27x 
64 Registers & 8 Susses 

CONTROL 700 sq. Inches 8sq. Inches 116x 
240watts 2watts 120x 

Memory Addressing & 
Next Program Addressing 

1 million words 1 mllllon words 
375nscycle 200nscycle: 1.9x 

MEMORY 5600 sq. Inches 225 sq. Inches 25x 
430watts 65wtts 8.6x 

(MOS) 
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CHART 2: EXPLOITING VLSI OPPORTUNITIES 

2.1 REPLICATION 
VLSI is indeed quite a different ballgame. To a much greater extent than earlier digital technologies, 
VLSI is oriented to replication (Seit82]. Chips are manufactured In parallel, by projection onto silicon, 
unlike the sequential board· level manufacturing steps of wirewrapping and chip Insertion. 

In a monolithic super-computer, components must be chosen for maximum speed, reguardless of 
expense. Replication, on the other hand, allows performance and cost-effectivity to be optimized 
independently. The speed of the replicated •cen- can be chosen for best cost-effectivity, given the 
current state of the art. Then total speed can be made up on volume by using enough copies, 
perhaps hundreds or thousands, to reach the desired speed. The only limit is that the natural 
parallelism of the problem be greater than the number of cells required. 

2.2 COMMUNICATION VS. SWITCHING 
The cost relationship between switches (logic gates) and communication (wires) is reversed between 
VLSI and older technology (Seit82]. In the extreme case, when computers were built from tubes, the 
logic was extemely hot, un-reliable, and expensive, and the wires between the tubas cost virtually 
nothing. VLSI is opposite. In the limit, wires and the chip area needed to drive their capacitive load 
are the dominating cost, both in speed and power. 

This communications limit is a fundamental characteristic of VLSI. High Interaction bandwidths are 
possible only between parts of a system that are physically close. Thus, generalized •everywhere to 
everywhere• types of connections cany a heavy cost penalty. Instead, It is better to tailor a system's 
connections to match the communications pattern of the domina.,t computational algorithm. A 
spectrum of localized communication geometries include 2-D nearest-neighbor meshes, hypercubes, 
and trees [Loca80]. There is considerable experience with 2-D meshes, from the llliac IV [Hord82], to 
the PACS (Hosh83). 

2.3 PROCESSOR SPECIALIZATION 
Only the minimum necessary degree of processor complexity should be replicated, so as to be able 
to get as many copies as possible localized onto a single chip. There is a spectrum of possibilities 
[Seit82]. Given that the purpose here is to do number-crunching, the absolute minimum to replicate is 
just arithmetic. A close approximation to this would be to duplicate four multipliers and six adders 
into a fixed pattern in an FFT butterfly array. An Intermediate level of complexity is a systolic cell, 
which adds a little bit of adjustable control, a few registers, and perhaps a small amount of memory 
[Kung83]. At the upper end is the •homogeneous machine• cell [Seit82J, of which a prototype 
example is the 64-processor Cosmic Cube [CalT83). Each cell ls a complete small computer, with 
enough generality to support an extensive run-time system. 
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CHART 2: EXPLOITING VLSI OPPORTUNITIES 

VLSI IS ORIENTED TO REPLICATION 

PRE VLSI ERA: --+ VLSI ERA: 

Monolithic mainframe. Replicated processors. 

Disks Disks 

looo 000 

~000 000 

Mainframe 
:'--Terminals Tenninals 

000 ~\ooo 
000 000 P /M = processor /memory 

Choose a cost-effectiveness maxima, then replicate. 

VLSl's DOMINANT COSTS ARE DIFFERENT 

PRE VLSI ERA: VLSI ERA: 

Most of the cost in switches. Most of the cost in communication. 

Implement a specific communication pattern. 

OFF-CHIP COMMUNICATION IS EXPENSIVE IN VLSI 

PRE VLSI ERA: VLSI ERA: 
Algorithm specific cells. 

General Purpose Monolith 

Super Computer 

FFT 
Butterfly 

Cell 

B 
Systolic 

Cell 

Specialize processors to get more on a chip. 

Homogeneous 
Machine 

Cell 

• +' 
memory, 
program 
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CHART 3: APPL YING REPLICATION TO AN EASY PROBLEM 

3.1 CHOOSE AN EASY PROBLEM 
H is always best to start on easy problems first, which is the case with FPS's first replicated product. 
For a number-cruncher, the easiest problem is one which has a maximum amount of arithmetic to 

do, on a minimum amount of data, with a simple and orderly pattern of computation. 

One such category are those matrix operations which do on the order of N cubed operations, on N 
squared elements - where N is the dimension of the matrix. The most Important of these to scientific 
computing are matrix multiplication and matrix factoring, the dominant step In linear equation 
solving. Important to signal processing are convolution and discrete Fourier transforms, both of 
which do N squared operations on N data Hems. A typical size for N is 1000, which Implies on the 
order of 1000 floating-point operations on each element. Such a high re-use of data implies that 
computation rates in the 100's of MFlOPs can be supported without need for enormous fast 
memories. The low data required can be supported from disk files. 

3.2 MATRIX SUM OF PRODUCTS 
The fundamental operation here Is the matrix-vector product c .,_ a • B, which pervades scientific 
computations [Dong84). Vectors from the matrix 'B' will be loaded into muHiple "vector registers", 
each associated with a muHiply-adder. A vector 'a' (usually out of a complete matrix 'A') is then 
broadcast to all the muHiply-adders. They multiply it against their partcular vectors from 'B', and 
keep their running sums going. In this way, parallelism is obtained up to the number of. 'B' vectors 
that can be accomodated. 

3.3 MINIMIZE WHAT MUST BE REPLICATED 
To keep the replicated cell as small as possible, only the absolute minimum support structure is 
included. Ideally, each cell would occupy a single chip (or less), but currently, commercial VLSI is 
limited to implementing 64-bit arithmetic on several chips. This, then, sets the replicated cell size to 
be single-board scale. Future VLSI progress will make chip-scale replication possible. 

Interconnect is minimized by supporting only four computational functions. local control complexity 
Is minimized by not allowing the cells to be programmed internally. Instead, they are sequenced by 
the program in the FPS-164. local memory is minimized by having each cell hold only several 
vectors of data. The complete matrices are stored in fPS.164 memory, or on disk. The 
communication bandwidth required to feed the cells Is minimized by filling them all slmuHaneously via 
inputs broadcast on the FPS-164 memory bus. 



-295-

CHART 3: APPL YING REPLICATION TO AN EASY PROBLEM 

ORDER N OPERATIONS PER POINT 

Matrix multiply 
Matrix factor 
Convolution 
Discrete Fourier transform 

N3operations 
N3operations 
N2operations 
N2operatlons 

N2data 
N2data 
N data 
N data 

Maximize arithmetic, minimize everything else. 

MATRIX SUM OF PRODUCTS 

A 

•••••••• t.. 
0 0 0 0 x 0 0 0 0 

0 0 0 0 ........ ~ 
Broadcast 
matrix 

(4K max vector length) 

(inner-product form shown) 

B c 

lfil ••••••••• - 0 0 0 0 - 0 0 0 0 

0 0 0 0 
·::: :: :: :: :: :: :: .. 

Multiply/add Accumulate a 
against many vector of sums 
vectors simultaneously 
simultaneously 

(4 vectors/sums per replication, 
up to 124 total) 

MINIMIZE THE SIZE OF WHAT IS BEING REPLICATED 

Goal: Board scale replication. 

Arithmetic Use chip-set scale 64-blt floating-point. 

Interconnect Fixed for only three vector forms. 

Control Control from program In FPS-164. 

Memory Vector sized (4K words) 

Communications Broadcast on FPS-164 memory bus. 

Mass Storage Needs bandwidth of one to several SMD/ISI disks. 



CHART 4: THE FPS-164 MATRIX ALGEBRA ACCELERATOR (MAX) 

4.1 ARITHMETIC 
Given the large size (16" x 22") of FPs-164 boards, It is possible to flt two multiply-add cells on one 
board. At a 5.5 Mhz system clock, this yields 22 MFLOPs maximum per board. The FPs-164 can 
accomodate up to 15 MAX boards, for a total of 31 multiply-add cells (including the FPs-164 ltsell), 
for a maximum rate of 341 MFLOPs. 

4.2 COMPUTE FUNCTION 
The only compute function the cells perform is a multiply followed by an add. One input operand is 
always the broadcast data from the FPS-164. Otherwise, the vector and scalar registers can be either 
Inputs or outputs, so that both inner and outer product forms can be accomplished. 

4.3MEMORY 
Each cell is supported by four 4K-word vector registers, to hold its matrix rows or columns, and four 
scalar registers in which to accumulate sums. Each of the sets of four vector and scalar registers Is 
accessed in rotation, one per multiply-add cycle. Thus each cell accumulates four sums of products. 
The vector register address accessed by the arithmetic may be held fixed, Incremented by one, or be 
supplied by the FPS-164. These combinations permit operations on real, complex, and sparse 
"'OOMMUNICATIONS 
The MAX vector and scalar registers are mapped into the FPs-164 memory space. Thus they can be 
read from or written into by an FPS-164 program Just like any other portion of memory. In addition, all 
the cells respond to writes to a special "broadcast" memory address, which supplies data 
simultaneously to the multipliers of all the cells, and initiates a multiply-add operation. 

4.5CONTROL 
A multiply-add operation is initiated simultaneously in all the cells by the FPs-164 program writing to 
the broadcast address. Upon completion of a dot product, a "collapse" address is written to by the 
FPS-164 program, which causes the eight partial sums within the adder pipeline to be added together 
and stored into the scalar registers.. 
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CHART 4: FPS· 164 MATRIX 
ALGEBRA ACCELERATOR (MAX) 

Two multiply/add cells, 11 MFLOPs each 

ldxCnt 

vector vector 
regs. regs. 
0-3 4-7 

4K 4K 
words words 
each each 

Multiply 

Add Add 
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CHART 5: THE FPS-164-/MAX FUNCTIONS 

5.1 VECTOR FUNCTIONS 
The MAX multiply-add cells perform a vector dot product function at the maximum rate of 11 MFLOPs 
each. There is, however, a five microsecond delay at the end of the operation to collapse the partial 
sums in the adder pipeline. The two vector/scalar functions operate at only half speed, since only 
one cell per MAX board is used. This is because two vector operands are required. Thus, except for 
very short matrix dimensions (where the collapse would be a noticable overhead), the inner product 
form will be twice as fast as the outer product form. 

5.2 OVERALL USE 
Matrices are processed four vectors per multiply-add cell. If all 31 cells are present, then 124 vectors 
can be processed in one broadcast pass. High efficiency will be obtained given two circumstances: 

1. That the dimension of the matrix stored In the MAX cells Is near a multiple of the 
available number of cells times four, so that all the available cells will be fully utilized. 

2. That the matrix being broadcast is sufficiently large to amortize the time spent loading 
vector operands into the cells, and unloading the scalar results. 
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CHART 5: FPS-164/MAX FUNCTIONS 

Vector Form Executed for each value broadcast 

VDOT M • V0 .. 7 + 80 .. 7 ·-> 80 .. 7 
Vector Dot Product 

VSMAO M • 80 .. 3 + V0 .. 3 --> V4 .. 7 
Vector scalar multiply/add 

VSMA1 M • 80 .. 3 + V4 .. 7 --> vo .. 3 

VMSAO M • V0 .. 3 + 80 .. 3 --> V4 .. 7 
Vector Multiply/Scalar add 

VMSA1 M • V4 .. 7 + 80 .. 3 ··> V0 .. 3 

80 .. 7 Eight scalar registers 
V0 .. 7 Eight vector registers (4K words each) 
M Broadcast value 
+ Floating-point Add, Subtract, or Sub. Reverse 
• Floating-point Multiply 

(The vector registens can also be Indexed to handle sparcity.) 

Complex Dot-product: 

•Real part in VO, V2, V4, V6; imaginary part in V1, V3, VS, V7. 
• Broadcast real part of M without index increment; 

then broadcast imaginary part of M with index increment; 
in an 8 cycle loop for each complex element. 
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CHART 6: FULL MATRIX MULTIPLY PERFORMANCE 

The step-wise jumps resuH from the matrix dimensions not being exactly a muHiple of four times the 
number of multiply-add cells. This causes under-utilization of some of the cells.. The efficiencies are 
high when the dimension is 32x greater than the number of cells, which is enough to dilute the effects 
of loading and unloading the accelerators. 
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CHART 6: FULL MATRIX MULTIPLY PERFORMANCE 

e 2 4 e 18 12 14 115 
A C C E L E R A T D R S 

1 to 31 multiply/add cells 

Matrix dimensions from 64 to 2048 
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CHART 7: SYMMETRIC, BANDED MATRIX FACTOR PERFORMANCE 

These curves are smooth because the matrix dimensions are very large, 10x the bandwidth, and so 
minor under-utilization of the cells iS almost not notlcable. The performances are somewhat lower 
because a matrix factor has a bit more data-dependency than a matrix multiply. 
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CHART 7: SYMMETRIC BANDED MATRIX FACTOR 

PERFORMANCE 

B 2 4 6 

256 ------
8 lB 12 

A C C E L E R A T 0 R S 

1to31 multiply/add cells 

Half bandwidths from 64 to 2048 

Matrix dimensions are 10x the half bandwidth 

K 

ie 
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QUESTIONS AND ANSWERS 

Q: Will you be able to offer an AP equivalent to the present 
FP164 at 1/10 of the present price? 

c. Bunge 

A: By the end of 1985 we expect to have it at the price people 
reasonably expect. 

Q: Do you see any application for tiny array processors to hook 
onto microprocessors? 

Q: 

No answer. 

Is there a FORTRAN compiler? 
any inner loop to complex 
application of MAX? 

A: Na and yes. 

And, if not, is it 
for machine coding 

I. Gaines 

true that 
is a bad 

M. Fischler 
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ETA DIRECTION IN LARGE SCALE COMPUTING 

Kent Steiner 
ETA Systems, Inc., 1450 Energy Park Drive, St. Paul, Minnesota 55108 USA 

ErASYSTEMS 
- DESIGN -

- DEVELOP -

- MANUFACTURE -
- MARKET-

- SUPPORT-

THE WORLD'S FASTEST SUPERCOMPUTER SYSTEM 

• EQUITY CARVE OUT FROM CDC 
• EMPLOYMENT 

- CURRENT 180 
- 1988 PROJECTION 500 

• OUR PLANS ARE TO BE A PUBLICLY HELD COMPANY 

- WHERE CDC HOLDS A MINORITY INTEREST 
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COMPUTER SPEED AND MEMORY REQUIREMENTS 
COMPARED WITH COMPUTER CAPABILITIES 

SPEED REQUIREMENT BASED ON 15-mln RUN WITH 1985 ALGORITHMS 
REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS 

NAS 
1. 

BSP 

ILLIAC-IV 

CRAY 1S CYBER 206 

STAR 1DOA CYBER 203 

.01 .1 10 

COMPUTER SPEED, mflops 

GF 10 CYB ER 250 

BSP 

ILLIAC-IV CYBER 205 

CRAY XMP 

STAR 100A CYBER 203 

CRAY-1 

7ti00 

AC 
w 
HR 
CB 

IB 
A 

AIRCRAFT 
WING 
HELICOPTER ROTOR 
COMPRESSOR BLAOE, 
OR TURBINE BLAOE 
INCLINED BODY 
AIRFOIL 

"" AHICRAPT 

• -"" MILICOPTHI ROTOll 
ca COMPRISSOA •LAM. 

OR TUR•tNI •LADI 

• INCLINfO.OOY 
AHIJfOIL 
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COMPUTER SPEED,.,,._ 
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SUPERCOMPUTER 
CHARACTERISTICS 

• MASSIVE COMPUTATIONAL ENGINE 

• HIERARCHICAL MEMORY SYSTEM 

• LARGE 1/0 BANDWIDTHS 

• FAST ARITHMETIC PROCESSORS 

• MULTIPROCESSOR CONFIGURATIONS 

CENTRAL 
'ROCESSINO 

UNIT#1 

• 

CENTRAL 
PROCESSING 

UNIT#I 

VECTOR 
ltAOCESSOA 

GF-10 
FUNCTIONAL DIAGRAM 

COMMUNICATION 
BUFFER 

SHARED 
MEMORY 

GF-10 
CENTRAL PROCESSING UNIT 

CENTRAL 
PROCESSOR 

MEMORY 

INPUT! 
OUTPUT 

UNIT#1 

INPUT/ 
OUTPUT 

UNIT#18 

SERVICE 
UNIT 

COMMUNICATIONS 
BUFFER PORT 

SHARED 
MEMORY 

PORT 

MAINTENANCE 
INTERFACE 
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S 0 F T W A R E 
S Y S T E M 0 B J E C T I V E S 

o PROVIDE SOFTWARE COMPATIBILITY FROM CYBER 205 THROUGH GF-30 

o PROVIDE AN ADAPTABLE SYSTEM CAPABLE OF OPERATING IN MULTIPLE 
ENVIRONMENT 

- BATCH 
- INTERACTIVE 
- MONOTASKING/MULTITASKING 
- USER INTERFACE 

o HIGH SPEED SCIENTIFIC COMPUTATION AND 1/0 

o VERY HIGH RELIABILITY 

o INTERFACE TO A VARIETY OF FRONT-ENDS AND WORKSTATIONS 

o EASE OF USE 

SUPERCOMPUTER 
TECHNOLOGY REQUIREMENTS 

•ARCHITECTURE 

• LOGIC CIRCUITS 

•MEMORY 

•PACKAGING 

• DESIGN TOOLS (ECAD) 

•INPUT/OUTPUT BANDWIDTH 

•PERIPHERALS 

•SOFTWARE 



u ... .. z 
! 
~ ... a ... 
~ 
Cl 

MAlBllAL 

SILICON 

PC BOARD 

COAX 

LIGHT IREFI 

-311-

TRANSMISSION TIME 
vs 

INTERCONNECT MATERIAL 
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QUESTIONS AND ANSWERS 

Q: What existing operating systems will your new one look like? 

M. Fischler 

A: We are doing primitives from ground floor. Shells available will likely 
include VOS for compatability with Cyber 205, and Unix. 

Q: Several months ago I asked Neil Lincoln of ETA how the classic problem of 
processor-memory contention would be handled on your proposed 8 processor sys-
tem. His answer was that there would be no contention, period. Would you 
care to amplify or clarify this statement? 

C. Maples 

A: Obviously there will be contention between processors for memory access as 
you indicated in your talk yesterday. We believe, however, that by providing 
a sufficiently high speed bus to shared memory, this contention can be mini-
mized. Conflicts that occur will be arbitrated by the communication proces-
sor. 

Q: Do you believe that FORTRAN users will be the main group of users for this 
kind of machine? 

H. von der Schmidt 

A: Yes 

Q: How expensive is the ETH-10 per processor? 

A. Charlesworth 

A: Less than or equal to a Cyber 205. 

Q: Why do you limit yourselves from the start to 8 processors when there are 
other architectures which have been demonstrated to scale upwards indefi-
nitely? 

D. Kaplan 

A: Memory contention will become severe if there are more processors attached 
to the central memory. 

Follow-up: 
chosen-- these 
memory. 

But that's a limitation 
other architectures get 

imposed 
around 

by the architecture 
it by not having a 

you've 
central 
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A: The other limitation is keeping the processors close enough to the memory 
to maintain the memory bandwidth. The 1990 version will have enough bandwidth 
to support 16 processors. 

Q: What potential customers are you anticipating? 

T. Nash 

A: Structural Designers - auto, aerospace, nuclear plants 
Simulations - aerospace, electronic parts, nuclear physics, oil reservoir 
Other - oil (seismic), movie productions, education, weather prediction, 
national security applications, chemical modeling 

Q: What is the mean-time-to-repair (MTTR), given the fact that you have to 
warm-up the machine to change hardware? 

W. von Rueden 

A: The MTTR for the CPU's, which are the only elements cooled with nitrogen, 
is expected to be in the order of 4 to 6 hours. 
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DIGITAL EQUIPMENT CORPORATION'S PRESENT AND FUTURE COMPUTING ENGINES 
FOR SCIENTIFIC PROBLEMS 

Tom Peterson 
Digital Equipment Corporation 

1 Iron Way, Marlboro, Massachusetts 01752 USA 

[EditoPs' Note: No papep was Peceived fPom Digital Equipment, but because of 
the intePest this talk genepated, 1Je r>epPint the questions and an8UJePs.J 

QUESTIONS AND ANSWERS 

Q: What new have you learned, as a marketer, about the needs of high-energy 
physics from this conference that you did not know before? In particular, 
your comment that people are unwillling to redevelop algorithms for 
parallel opportunities seems at variance with what I am hearing. 

T. Nash 

A: My comment was directed toward the computer-market in general. In fact, 
high-energy physics is enormously willing to redesign algorithms. This 
was one of the reasons for seeking out physicists/physics applications in 
the first place. Also, DEC needs to pay more attention to specialized 
computer users a la 3081/E, 370/E, etc. 

Q: What can you tell us about currently defined members of the Micro-VAX 
family? 

D. Shambroom 

A: The only currently defined Micro-VAX is the Micro-VAX I. Any other 
systems are unannounced other than a direction to continue to develop and 
enhance the Micro-VAX line. 

Q: Are you funding research into more fundamental theory? 
present-day code cannot be partitioned without basic 
requires much new theory. 

A: Yes, we do, in several university departments. 

I suspect that 
reworking that 

T. Brody 

Q: Are there any cost effective DEC products now or before 1990 to upgrade 
the present VAX 11/780? 

C. Bunge 

A: Yes, VAX ll/78S upgrade. 
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Q: What else can you tell us? 

A: I can say that we are trying to develop algorithms for automatic decom-
position of existing codes for execution on parallel processor systems. 
Also, I can say about the hardware that the PPA project involves nµ-VAX's, 
four per circuit board. 

Q: This is both a statement and a question. Although you indicated that DEC 
would not have a commercial multiprocessor system available until about 
1990, the experimental prototypes will be fielded considerably before this 
and members of the scientific community will be able to gain some experi-
ence on the machines, learn the directions DEC is proceeding, and be able 
to feed back suggestions. The question is related to your statement to 
the effect that the parallel machine would not use VMS. Could you 
clarify? 

c. Maples 

A: I said that the parallel machine would not use VMS as it currently exists. 

Q: When will people be able to buy the high-end VAX, what about the low-end 
VAX's? 

W. von Rued en 

A: High-end VAX's are as yet unannounced and would require specific non-
disclosure to release such information. Micro VAX I is available today. 

Comment: Physicists build hardware and write software today, because they do 
not find the solution in industry. They would be happy to buy hard-
ware even without software, if it can be found for reasonable 
prices! 

W. von Rue den 
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FACOM VECTOR PROCESSOR SYSTEM: 

VP-100/VP-200 

---- CURRENT STATUS AND PERFORMANCE MEASUREMENTS 

KENICHI MIURA 

FUJITSU LIMITED,KAWASAKI, JAPAN 

This short paper is supplementary to the one presented at Padova 
conference in 1983 (1). In this paper, we will describe the recent results 
of performance measurements,algorithm development and the installations of 
the FACOM Vector Processor System,VP-100 and VP-200. 

1. Performance Measurements 

Some results of the benchmarking of FACOM Vector Processor System 
are summarized in Table 1 and Table 2. Table 1 shows the scalar and 
vector performances (in MFLOPS) of VP-100 and VP-200 for the 14 Livermore 
kernels. It should be noted that none of the original loops have been 
modified for this measurement. Table 2 compares the scalar and vector 
execution times (in Seconds) of some application programs which have been 
developed by Fujitsu. The first three are either taken from subroutine 
packages or part of programs, and two others are complete programs. They 
are all written in FORTRAN. Some other results of benchmarking of FACOM 
Vector Processor System have also been reported in Ref.(2). 

2. Algorithm Development 

We are continuing our efforts to establish the methodology for 
selecting vector algorithms which are suitable for FACOM Vector 
Processor architecture. We have obtained very high performance 
algorithms for FFT,matrix triangularization,random number generation, 
etc. Detailed analysis of these algorithms will be reported in a 
forthcoming paper(3). We are also investigating the vectorization 
algorithms for Monte Carlo calculation in the Lattice Gauge theory. 

3. Currently operational VP Systems 

Table 3 summarizes the sites, models and other information of the VP 
Systems which are operational. We expect several more installations in 
1984. 

References (1) Miura,K.:FACOM VECTOR PROCESSOR VP-100/VP-200,in 
Proceedings of Three day In-depth Review on the Impact of Specialized 
Processors in Elementary Particle Physics, Padova, Italy, March 
23-25,1983 

(2) Mendez,R: SIAM News, Vol.17, No. 2 (March 1984) 
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(3) Matsuura,T. and Miura, K.:Supervector Performance without Toil, 
FORTRAN Implemented Vector Algorithms on the VP-100/VP200, to be presented 
at VAPP II Conference, August 1984. 

Loop 
No. 

1 
2 
3 
4 
5 
6 
7 

Table 1. PERFORMANCE MEASUREMENTS OF VP-100/VP-200 
(14 Livermore Kernels) 

Scalar Vector Loop Scalar Vector 
VP-100 VP-200 No. VP-100 VP-200 

10.1 187 .1 331.4 8 13.3 86.l 90.4 
11. l 104.7 180.4 9 12.7 160.8 260.8 
7.8 174. 7 338.2 10 7.8 50.0 85.9 
5.7 73.9 88 .1 11 4.8 4.8 4.8 

10.0 10.0 10.0 12 4.8 59.l 115.3 
9.5 9.5 9.5 13 2.5 6.0 6.2 

14.0 189.2 331.0 14 5.8 12.9 13.8 

Arithmetic Average 8.6 80.6 133.3 

Program 
No. 

2 

3 

4 

5 

(Units: MFLOPS) 

Table 2. PERFOfil'IANCE MEASUREMENTS OF 
SOME APPLICATION PROGRAMS ON VP-200 

Description of Computation Time 
Programs Scalar Vector 

(Sec.) (Sec.) 
Matrix Multiplication 307.66 4.08 

(Order: 100) 

Linear Equation Solver 
(Order: 100) .141 .01 
(Order: 256) 2.27 .056 

Self-sorting Type FFT .000973 
(4096 points, radix 2) 

Molecular Dynamics 144.22 9.97 
(High Density Liquid) 

Simplified Marker and Cell 137.0 15.8 
(Poiseuille Flow) 

Performance 
Ratio 

75.4 

14.1 
40.6 

(227 
MFLOPS) 

14.5 

8.7 
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Table 3. Currently Operational VP Systems 

Site Model Main Storage Front-end Installa-
Capacity Processor tion 

Institute of VP-100 32 MB M-200 Dec. '83 
Plasma Physics 

Computing Center 
Kyoto Univ. VP-100 32 MB M-380 April '84 

Computing Center M-160 
Fujitsu Limited VP-200 64 MB M-200 March,'83 
Numazu Works M~382 

QUESTIONS AND ANSWERS 

Q: Is Fujitsu optimistic about the users' willingness to change 
algorithms to gain the increase in cost effective available in vector 
processors? 

11.J. Levine 

A: l) There is a trade-off in effort vs. performance. If, with 
no or very little tuning, user can obtain 3x improvement, for example, 
he will be generally happy. 

2) For tuning, Fujitsu supplies, besides powerful compiler, 
interactive vectorizer, debuggin& aids. Therefore algorithm change 
would not be so difficult. 
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THE CYBERPLUS MULTIPARALLEL PROCESSOR SYSTEM 

Vito Bongiorno 
Control Data Corporation, Minneapolis, Minnesota 55440 

INTRODUCTION 

The CYBERPLUS multiparallel processor is the first in a 

series of multiparallel processors from Control Data 

Corporation. The CYBERPLUS processor provides a high-speed 

scalar capability for scientific and business applications. 

Expanded system performance may be achieved by adding up to 63 

additional CYBERPLUS processors. 

At a time when applications problems are growing at an 

alarming rate, the solutions required to keep pace with 

technology in a number of industries are beyond the reach of 

current systems hardware designs. The CYBERPLUS processing 

system provides a bridge into the next generation of 

applications required to address these growing needs. 

Utilizing a ring architecture, the CYBERPLUS system provides a 

multi-parallel capability designed to provide a solution for 
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those applications that we have not yet dared to develop; a 

total solution to the aoplications problems of this century and 

the next. 

The material presented here covers the basic concepts of 

the CYBERPLUS processor and the capabilities inherent in the 

features of this multiparallel processing system. 

CYBERPLUS PROCESSOR 

The CYBERPLUS processor has 15 independent functional units 

that execute in parallel in a 20 nanosecond cycle time. Each 

functional unit is cross-bar connected to the other functional 

units so output from a functional unit can be input to several 

other functional units at the same time. A major ingredient of 

the CYBERPLUS systems is that each and every functional unit 

can be initiated by the functional control unit every cycle. 

The heart of the CYBERPLUS system is the program 

instruction control functional unit. As in conventional 

machines, this unit reads instructions from program memory and 

decodes the instructions into executable statements within the 

processor. To improve the performance of the processor, each 

instruction word can initiate 1 to 17 functional units, all in 

a parallel mode of operation. See Exhibit #1. 
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CYBERPLUS PROCESSOR 

Integer I Floating Point I I Functional I Functional 
Units Units I 

·-------.---, 
I 

·--~-... :..J ·-· 
18 Bit Memory Program 84 Bit Memory 

Functional Instruction Control Functional 
Units -- Functional Unit - ~ Units 

16K 4K 258K or 512K 
18 Bit Memories Program Memory 84 Bit 

1121314 240 Bit Memory 

• Program Instruction Control Function Unit 
- Executes every cycle 
- Initiates functional units In parallel 

• Functional Units Initiate Every Cycle 

Exhibit #1 
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CYBERPLUS RING ARCHITECTURE 

Interconnection by a dual ring structure provides a high 

performance interchange of data and control information between 

CYBERPLUS processors. The CYBERPLUS ring interconnect 

architecture contains two independent rings, Each provides fo 

transfer of a ring packet around the circular ring every 

machine cycle. A ring packet contains 16 bits of data and 13 

bits of control information. For expandability, the dual 

CYBERPLUS rings support up to 16 CYBERPLUS processors. 

The CYBERPLUS ring provides the application three 

interconnect functions. The direct address provides for the 

direct transfer of data and control into any other CYBERPLUS 

PROCESSOR ON THE RING. This technique eleminates several of 

the normal handshaking conventions required in a typical 

multiparallel processing system. An indirect address provides 

a queue-driven system where a CYBERPLUS processor puts 

information into a queue for another CYBERPLUS processor on the 

ring. The broadcast capability is probably the most intriguing 

aspect of CYBERPLUS. A CYBERPLUS processor can communicate the 

same information to any number of CYBERPLUS processors on the 

ring using the broadcast structure. If the application needs 

to send the same information to all 15 CYBERPLUS processors on 

the ring, the application merely adds to the ring packet the 

address or the processor number for all the processors that are 

to receive the data. 
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Using the ring connection, each CYBERPLUS processor can 

read and write ring packets every machine cycle. Data moves 

around the ring in a circular fashion so it takes one machine 

cycle to transfer a ring packet to an adjacent CYBERPLUS 

processor. Interprocessor delays can be reduced by making one 

ring clockwise and one counterclockwise. Since each processor 

is connected to the dual rings, the CYBERPLUS application task 

can put two separate ring packets onto the dual rings every 

machine cycle. Each ring can accept a different packet of 

information from each of the 16 CYBERPLUS processors every 

machine cycle. The ring transfer rate is 800-Mbit of 16-bit 

data, and with 16 processors and two rings, the dual ring 

provides a total transfer of 25,600-Mbits. (See Exhibit #II) 

CYBERPLUS 
CYBER CHANNEL CONNECTION 

CYBERPLUS 
(1) 

CYB ER 
170/800 

Host 

CYBER Channel 
RING PORT 

Interface 

System Ring 
16 Bit 

CYB ER PLUS 
(2) ••• CYB ER PLUS 

(15) 

Appllcatlon Ring 
16 Bit 

Exhibit II 

CYB ER PLUS 
(16) 
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CYBERPLUS MEMORY RINGS 

The first memory ring is the processor memory ring. A 

CYBERPLUS processor using the 64-bit, 20 nanosecond memory ring 

reads and writes data between CYBERPLUS processors. Thus a 

CYBERPLUS processor can transfer 64 bits of data every machine 

cycle to another CYBERPLUS processor. 

The second memory ring is the CYBERPLUS central memory ring. 

This 64-bit, 80 nanosecond ring transfers 64 bits of data 

between a CYBERPLUS processor and a CYBER 170/800 host every 

four CYBERPLUS machine cycles. The CM! (CYBER Memory 

Interface) supports up to four CYBERPLUS memory rings. A CYBER 

host can be configured to support up to 64 CYBERPLUS 

processors. Each of the 64 CYBERPLUS processors can transfer 

data from a CYBERPLUS to CYBERPLUS memory and from CYBERPLUS to 

CYBER 170/800 host. (See Exhibit #III & IV) 
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CYBERPLUS 
MEMORY CONNECTION 

CYB EA 
170/800 

CYB ER 
CHANNEL 

RING PORT 

SYSTEM RING 

CYBERPLUS • • • CYBEAPLUS 
(1) (18) 

APPLICATIONS RING 

CYBERPLUS MEMORY ltNG 

Exhibit III 
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CYBERPLUS 
CYBER MEMORY CONNECTION 

CYB ER 
170 

835-845-855 

CYB ER 
MEMORY 

INTERFACE 

CYBER MEMORY RING -----PROCESSOR 

• • • 

CYB ER 
CHANNEL 

RING 
PORT 

MEMORY 
INTERFACE PROCESSOR 1---------..,..-.._ ____ _ 

MEMORY SYSTEM RING 
INTERFACE t-----1 

(4) 
t=;;;;:;;:;:;;,;1 CYBERPLUS 

MEMORY (1) 

••• 
CYBERPLUS 

(16) 

APPLICATIONS RING 

Exhibit IV 

CYBERPLUS COMPUTATIONAL EXPANDABILITY 

Computational power can be increased by adding CYBERPLUS 

processors within the ring architecture. A single CYBERPLUS 

processor can execute at a rate of 650 mips and, by adding the 

floating point option, 62.5 megaflops in 64-bit mode of 

operation or 103 megaflops using the 32-bit options. Additional 

CYBERPLUS processors can increase the overall performance 

capability. A 64 CYBERPLUS processor system would provide over 

44,000 mips and four gigaflops in 64-bit mode of operation. 

The 32-bit option provides over 6.4 gigaflops. 
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CYBERPLUS SOFTWARE 

The CYBERPLUS software supports the protocol that allows 

CYBERPLUS processors to communicate with the CYBER 170/800 host 

via the channel and memory interface connections. There are 

five software products: 1) System Software, 2) CYBERPLUS Cross 

Assembler, 3) CYBERPLUS Simulator, 4) CYBERPLUS Cross ANSI 77 

FORTRAN, and 5) Debug Facility and other utilities. (See 

Exhibit #V) 

CYBERPLUS 
SOFTWARE 

• CYBERPLUS System Software 
• CYBERPLUS Cross Assembler 
• CYBERPLUS Simulator 
• CYBERPLUS Debug Faclllty 
• CYBERPLUS Fortran Cross Compiler 
• CYBERPLUS On·Llne Diagnostics 

Exhibit v 
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SUMMARY 

The CYBERPLUS Systems provide the computation and 

expandability to now address the total problem and not require 

the application designer to scale down the task to fit the 

computer system. 

QUESTIONS AND ANSWERS 

Q: Do you plan to use dynamic repartitioning of tasks between 
processors when one of them fails? 

T. Brody 

A: Yes. 

Q: Was your FFT example written in FORTRAN or hand-coded, and how 
good will the FORTRAN compiler be at keeping all the functional units 
busy? 

I. Gaines 

A: Hand-coded. Would hope to do as well as 30-40~ utilization of 
the functional units. 

Q: The Cyber plus system seems more powerful than your 
subsidiary's machine and also available sooner. How will they be able 
to compete? 

D. Kaplan 

A: You should ask the previous speaker! 

Follow-up: But will this be more expensive than the ETA? How much 
does it cost? 
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A: Of course the Cyberplus is built using old technology, since we 
just took the AFP design and fixed the important parameters, for 
example fast memory is 4K ECL RAM's, and then there's 16K 55ns KOS 
RAM, ju~t as in the 205. A base processor will cost $750K, and there 
is a volume discount! 

Q: Will it be possible to use a 170/815 host? 

c. Bunge 

A: Yes, channel connected. 

Q: Statements I have heard from NSA users of the AFP indicated 
that they had achieved the equivalent of 10 times the CRAY-1 
performance with 8 AFP's. They also indicated, however, that "the 
system could not be considered user friendly" and they were tired of 
doing all coding in assembly language. 

c. Maples 

A: We are developing a FORTRAN compiler for the system. 
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[The Pelt Skin, 1638, Peter Paul Rubens, 1577-1640] 
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A MOLECULAR MECHANJr;S WORK STATION FOR PROTEIN 
CONFORMATIO~AL STliDIES 

*R. Fine, C. Levinthal, Columbia University; 
B. Schoenborn, G. DimrrJer, C. Rankowitz, 

Brookhaven National Laboratories 

Interest in computational problems in Biology has intensified over the last few years, 
partly due to the developmer.t of techniques for the rapid cloning, sequencing, and 
mutagenesis of genes from organisms renging from E.Co!i to Man. The central dogma :'.lf 
molecular biology. that DNA codes for mRNA which codes for protein, has been undc~·stood in 
a linear programming sense since the genetic code was cracked. But what is not understood 
at present is how a protein, once assembled as a long sequence of amino acids, folds back on 
itself to produce a three dimensional structure which is unique to that protein and which 
dictates its chemical and biological activity. This folding process is purely physics, and 
involves the time evolution of a system of several thousand atoms which interact vith each 
other and with atoms from the surrounding solvent. Molecular dynamics simulations on 
smaller molecules suggest that approaches which treat the protein as a classical ensemble of 
atoms interacting with each other via an empirical Hamiltonian can yield the kind of predic-
th·e results one would like when applied to proteins. 

Such an undertaking is extremely computationally intensive, even for a small protein. 
Time steps in molecular dynamics calculations have to be small compared with typical vibra-
tional periods in proteins (-.1 ps). Proteins require milliseconds to fold. Even using cutotis. 
each step requires the evaluation of -1E5 pairwise interactions; on our VAX 780, each 
interaction takes 150 us to evaluate. Simulating the folding of an entire protein would thus 
require several thousand VAX years. More tantalizingly feasible is the possibility of calcualt-
ing the final configuration of a portion of the protein, given constraints from knowing the 
configuration of the remainder of the protein. Such problems arise in the study of, for 
example, antibody molecules, and could be used to predict the results of changing small 
groups of base pairs in the gene for a given antibody molecule using recombinant DNA to 
produce something entirely new. Such studies are still uncomfortable on a VAX; since these 
types of studies are best done interactively. we have undertaken the d~slgn of a special pur-
pose processor to gain several orders of magnitude in computing power which can be used as 
the centerpiece of a a work station for protein conformational studies. 

The tools which are applied to the system described above are energy minimizations, to 
find local configurational minima around an initial starting configuration; molecular monte 
carlos, to build up a description of the entropy of a minimal configuration; and molecular 
dynamics, to describe the time evolution of portions of a molecule or its docking to a sub-
strate. The structure of all of these calculations is similar, and consists of three parts. The 
most time intensive of these is the calculation of the total conformational energy and the 
vector forces on each atom. Once the 3N component force vector is formed, a second part of 
the calculation consists of updating the 3N coordinates of the atoms given a knowledge of 
the forces and total energy. Occasionally, a new list of atoms which are close enough to each 
other to be included in the calculation is generated. The hardware approach we have taken 
mirrors this software architecture (Figure 1). There are two home-built modules, one of 
which prepares the list of neighboring atoms and one of which calculates the total energy 
and vector force on each atom. The positional updating is done in a commercial array pro-
cessor, which recieves the energy and vector forces via a fast DMA link. Only that portion of 
the inner loop which is the most. time intensive and stable is frozen in hardware; the imple-
mentation of the coordinate update in a programmable array processor allo'~'s fiexit-ility in 
tailoring the integration or minimization technique to a specific problem. 

*Presenter 
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The overall schematic of the energy and force calculator is shown in Figure 2. The 
architecture adopted is a parallel, synchronous pipeline. Each element in the machine is a 
multiplier, an adder, or a table lookup. All arithmetic is done in 32 bit floating pobt, and is 
accomplished by utilizing the Weitek chip set. The clock cycle is presently 128 ns, to be 
updated to lOOns by chip replacement before completion of the project. Each clock cycle an 
entry corresponding to <m atom is fetched from a Pair List Memory. The structure of the 
pair list is such that every i atom entry (slow moving index of an ij pair) is followed by all j>i 
atom entries (fast moving index) in the list. Each entry (32 bits total) consists of a coordi-
nate address, used to look up the coordinetes of that atom; a pair type (j atoms only), which 
identifies the type of interaction which that j atom forms with the most recent i atom; ::!ntl an 
ij bit, which identifies the atom as an i or j atom. The coordinate adresses are fed simultane-
ously to three coordinate memories (x, y, and z). These coordinates are passed to one of the 
inputs of three subtract.ors. If the atom is an i atom, nothing happens (an empty cycle is 
generated). If the atom is a j atom, the subtraction is done to form delx, dely, and delz. 
These are summed to form delr**2, which is used as input to a table lookup to obtain the 
value of an interpolation function (which may be a square root to yield r). This, along with 
the pairtype which describes what kind of pair of atoms this ij pair is, is used after integeri-
zation to look up the value of the energy and the value of F /r. The cartesian components of 
the force vector are obtained by multiplying F /r by delx, dely, and delz, and the total energy 
and the force vector memories are updated. A. not.e added since the conference: Weitek has 
released its 1066 register file chip, which should permit the accumulation of forces and ener-
gies to be done to 64 bits of precision. 

The energy and the value of F /r are both calculated as a sum of two contributions, ie. as 
E = a(pt) *Ea(pt.r) + b(pt) *Eb(pt,r), to limit the total size of memory. Overall, there is -4 
}.{bytes of memory distributed throughout the system. Each of the table lookups is done by 
quadratic interpolation, as shown in Figure 3. Per bin, the value of the function, the first 
derivative, and half of the second derivative are stored. The incoming value of the indepen-
dent variable is scaled, integerized, and split into high and low order bits. The high order 
bits are added to an offset which is looked up as a function of the pair type and which gives 
the starting address of the table associated with that pair type. This sum is used to fetch the 
value, slope, and (half of the) second derivative from the tables, and these are used to com-
pute y = yO + dx*y' + .5*dx*dx*y". 

All tables are connected to a slow bus (Q bus) which can be downloaded either from the 
host VAX or a resident 68000. The system is designed so that single step mode is available for 
debugging. with selected pipeline registers readable from the slow bus. The hardware is 
being implemented in 6 layer DEC boards (13" x 18"), with interboard connections being 
implemented through the back plane and via ribbon cable. 

The energy and force calculator described above has been designed to evaluate pairwise, 
central forces between objects in three dimensional space only. In the empirical Hamiltonian 
which is usually manipulated in molecular mechanics calculations, there are additional terms 
associated with bond angle bending, torsional excursions, and out-of-plane excursions which 
are not pairwise and central. The angle bending terms have been centralized by placing a 
non-Hooks-law spring between atoms 1 and 3 in a 1-2-3 atom triplet which maps out the 
angular dependence normally used. This introduces a maximum error of 10% at 10 kt. The 
tor,sional terms can be ..handled in_ one of two \Yays: firstly, by .positioning a point in .space 
away from the 1-2-3-4 quadruplet using atoms 1,2, and 3 and rigid springs and subsequently 
dropping a non-Hooks-law spring to mimic the torsional potential for excursions of the 4th 
atom; and secondly, by calculating these torsional contributions in the array processor 
which would otherwise be idle during the time the force and energy accumulator is ,._•orking. 
These calculalional times match well for a Numerics MARS 432 and several other processors 
of its class. 
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Tha status c-f the project is, th:1t construction has begun. The prototyping CAD/CA~.£ s:z:.-
tion in the Instrumentation Division at Brookhaven is being used presently t0 lay c'.lt the ~:-st 
se,·e:·al boards, v:hich are the quadratic table lookup boards. There exists presently ::.t 
Brookhaven the inhouse capability for quick turnaround of prototypes in multi-layer boards. 
The3e first boards should be plugged in and actively undergoing testing by August. Tl:e cc:-,•-
pleticn target for the r~mainder of the project is December. 1985. 

This project could not have been concieved or carried out in vacuo in a university bi::>l-
ogy department, and we are fortunate to'"be surrounded by individuals at Columbia wile e.:·e 
involved in designing special purpose processors. We would like to specifically thank Pauh 
Franzini and Norman Christ of the Physics department for discussions and encour"'.gement. 
We would also like to thank Bill Sippach of Nevis for discussions, and Gary Benneson for his 
initial interaction in discussions of feasibility, layout, and generally providing us with an edu-
cation. No publication could be complete without mentioning the inexhaustible efforts of 
David Yarmush, who manages resident wizardry with software in the Biology department at 
Columbia. 
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FJ[;URE 2. 

General schematic of the force and energy calculator. 

The processor can functionally be brok!'!n into six units: 

l.:nit I: The Neighbor List. This contains the addresses necessary to look up the coordinates 
of the individual atoms; an ij bit which identifies an atom as an i or a j atom; and a pair tyrie. 
whi.ch indicates the type of pair a j atom forms with the most recently accessed i atom. Et>c:h 
clock cycle, these three atom oriented pieces of information are delivered to the other units. 

l.:nit II: The R Squared Calculation. This unit contains the coordinate memories, and the 
a.;;sociated hardware to calculate 

(xi-xj)**2 + {yi-yj)**2 + {zi-zj)**2. 

Unit BI: The R Calculation. This unit performs a quadratic table lookup to obtain the val:le 
of R. given the value of R squared. 

Unit IV: The Energy and Force/r Tables. This unit contains the quadratically interpolated 
tables used to look up the energy and the magnitude of the force/r between a j atom and the 
most recently considered i atoIIL The Energy and the Force/r sections are identical, and 
consist of weighted sums of two contributions: for the Energy, 

ACoeff*{Table A) + BCoeff*{Table B). 

Unit V: The Energy and Force Accumulators. This unit contains sum- accumulation 
memories which accumulate the total energies associated with a few selected classes of 
atoms and the total force components associated with each atom. The components are cal-
c:ilated by multiplying F /r by {xi-xj) to obtain Fx, etc. 

Unit VI: This unit Ufldates the variable portion of the Neighbor List occasionally during a run. 
It uses Unit II to calculate the distance between pairs of atoms, to determine whether they 
are within a preset cutoff distance for their pair-type. If they are, they are entered into the 
variable portion of the Pair List. 

Throughout the diagram, various delays, either labelled "Delay" or "D'', have been indicated. 
These are either fifo register delays or shift register delays which guarantee the arrival of 
information pertaining to a given pair at the appropriate input to a unit in synch. 
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F!GURE' 3. 

Sc'"iematic of the quadratic inte:-polators used to lcok up the values of the energy. the 
force/r, and the square root (note that only a portion of the hardware is used for the square 
root). The central memories, yO, y', and y", contain tables of the functional values, slop"'s, 
a'1d 1/2 times the second derivatives of the desired function. The beginning of the a.pprori-
ate bJble for a given pair type is stored in an offset memory. This offset. is added ~o the hl,;;h 
order bits of the incoming (integer) indepedent parameter, and the result i':' used to address 
the central memories. This value is represented by the letter x in the figure. The adders ar.d 
r:'.'.'..lltipliers form the combination 

yO + dx*y' + dx*dx*(1/2*y"} 

where dx consists of the low order bits of the independent parameter. There are also two 
memories, Max and Min, which store the maximum and minimum addresses of the tables 
associated with any given pair type. If the generated address falls outside of this ra.nge, an 
"invalid bit" is set. 
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QUESTIONS AND ANSWERS 

Q: How much to replicate processor? 

J. Amann 

A: $100K 

Comment: That fraction of the biological community which needs 
supercomputing, or fast vector processing, is in fact more than willing 
to rewrite code or to pursue hardware development to get what they 
need. What reluctance there is to changing code comes typically from 
users who need low level, quick results from scientific packaged 
subroutines to evaluate results from low statistics experiments. They 
don't need supercomputing, and hence should not be considered in 
evaluating how eager potential supercomputer users in general science 
are to adapt to new architectures. As is true in HEP, when a biologist 
needs to adapt, he will. 

R. Fine 
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COMPUTATIONAL BOTTLENECKS IN MOLECULAR ELECTRONIC STRUCTURE CALCULATIONS 

Carlos F. Bunge 

Instituto de Fisica, Universidad Nacional Aut6noma de Mexico, 
Apartado 20-364, Delegaci6n Alvaro Obregon, 01000 Mexico D.F., Mexico 

Abstract 

After briefly reviewing the role of quantum chemistry in contemporary 
science, various software and hardware requirements in ab-initio calcu-
lations of molecular electronic structure are discussed. Current ef-
forts to develop an alphabet and a vocabulary of high-level programs 
to allow people versed in computational molecular physics to write and 
debug their own codes in a matter of days are reported. The repeated 
computation of millions of two-electron molecular integrals involving 
the interelectronic potential and complicated orbitals centered in up 
to four different locations requires a small data set, gigaflop capa-
bilities, and it is amenable to extensive parallel processing. Four-
index transformations and the calculation of eigenvectors of huge 
sparse and symmetric matrices are best implemented with matrix multiply 
operations (and concomitant large data bases), without which the re-
quired sustaining I/O rates would exceed present technical possibili-
ties, except for slow single-processor scalar machines. Key-sort of 
large lists of small items requires scatter and gather operations on 
4-64 Mbytes memories at about N/20 Mrnoves per second or better, for 
N Mflops of processing speed. The matrix multiply operation emerges 
as the unifying concept to impel the development of parallel and vector 
processing. Other desirable advances are discussed. 

1. Introduction 

Recently, the Computer Systems Division of Gould Inc. sent the fol-
lowing memorandum to many quantum chemists around the world: 
"If you could receive the undivided attention of a major computer manu-
facturer for a one-hour conversation about needed developments in Com-
putational Quantum Theory of Matter, what five items would you empha-
size and why?" 

In answering this welcome initiative, after a brief review on the 
computational background of quantum chemistry, I will focus on present-
day bottlenecks in molecular electronic structure calculations. Final-
ly, I will give my opinion on what I consider to be the most needed de-
velopments in computer-related areas affecting quantum chemistry. 

2. Evolution of quantum chemistry 

Quantum chemistry is the corpus of theoretical knowledge generated 
by considering Schrodinger's equation: 

H'l' = il'l(3/3t)'I' (1) 

as the starting point for any discussion on the Quantum Theory of 



-342-

Matter. Formidable computational problems surrounding efforts to solve 
(1) have shaped the evolution of quantum chemistry. Any attempt to 
find approximations to (1), whether a variational or a perturbative 
method is employed, must fac~ from the outset the problem of calculat-
ing many two-electron molecular integrals (pq/rs) involving the inter-
electronic potential r 1- 2

1 and atomic orbitals ¢ , ¢ , ¢ , ¢ , cen-pA qB re sD 
tered in usually different locations A, B, c, D, respectively: 

(2) 

In the ~e.mlemp-Ut.lc.a£. approach, 1 approximations to (pq/rs) are dic-
tated by computational expediency, such as the arbitrary zeroing of 
most of them, or the parametrization of some of them to fit experimen-
tal data with respect to a weLl'.-de6ined model wave function. Such cal-
culations are of central importance in pharmacology, the dye industry, 
plastics' manufacture, and the synthesis of many new organic molecules 
of relatively small size. 

In the ab-in,lt.i..o approach, 2 approximations to (2) are based on rig-
orous mathematics, so that approximate solutions to (1) can be system-
atically improved upon, by conceiving a reasonable sequence of increas-
ingly accurate models for the wave function expansion, and by regulat-
ing various thresholds to neglect sufficiently small intermediate quan-
tities, in accord with the desired precision. Accurate bond lengths 
and bond angles, barriers to rotation and inversion, and inner-shell 
electron excitation energies are in the realm of current ab-initio 
methods. Increasingly complex and accurate molecular energy surfaces 
and valence-shell electron spectroscopy are two of the areas where sub-
stantial progress is under way. Just to mention some of our own work 
on atoms, the calculation of energy levels to spectroscopic accuracy 
has led to the discovery and characterization of new states relevant to 
UV and soft X-ray laser design. 3 

3. Software bottleneck 

The community of quantum chemists is estimated at 8000-10000 mem-
bers, however, about half of them are marginal computer users or non 
users, especially in localities with poor access to computer resources. 
On the other hand, the huge Fortran programs currently in use (ranging 
from 5000 to 100000 statements with an average of 15000-25000) have 
been written by hardly more than 300 people all along the last 20 
years. Thus most quantum chemists ~el.ec.-t op.t;lo~ in programs they have 
not written, and run them with little or no modifications. As b!U.ght 
students find little motivation to be passive computer users, they 
mostly end up doing clever semiempirical work, or they plunge into 
heavy and specialized programming, viz., they hardly do any decent 
science at all. In order to get more and better people to actively 
participate in the formulation of quantum chemistry problems it appears 
necessary to develop an alphabet and a vocabulary of robust and effi-
cient quantum chemistry programs, so that any worker versed in computa-
tional quantum chemistry could write and debug his (her) own codes in a 
matter of days. An outline of my ideas is given next. 
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A le.,t,t:Vt is a subprogram that cannot be meaningfully subdivided in 
natural sciences or social sciences contexts. It operates on well-de-
fined data structures by means of logical and/or mathematical opera-
tions of general character, according to one or several options. For 
example, a subroutine to calculate eigenvalues and eigenvectors of a 
real and symmetric matrix, or a subroutine to order a list of items 
according with a list of key values, are letters in scientific con-
texts. Of course, each of these subroutines are usually subdivided 
into many other subroutines which themselves may be le.,t,t:VL6 at another 
level, say, in a general computer sciences context. 

A phonem is a subprogram which selects a letter within a set of 
different letters which resemble each other in the following sense: 

(i) they operate on the same data structures, 
(ii) they generate the same logical results, and 

(iii) they produce numerical results which, in principle, can become as 
close from each other as it may be desirable, just by controlling cer-
tain parameters. For example, a subprogram which selects a given sub-
routine to diagonalize real and symmetric matrices. In its simplest 
form a phonem is a single letter. Generally, phonems have applications 
in several fields of science. 

A wo~d is a well-defined sequence or a string of phonems, each one 
of them appearing with aLe their options explicitly set. Moreover, a 
word has a well-defined meaning in quantum chemistry; for example, a 
subprogram that starting from a list of one- and two-electron integrals 
generates an independent-particle model self-consistent wave function. 

Different words with the same (or almost the same) meaning are 
called ~ynonym.6. A ~ynonymlzVt is a subprogram that selects a given 
word within a group of synonyms. For example, a subprogram that choos-
es one of several methods to carry out the four-index transformation of 
quantum chemistry. Often it is convenient to have access both to a 
synonymizer and to an equivalent word made up of a larger number of 
phonems. 

Finally, a p~a!.>e is a well-defined sequence of synonymizers which 
when operating over the correct data structures produces results that 
may be pertinent to quantum chemistry. We are in the process of devel-
oping a basic set of efficient, portable and user friendly synonymizers 
for molecular electronic structure calculations, 4 which, we hope, will 
facilitate access of computational quantum chemistry to a wider audi-
ence, while also contributing to a more universal and cooperative work-
ing style, already manifest through the outstanding services of the 
Quantum Chemistry Program Exchange library set up at the Department of 
Chemistry of Indiana University in Bloomington, Indiana, U.S.A. 

'lhe general use of phonems and synonymizers requires a vast amount 
of validation checks. Input data and parameters generating intermedi-
ate data in different phonems are always checked for compatibility. 
The few quantities which define all array dimensions in a given sub-
routine are declared in parameter statements and also appear as argu-
ments to allow immediate validation. Phonems and synonymizers may 
have arguments to take advantage of possible simplifications depending 
on the nature of their input data. For example, in the SORT phonem, 
the argument NOEQKY is zero in the general case. If no keys are equal, 
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however, a scatter process or an efficient bin sort method will be em-
ployed if the range of key values does not exceed the number of items to 
be sorted by a certain factor. In such instances the user may get sub-
stantial savings in execution times by writing NOEQKY in the appropriate 
argument place. However, if he (she) does so when there are equal keys, 
impredictable results will be obtained. Although in more critical ap-
plications, like dam control or C3 I (command, control, communications 
and intelligence) work, such risks are inadmissible, computer bound sci-
entific applications such as quantum chemistry must necessarily operate 
close to the frontier where efficiency and reliabilty may conflict with 
each other. 

4. Hardware bottlenecks 

Low I/0 Jte.qu..Uteme~. This is the case in subroutines where the 
number of bytes of both input data and output results is negligible when 
compared with the number of bytes that must be handled to produce the 
results. Let us consider the evaluation of the molecular integrals 
(pq/rs) defined by (2). In our own approach to molecular electronic 
structure calculations, the atomic orbitals ¢pA are written as: 

->- ->- 9. -R, HF ->- ->-
(upA.rA) ·-p rA P ¢pA(nprA)exp[Xp(vpA.rA)J, (3) 

.... .... 
where upA' R,p' np, Xp' and vpA are parameters specifying orientation, 

the azimuthal quantum number, scaling, polarization and orientation of 
the polarization, respectively. Usually, each Hartree-Fock atomic or-

bital ¢HF is expanded in terms of 3 to 6 gaussian functions: pA 
HF 3-6 2 

¢pA = L exp(-a. rA)C. , 
i=l ip ip 

(4) 

where the orbital exponents aip and contraction coefficients Cip are 

fixed parameters. Thus we have up to 20 parameters per atomic orbital 
after including the three cartesian coordinates defining the location 
of A. Assuming 400 orbitals (quite a gallant proposition) we have a 
data base of 8000 double precision numbers to characterize all atomic 
orbitals, to which we must add 3N atomic coordinates and N nuclear 
charges. For M atomic orbitals, the number I of (pq/rs) 's is I =M4/s, M M 
considering that only integrals with p~q, r~s, pq~rs, have distinct 

5 9 values. For M=40 and 400 we have IM=6.4xl0 and 6.4x10 , respectively. 

If we assume that the expansion (4) runs up to four gaussian functions 
G. ' ip 4 

L 
i=l 

G. C, , ip ip 

then (pq/rs) may be written as: 

(5) 
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(pq/rs) = l: (ij/kl)C. C. Ck C 
ijkl ip Jq r ls 

(6) 

involving 256 integrals (ij/kl). Since each (ij/kl) requires in average 
over 200 floating point opera~ions (flop), a single (pq/rs) requires 
0.05 Megaflop (Mflop), and the entire list of two electron integrals for 
M=40 will require 32000 Mflop. On a VAXll/780 computer, with a maximum 
processing speed of 0.2 double precision Mflop per second, this step of 
the calculation alone will take about 40 hs of CPU time. Optimization 
of the parameters in (3) considerably increases Mflop demands, even if 
not all integrals must be recalculated at each step, and assuming that 
the orbital parameters have already been optimized in a similar molecu-
lar fragment environment. Moreover, the calculation of molecular energy 
surfaces requires the unavoidable recalculation of ail molecular inte-
grals. 

Preliminary estimates of the magnitudes of each (ij/kl) can be used 
to neglect them altogether or to choose smaller gaussian expansions in 
(6). Yet, the problem remains a formidable one. Since all (ij/kl) 's 
can be evaluated independently from one another, paJt.alle£ pJr.oceJ.>~ing is 
applicable. The same comment applies to the (pq/rs) 's. The increased 
visibility of quantum chemistry in contemporary science and its almost 
unlimited demands on Mflop seem to justify the development of a gaussian 
molecular integral chip. 

Me.di.um I/ 0 1te.qt.U.1teme.n..t.6 • This is the case in subroutines where the ra-
tio R between the number of both input and output bytes and the number 
of bytes that must be handled to produce the results is much smaller 
than one but still large enough to cause a significant I/O overhead. 
(Although the value of R is entirely determined by the program itself, 
increasingly large available central memories can make possible better 
implementations of algorithms at considerably reduced R values.) For 
example, on a VAXll/780 with slow RK07 disks, the maximum I/O transfer 
rate in Fortran is about 0.15 Mbytes per second, while the CPU can ef-
fectively process up to 3.5 Mbytes per second, viz., any time R is 1/23 
or larger, execution times must ne.cv.,~a!t.Lty become I/O bound. 

In quantum chemistry, however, R is much larger or much smaller than 
1/23, except when one is constrained to very small memories. Neverthe-
less, if an array processor, such as the FPS164, is attached to a VAXll/ 
780, the situation may change dramatically. Since the FPS164 has a CPU 
burst throughput of about 192 Mbytes per second, R will become 1/1280 
(other things being equal) , which is well within the domain of many 
quantum chemical applications. 

Let us consider the evaluation of eigenvalues and eigenvectors of 
very large sparse and symmetric matrices, needed when going beyond the 
independent-particle model description. The wave function ~ is expanded 
in terms of configurations ¢K as: 

K max 
l: ¢KaK, 

K=l 

where the aK's are linear coefficients to be determined from 

(7) 
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E,a .• 
J=:J 

(8) 

Let us consider an expansion (7) including a reference closed-shell con-
figuration of N occupied orbitals and all single and double substitu-
tions of them 0 into N nonoccupied orbitals. Recent developments, 5 

no 
allow to solve for the lowest eigenvalue of (8) by means of roughly 2H 
flop, H being the number of H . . FO in (8); this also includes.the calcu-

l.J 
lation of the H .. 's 

l.J 
themselves! 

nent to the present discussion. 

Table 1. Mflop needed to solve 
a singles and doubles 

N N K 
0 no max 

10 10 5 151 

15 15 25 651 

20 20 80 601 

40 40 1 282 401 

In Table 1 we give various data perti-

for the lowest eigenvalue of (8) using 
approximation. 

2H/10 6 
or # Mflop 

7.3 

88.9 

517 

34 899.3 

The entry corresponding to an H matrix of dimension 80601 runs on our 
VAXll/780 under a v,{)[,.tua,l meJnotty ~Y~~eJrl in 50 minutes of elapsed time, 
of which 90% were accounted for by the CPU, thus exhibiting the maximum 
sustaining rate of 0.2 double precision Mflop per second, even on a 
small working set of 100 Kbytes and with almost no extra central memory 
for quick virtual memory work. 

The last entry of Table 1, which corresponds to an!! matrix of di-
mension 1282401, should run on the VAXll/780 in about 4S hs, i6 enough 
central memory is available to sustain the maximum 0.2 double precision 
Mflop per second rate. 

To proceed with this discussion, let us consider the sustaining I/O 
requirements for a matrix times vector operation, assuming a 12 Mflop 
per second processor. From the results in Table 2, we see that the I/O 

Table 2. Sustaining I/Orate requirements for matrix times vector, as a 
function of dimension N, assuming a 12 Mflop per sec processor 

N 

10 
100 

1000 
10000 

Central memory 
(Mbytes) 

8x10- 4 

8xlo-2 

8 
8x10+2 

Mflop 

2x10- 4 

2x10-2 

2 
2x10+ 2 

time I/0 rate 
(seconds) 

17x10-6 50 Mb/sec 
17x10- 4 50 
17xl0-2 50 
17 50 



-347-

rate requirements for a matrix times vector operation are quite beyond 
present technical capabilities for a processor like the FPS164. Even 
for a VAXll/780, its 0.2 double precision Mflop per second rate demands 
1 Mb/sec I/O rates, which are above the possibilities of the fastest 
disks presently commercialized by Digital Equipment Co., which run at 
0.68 Mb/sec though they are advertised to run at almost twice that 
speed. 

We can see that any attempt to formulate (8) as a matrix times a 
vector is condemned to founder on account of unrealistic I/O rate de-
mands. Our own implementation is based on matrix multiply operations 
which allow for more favorable sustaining I/Orates, as shown in Table 3. 

Table 3. Sustaining I/O rate requirements for matrix times matrix, as a 
function of dimension N, assuming a 12 Mflop per sec processor 

N 

10 
100 

1000 
10000 

Central memory 
(Mbytes) 

2.4x10- 3 

2.4x10- 1 

2.4x10+ 1 

2.4x10+ 3 

Mflop 

2x10- 3 

2 
2x10+ 3 

2x10+ 6 

time 
I/O rate (seconds) 

1.7x10-4 14 Mb/sec 
1.7x10-1 1.4 
1.7x10+2 0.14 
l.7x10+ 5 0.014 

The central role of the matrix multiply operation (MMO) in quantum 
chemistry has been amply demonstrated by Saunders and coworkers. 6 At 
about N=lOOO, as can be seen from Table 3, the MMO appears as a good 
candidate for implementation with parallel processors supporting vector 
pipelined capabilities. Even for N=lOO, the use of 10 parallel pro-
cessors would demand a not unreasonable I/O rate of 14 Mb/sec. 

H~gh I/O ~equ.Utement.6. In order to set up (8) it is necessary to trans-
form the (pq/rs) integrals into (ab/cd) integrals over orthogonal orbit-
als a, b, c, d. If ¢a is given by: 

M 
¢ = Z ¢ a , 

a P p pa 

then (ab/cd) is calculated as: 

(ab/cd) = Z[Z[Z[Z(pq/rs)a ala la bla . 
p q r s s re q pa 

(9) 

(10) 

The calculation of the entire list [(ab/cd)] requires about M
5 

flop for 
a basis of M molecular orbitals. The most efficient implementation for 
vector machines 6 uses at least two ~otit processes over large lists. Un-
less a rather slow CPU processor is run in competence with the fastest 
I/O equipment, ex-t~na.l sort will always be I/O bound. 7 Because the 
required sorts involve lists where the range of (c:U.6:tinct) key values 
does not greatly exceed the number of items to be sorted, the external 
sort can be replaced by a ~ea;tt~ process if enough fast memory of some 
kind is available. For M=70 orbitals, there are up to 3 million (ab/cd) 
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integrals requiring a memory of 72 Mbytes to carry out the scatter proc-
ess. For a total of M4 /8 input integrals, 3M4 /4 Mmoves are needed. 
Therefore, the four-index transformation of quantum chemistry, Eq.(10), 
will become I/O bound if the ratio R between the number of Mmoves/sec 
and the Mflop/sec processor speed is R~l/M. A value R~l/20 appears as 
a reasonable compromise when taking into consideration the complete 
budget of molecular electronic structure calculations. It should be 
stressed that the requirements on Rare inversely proportional to M, so 
that the (µU Me of very large inteJune.clUtte .6peed memories, say, of 10 
Gbytes, would be entirely adequate for the present purposes with Ras 
low as 1/100. 

5. Final considerations 

Most quantum chemists, not being electrical engineers nor computer 
scientists, are ca.ptive-6 of computer manufacturers whose commercial pol-
icies are addressed to a still more defenseless crowd of unsophisticated 
users. Ab-initio calculations are made with highly regular, predictable 
codes emphasizing processor and I/O rates. We need good programming de-
velopment facilities, efficient matrix multiply operations and concomi-
tant sustaining I/O rates which when put together demand 4-24 Mbytes of 
fast central memory. Our quest to get more Mflop/peso(dollar) finds its 
motivation in lessening the ever growing frustrating ordeal of quantum 
chemistry props behind gloomy TV screens. As old habits die hard, we 
also promise semiempirical investigations on la!LgeJt systems and betteJt 
ab-initio calculations for a fixed cost. 

What are the best options to upgrade our equipment? Today's worst 
option for VAXll/780 OWl'l.elt.6 is certainly to buy another VAX, or the 782 
or 784 models offered by DEC. The best option for poo4 owners seems to 
be the MAP-6420 64-bit array processor selling at about US $100,000 and 
which might upgrade a VAXll/780 by a factor of about ten in FoJd:Jlan lan-
guage. From open 6.loo4 cll6cU6.6~0n.6 at this Conference, it seems that we 
will not hear good news from Floating Point Systems on 64-bit array pro-
cessors until late 1985 or early 1986, while DEC is not promising any 
cost-effective upgrading equipment until early 90'sl 

Burroughs' announcement in 1980 of the cancellation of its scientif-
ic array processor project spelt widespread discouragement among univer-
sity computer centers in Latin America and overseas, as their B6000 and 
B7000-series mainframes became overnight white elephant dead ends. 
Nevertheless, at least two National Universities (Costa Rica and Urugua~ 
have recently acquired B6900 mainframes, adding support to my opening 
sentence above. 

Other institutions (such as Instituto Politecnico Nacional and Uni-
versidad Autonoma Metropolitana in Mexico City) made heavy investments 
in CYBER170/815 computers. Until recently, the 170/815 could not com-
pete with the virtual memory capabilities of the half-priced VAXll/780, 
and could only attain a modest parity with the same VAX in programs con-
ditioned by floating point operations. After CDC's announcement of vir-
tual memory last April, the expensive CDC170/815 became potentially 
ahead of the VAXll/780 because of superior I/O capabilities. Faithful 
to expectations, CDC announced last May the CybeJt Plu.6 processor, which 
together with minor additional equipment upgrades the CYBER170/815 by 
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an average factor of 100, with a peak burst upgrading factor of about 
3000 (for a single processor; up to 64 Cyber Plus parallel processors 
may be ordered). Thus, CYBER170/815 oWneJt,6 appear as prime candidates 
for entering the supercomputer age in Latin America, after an invest-
ment of US $800,000. 

I consider virtual memory an essential asset, not as a pretext for 
sloppy programming but rather as an indispensable tool in connection 
with straightforward maintenance of 100000 statement codes. 

Quantum chemistry needs to develop a baJ.>~c. voc.abu£aJty of computer 
programs to enable every student to write and debug his (her) own codes 
in a few days. In this way, from about one hundred ac.:t.lve program writ-
ers we might grow to about 5000, which in time should pull in another 
30000 chemists deeply interested in chemical p~oble.m6. 

In large urban centers such as Mexico City, where quantum chemistry 
projects are pursued in many groups located at 9 Departments scattered 
in 4 Institutions, it should be feasible and highly benefical to create, 
stimulate and support a computer network, especially for updating and 
enlarging the program libraries. 

As economical times go, it is clear that meaningful access to super-
computers for scientists from underdeveloped countries will only materi-
alize through personal arrangements with supercomputer centers. Perhaps 
one of our bold administrators decides to patronize the noble cause of 
upgrading a CYBERl?0/815 with a Cyber Plus processor (not with a /825 
model, please!). Meanwhile, in view of inexorable prospects anticipat-
ing a widening gap of computer resources with respect to the advanced 
countries, we find a stimulating challenge in seeking new ways of in-
quiry so that we can persist to accompany and to contribute to the de-
velopment of computer-bound areas of science. 
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QUESTIONS AND ANSWERS 

Q: Is "ab initio" the only way to analyze molecular electronic 
structure for large number of electrons? Do solutions to handling 
giant sparse matrix exist? Is it efficient on pipeline architecture? 

K. Miura 

A: There is a loosely defined accuracy (cost!!) threshold above 
which "ab initio" calculations make sense from the physical or chemical 
point of view. Below this threshold they may be as unsatisfactory as 
semi-empirical approaches. For H (H = number of electrons) greater 
than about 100 at present, feasible "ab initio" calculations can hardly 
be considered more significant than well-parameterized semi-empirical 
calculations. Matrix multiplication of huge sparse matrices is 
feasible on pipeline architecture if only .Q!!!. of the matrices is sparse 
or if orte ignores sparseness in one of the matrices. v. Saunders at 
Daresbury Lab in England obtains 147 M flop/sec with Cray 1-S for MMD's 
with dimension approaching 64, and more than 120 H flop/sec for 
matrices in the 30-64 dimension range, in Assembly language. [In 
FORTRAN, MMD reaches (linearly with matrix dimension) 37 H flop/sec for 
dimension 64.J The handling of a large sparse matrix is quite a 
different thing, as the major problem here may be its calculation and 
storage, which if possible must be avoided. If one is interested in 
sparse matrix + vector, one can often write the vector as a matrix and 
use MMD's appropriately on portions which are chosen according to the 
particular characteristics of the sparse matrix. If the huge sparse 
matrix is given, the whole MHD's must be subdivided appropriately to 
fit into the central memory and care must be taken so that chunks of 
the result matrix require a single I/O operation. 
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TRACK RECONSTRUCTION IN PLANAR CHAMBER SYSTEMS 

David Bintinger 
UniversitY_ of California, San Diego 

A long sought after goal is to analyze the problem of track reconstruction in 
general terms such that the derived lessons can be applied to any experiment re-
quiring track reconstruction. From experience on two different High Energy Physics 
experiments a method of track reconstruction in planar chambers which has general 
applicability has been developed. Further, this method leads to a way in which track 
reeonstruction can be performed on dedicated processors with event reconstruction 
times that would be theoretically independent of multiplicity. 

The track reconstruction procedure that will be sketched below was developed 
for th<' Tagged Photon Spectrometer at Fermilab. Subsequently this procedure was 
used on another experiment, PEP-9 at SLAC, with a very different geometry. The 
naturp of the method and the fact that it has been used on two different experiments 
leads one to believe it has general applicability. 

The procedure has two phases. The first is the rapid finding and storing of 
all possible track candidates. The second is the selection from among the track 
candidates of the best tracks. These best tracks are then reported out as final 
tracks, ready for momentum fitting. The first phase seems to be saying: to find all 
th<' tracks first find all the possible tracks. To some degree this is exactly what it is 
saying. Finding possible tracks, or track candidates, is a straight forward procedure. 
Any planar chamber system is usually over-constrained. This allows one to propose 
a trajectory based on a few hits and then to follow the trajectory finding whieh 
planPS have hits associated with it. The trajectory following procedure consist of 
propo~ing a coordinate in a given plane and then determining whether the plane 
contains a real hit close enough to the proposed coordinate to be accepted. This 
process is followed until one has passed enough planes without finding the required 
numbPr hits, at which point one abandons the proposed trajectory, or until all 
planPs have been <'Xamined and the required number of hits have been found. The 
trick is to not ask questions while one is carrying out this procedure. If the proposed 
trajectory has more than a minimum number of hits it is simply stored. No time is 
wasted asking whether it is a good or bad, real or spurious, track. The successful 
proposed trajectories become track candidates, not necessarily final tracks. It is 
easier to follow trajectories than to predict which trajectories will produce final 
tracks. 

Now perhaps it can be seen why this first phase might be fast and, more im-
portantly, suitable for use in dedicated tracking processors. Simple "find a hit 
that matches this proposed coordinate" searches dominate the trajectory following. 
That such searches dominate track reconstruction has been recognized before. The 
Fermilab Advance Computer Project has proposed co-processors that carry out just 
such searches. When one completes this first phase a list of track candidates has 
been assembled. It should be noted that hits are not marked out as they are used. 
Thus there is no bias against finding tracks that share hits. Photon conversions are 
a prime example of such sharing. 

The second phase of this method selects the final tracks from among the track 
candidates. Often the number of track candidates will be a factor of four or five 
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times larger than the number of final tracks. The selection phase begins by sorting 
the candidates into groups. Each group contains several representations of the same 
physical track. These representations of the same track may differ by including or 
excluding different hits, having different drift chamber left-right assignments, or 
having differing projections in some tracking regions. In general one has in each 
group all the variations of a real track one might find due to differing search patterns. 
By selecting the best representation from among the group as the final track one 
is not at the mercy of accepting the first representation that one stumbles across 
in a given search pattern. For each representation one has all the information 
that is possible to obtain for it. Thus selection of the best tracks is as precise 
as hit information allows. If in phase one of this method one tried to conjecture 
which path was going to lead to the final best representation one would have to 
make uncertain time consuming estimates during the search based on less than 
complete information. This results in poorer tracking and longer search times. One 
can now see the reason for the "no-decision" search of phase one of this method. 
The grouping in this second phase can be done in any number of ways that uses 
the para.meters of the stored candidates. Candidates with approximately the same 
para.meters are grouped. Also ghost tracks are discovered and discarded in this 
phase. 

As has been mentioned before this reconstruction method has been used in two 
experiments with very different geometries. In both, this method was faster and 
more efficient than the existing track reconstruction programs. Another benefit 
was the ease of constructing the necessary programs. In both cases four physicist.-
months were required to write and test the necessary programs. This is to be 
compared with the several physicist-years that were expended on the prior existing 
programs. This consideration is as important as the considerations of reconstruction 
speed and efficiency. 

The final goal of this pa.per is to propose a general plan for reconstructing 
tracks on dedicated processors. The plan utilizes the reconstruction method that 
has been outlined above in conjunction with one additional crucial observation. This 
observation is that proposed track trajectories may be investigated independently 
for the necessary confirming hits. Essentially this means that many track searches 
within the same event can be occurring simultaneously. The limiting factor is 
the availability of sub-processors to handle the trajectory extrapolations. These 
searches would be initiated by a central coordinating processor which would order 
proposed trajectories and assign them to lower echelon extrapolating processors. 
Figure 1 is a crude block diagram of how a dedicated track reconstruction processor 
based on these ideas might be organized. The Central Ordering Processor (COP) 
proposes a trajectory based on as few plane hits as possible and then assigns the 
extrapolation of this trajectory to a free Extrapolating Processor (EP). The COP 
must insure that trajectories are ordered such that undue duplicate trajectories are 
not assigned. (Some duplication at this level is not a serious shortcoming as the final 
results will not be affected.) Attending each EP are the "find a hit that matches 
this coordinate" co-processors that have been mentioned previously. EP's may be 
subdivided by natural break points in the extrapolation. Thus an EP that after 
searching n planes finds insufficient hits to warrant continuing the extrapolation 
will signal to the COP that it is ready to accept another trajectory. If on the other 
hand it finds a sufficient number of hits, a less likely probability than insufficient 
hits, it will pass the trajectory with its added information on to the next phase of 
extrapolation. This means that fewer stage two EP's would be needed then stage 
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one El"s. At the l'IJ<.! of this processing a collection of track candidates will have 
been assembled. 

Theoretically if the COP has been efficient aud there were sufficient EP's, the 
time to reconstruct a!! candidates should be equal to the time it takes to reconstruct 
one track randidate. This means event reconstruction time would be indcpt>11dcnt 
of tra<'k m11It.iplicity. At this point phase one of the reconstructiou method has 
bt•t•n co111pleted. l'hase two now proceeds to select the best tracks as final tracks. 
!'hast' two rt'<p1ir<'s a!! the candidates to be available. Thus it cannot be done 
in a. p,1rallt•I proc·pssor fashion, however this phase is not time cons11111i11g. One 
dPdie:lft·d prncPssor must handle this task for each event. llow the expt!rirn<·n!.t•r 
wo11ld program for the processor must also l.Je considered. The scheme presently 
Pnvi:rngcd is for the user to write a FORTRAN reconstruction program, necessarily 
ul ilizing the rceonstruction method outlined in this paper, that would run 011 a large 
11iainfra111c ru1npuler. A form of super-compiler would then take this FOHTH.AN 
program a.nd pa.red it out amoung the various processors and sub-processors. Thus 
the cJ1tire dedicated processor would look like a large mainframe computer to the 
experiment er. 

Finally this paper has addressed itself only to pla.nar cha.mber systems. No 
expPricnce has yet been gathered on cylindrical tracking systems. However it seems 
the principles of reconstruction given above are general enough such that there is 
hope in npplying them to any geometry. 

COP 

I 

EP 1 EP1 EP1 EP1 EP1 

I 
... 

EP2 EP2 EP2 

... 

Select 

Figure 1 
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QUESTIONS AND ANSWERS 

Q: Do you feel that you can learn anything (concerning pattern 
recognition, sinrultaneous testing of nrultiple hypotheses, parallel 
computation, hypothesis rejection) from work in the areas of speech 
recognition - and chess programs? 

K.J. Levine 

A: From chess programs, yes. I am not familiar at all with 
speech recognition problems. In both chess and track reconstruction 
programs it is very true that what you do at the start affects the 
outcome. 

Conunent: Since the speaker mentioned that track reconstruction 
program is similar to chess program, I would like to conunent that the 
strongest chess program is written in FORTRAN and runs on CRAY-XKP 
(CRAY=BLITZ), i.e., chess program is vectorizable. Does this fact 
indicate that track reconstruction is vectorizable? 

K. Miura 
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SOFTWARE AND THE DANGERS TO PHYSICS FROM COMPUTING 
===================:=============================== 

A B S T R A C T 

J, A. Brody 
Instituto de Fisica• UNAM 

APdo, Postal 20-364• 
01000 M6xico, D.F. 

MEXICO 

Some Presently neSlected dansers that arise for 
PhYsics from the unconsidored use of computers 
are discussed. One basic Problem involved in 
all four is the black-box nature of Present-day 
Prosrams. Several comPutin• technimues. for 
not all of which imPleruentations have been 
devel0Ped1 are ProPosed that tosether misht 
wield a more satisfactory Proarammin• swstem 
than those now available. But it is stressed 
that such methods can Provide at most Part cf 
the solution: we must also evolve more 
aPProPriate methods of incorPoratina extensive 
comPuter usase into our research Procedures and 
orsanisation. 
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I 

That the exponential increase in comPutins Power achieved 
over the last few decades has brousht complex problems in the 
wake of its undoubted benefits is bw now a commonplace as 
resards the administrative aPPlications; but that within the 
field of Phwsics analosous difficulties are develoPins is less 
widelw recosnised in the Phwsics community, Yet I believe 
there are serious dansers that need ursent attention, 
Preciselw because of our seneral unawareness! PhYsioists are 
SUPPosed to know about comPutins. unlike the business 
communitw, saw; indeed• we do; and Yet we all too often use 
computers as simPle tools without anw adeouate understandins 
of the further imPlications. 

The uses of computers in PhYsics are multifarious. They 
ranse from the tinw Prosrsm written• debuesed and run in half 
an hour - and deleted almost at once - to ouarter-million-line 
swstems• worked on for wears and widelw distributed amonY 
various user grouPs+ I shall here isnore the first twPe• as 
well as the uses of comPuters in Phwsics education. not 
because I think them innocent of Possible Problems <thew 
clearlw have manw), but because these Problems fall :lroto t.::)1> 
manw different catesories. manu of which have received muite 
adeauate attention alreadw. It is the problems created bw the 
medium-to-larse Prosram swstems that I wish to discuss here. 

The first and most obvious one is that of ensurine the 
Prosram's correctness. Here the solution is known• of course• 
at least in PrinciPle. It is simPlY that of structurinY the 
Prosram into reasonablw independent Parts. If there are• say, 
100 binary decisions in the Prosran" thE~n 2100 

!!! 1030 diffel'f:c•nt 
Paths throush it must be exPlorod before correctness is 
reasonably certain; if we break this uP into 10 blocks with 
10 decisions each• the n1Jmber of Paths is reduced t1) 10 * 210 "' 

104 , a larse but not unmanaseable number. But this fact is 
not verw widelw aPPreciated, so that too manw Phwsicists 
continue to use Prosrammins lansuases like FORTRAN which not 
onlY add further decisions to be checked bw makins us write 
three nested DO-looPs for a matriK multiPlication• for 
instance, but also foster the Production of huse unstructured 
and sometimes unstructurable Prosram sesments. A proPerls 
structured Prosram offers the further non-trivial advantase of 
loSical clarity, Yet bw the side of numberless honorable 
exceptions there are still too manw proarams which accordins 
to the author maw have been well debussed• but which nobodw 
else can really check, And for very larae swstems• written 
sometimes bw a sizable sroUP• the Problem still is far from 
satisfactorilw solved. 

The situation is made worse when• as all too often 
haPPens, the comments are missiros or inadelHJate or even ( ,,, 
case we have all come across) misleading, 
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A second and much more difficult Problem is that of the 
Precision and the scope of the Prosram. The alSorithms it 
incorporates are aPProximate in one way or another; the 
numerical Procedure, which rePresents continuous variables bY 
a finite discrete set, is necessarilw soi and many of the 
Parameter values in the ProSram are likewise onlw 
approximations. Hence the results will only be Sood to within 
certain error limits, These will be adeGuate for the orisinal 
Purposes for which the Prosram was written; but further 
users• whether the author or not. will aPPlY it to other 
cases. where either the oriSinal precision will not suffice• 
or we have moved out into a resion of arsument values where 
the Precision is very much worse. A careful writeup will 
usually have somethins to say about such matters. But the 
scope of values for which the Precision is not seriouslw 
desraded is commonlw very difficult to establish• so that we 
tend to be ultracautious in estimating the scoPe1 
tends to Provoke the reaction 'Oh well, let's trw it and see', 
Unfortunatelw• the Prosram will all too often Produce some 
sort of result which is then accePted without further ado. 
Moreover. a careful writeup is Just what 
available, for anw of several reasons. 

But all these are onlw the superficial difficulties; the 
real one is that in order to estimate the Precision we need 
some sort of comparison result, if Possible either a better 
theoretical calculation or a well confirmed experiment. Yet 
senerall'::I we write and •Jse the Prosram Preciselw becau~ it i~;, 

the best or even onlw wa'::I to determine the values whose 
Precision is in Guestion. And asain• Provided the user is 
full':! aware of these matters and therefore exercises due 
caution• all will be well. But how many Physicists 
exercise due caution ? 

Such Problems• however serious at the moment. should 
'::lield to a determined effort towards better education in the 
use of computers. We must make efforts not onl'::I to make the 
Present generation of Ph'::lsicists aware of such Problems• but 
above all to ensure that the future seneration is tausht about 
such matters and can Sain adeGuate experience in handling the 
Problems of Ph'::lsics on a machine, This is a far from trivial 
Problem: students these daws arrive at their universit'::I with 
a ver'::I misleading experience of comPutinS sained through BASIC 
on the so-called Personal computers. and the usual courses 
offered them do little to correct this. 

The next Problem to be discussed has sraver imPlications. 
When results obtained from a larse (and hence larselw 
impenetrable) prosram are submitted for Publication. how is 
the referee to Judse whether what has been done satisfies the 
criteria for a Sood and orisinal paper ? If YOU are amons the 
authors• '::IOU will not worr'::I overmuch1 if you have ever 
refereed• '::IOU will recosnise that the Problem •oes deeP: 
refereeing is Part of that process of mutual criticism and 
discussion which alone keeps Physics alive as a scientific 
disciPline. If we let difficulties srow in its Pathr PhYsics 
is in danser of deseneratina into dosmatiGm, 
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The last two Problems want to mention are eauallY 
worrisome. One arises in the use of comPuters for experiments 
and misht be called the serendiPitw Problem: We almost always 
use the computer not merely to treat and interpret the data 
but to select the relevant ones. This maw mean that we remove 
a few extreme cases amon• a few hundred valid data. or it maw 
mean that we select a few hundred relevant events from amons 
1010 or more. In either case the selection criteria are 
derived from Previous theorY• and the experimenter is not 
usuallw offered a chance to review the reJected data lif onlY 
because of their huse volume), Yet how often in the Past has 
it not been an aberrant observation that •ave rise to a real 
Jump forward ! No suarantee• of course; and even if a 
sussestive observation is found, to recoSnise it as such and 
Profit bw it reauires a Phwsicist of no mean calibre. But 
effectivelw to cut us off from this Possibility altosether, as 
Present-daw automatic selection Procedures do• is to eliminate 
a sisnificant creative element from Phwsical research and to 
reinforce the tendencw to mere mechanical extensions of 
Present-daw knowledge, 

A related danser faces us in the larse-scale use of 
simulation Prosrams in theoretical work. Such proarams 
inevitablw embodw Preconceived notions held <sometimes ouite 
unconsciouslw> bw their authors. These notions maw be 
Perfectlw Justified, or thew maw not. But when the Prosram is 
used simultaneously bw the experimenter as his theoretical 
structure and by the theoretician to Provide his 
"experimental" data - then we are in trouble: any bias in the 
Prosram's concePtion Pulls both exPerimenter and theoretical 
Phwsicist in the same direction. so thot the aareement between 
theorw and experiment seems to confirm the validity of these 
Preconceived notions. Moreover• anw real analwsis of the 
resultins Problems is made more difficult bw the fact that 
computer Phwsics• bw its intercalation between exPeriment2l 
and theoretical Phwsicsr increases their already uncomfortable 
separation. Once more• the scientific character of our work 
is in danser• this time because the confrontation of 
experiment and theorw becomes harder and is shifted out of 
focus. 

Most Peo?le workins in comPuter ?hwsics are to some 
extent aware of these difficulties. of course. But 
surPrisinSlw little work seems to be done to solve them, 
Perhaps because of the widening aulf between PhYsicists and 
Professional comPuter scientists. each sPecialisinS awaw in 
his own little corner; and there is even less recoanition of 
the fact that all these Problems create essentially the same 
dansers. Indeed• in a sense thew also have the same ori•in: 
the acritical use of comPuters. And as this comment stronslw 
sussests, the solution will not be found entirelw within th0 
realm of computins techniaues. 

This is obviouslw true of the referee's Problem• of 
course. Merelw handin• him a Prosraru listina is no solutior1• 
not even if he is siven access to the one comPuter swstem on 
which the Prosram is known to run correctlw IPortabilitw 
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claims notwithstanding), For he would Probablw need more time 
than he can afford before he understands the ProSram 
sufficientlw we11; and suPPosina he then finds somethins to 
criticise what then ? Is two or three wears' work to be 
repeated ? And if SO• who will finance it ? One Possible 
solution would be to introduce the referee much earlier, in 
the actual research rather than at the verw end• when all th~ 

mistakes have been made. Such a proposal seems not 
impossible, thoush it would reauire a much profounder 
reorsanisation of the refereeins and Publishing Process than 
for instance the mere abandonment of anonwmitw so much 
discussed at Present. 

The serendiPitw Problem miSht be alleviated bw allowins 
several experimental srouPS• with different ideas. to set UP 
simultaneous and Possiblw conflictinS selection 
be carried out while the experiment is runnins. 
not obviouslw imPossible• such a solution would 
Profound chanses in the traditional waws of 
financins research; manw PeoPle mi•ht even 
sussestions• and who would blame them ? 

I am not here advocatins that we make 

Procedures. to 
Asain• thoush 
reauire ver~ 

or~anisin~ and 
resent such 

such drastic 
chanses in the immediate future. Yet it aPPears to me that we 
cannot escape them for verw lone: we must face the fact that 
in the lons run. the impact of comPutins in Phwsics will au 
far bewond what we have alreadw exPerienced. For instance. we 
have still to consider what a development Presentlw coming to 
maturitw maw imPlY! the use of computers for handling 
alsebra. Nor have we taken into account the Promise - or 
threat - of future developments in computer architecture• of 
which Parallel Processors and distributed Processins are but 
the foretaste. 

For the moment. the onlw feasible thins is that these 
Problems should receive verw wide discussion in the Phwsics 
community, This would not only increase our awareness of the 
Problems; it would also increase the likelihood of better 
Proposals BPPearins than mw tentative and incomplete comments. 

There are• however. a number of aspects of these Problems 
than can be tackled bw comPutina techniaues. Perhaps the most 
sisnificant such aspect is the black-box character that mos1 
of our Prosrams derive from the use of lansuaaes like FORTRAN, 
developed when only batch Processins was available. In what 
follows. I wish to Present some ideas towards develoPins a 
Prosrammins lansuase which miaht help to oPen up the black 
boxes; I shall call this as wet unborn lansuase MEXLAN, an 
acronwm which maw be taken variouslw to refer to its country 
of orisin or to exPand as MeaninsfullY EXtended LANSuaae.• 

In desisnins such a lansuase. I have in mind cornPuters 
whose architecture is essentially of the Presently most common 
twPe! one CPU, extensive secondary storaSe• Parallel 
Processins only in certain well specified areas such as I/O, 
There are two reasons for this: firstlw• such machines will 
form the Phwsicist's staPle for a Sood manw wears to come - if 
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onlw because a Craw remains rather expensive; secondlw• the 
special desisns such as PiPe-line machines are, at least for 
the moment• special-purpose desisns• while the vector 
Processors are extremelw efficient onlw for certain limited 
Problem twPeS• larSelw because we still lack a basic 
Prosrammins theorw for them. Hence the middle ranse that I am 
concerned with offers the sreatest seneralitw. I do not 
isnore in this the tremendous surse of the small and verw 
small comPuters. But it seems a much better Policw to develop 
a lansuase or a swstem for a twPe of machine where size and 
speed restrictions are not too sisnificant• and once 
experience has been Sained with it to choose from amons its 
Possibilities those which should be imPlemented in a more 
limited environment. 

II 

MEXLAN would be a lansuase of recursive twPe• not too 
unlike ALGOL and its various successors• with several 
additional features that would so far towards makinS it a 
Prosrammins swstem rather than a Prosrammins lansuase; I 
Present these features• roushlw in order of feasibilitw. 
beSinnins with those whose implementation is either obvious or 
has alreadw been achieved in other contexts. 

FirstlW• all variables used in the Prosram should be 
declared. But bewond the usual declaration• sivinS the bare 
minimum information the comPiler needs• MEXLAN will reouire 
that the dimensionalitw (in the Phwsical sense. not the 
mathematical nor the comPutins one) and the units for each 
variable be Siven. Note that in a larser Prosram such 
information would be included in the comments; MEXLAN merelw 
makes this information available to the comPiler. The purpose 
is twofold: it oblises the user to Paw more detailed 
attention to the Phwsical meaninS of what he does Ca Process 
which tends to occur onlw after some error has been detected) 
and it enables the compiler to detect a sizable class of 
errors• either revealed bw a dimensional check or in the case 
of inconsistent units avoided bw the introduction of the 
aPProPriate conversion coefficient. This checkinS bw the 
comPiler can of course be nullified bw makins all ouantities 
dimensionless; but it can also be made ouite effective bw 
choosinS suitable dimensional schemes. Even commercial 

* Manw of those ideas arose durins casual conversations 
with colleasues over the wears• lons before the MEXLAN 
concept arose• and I am now unable to attribute them with 
anw certaintw to their authors. To avoid inJustices I 
have therefore suppressed all references, and I aPolosize 
to all those whose contribution I aPPear unwittinslw to 
have aPProPriated, 
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aPPlications could benefit bY this! by assi•nin• different 
dimensions to capital• salaries. various kinds of costs, and 
so on• but usin• the same units for all• one can t1ave a 
built-in check whether amounts are Posted to the ri•ht sort of 
accounti 
conversion 

alternativelY• usin• different units but makin• the 
factor adJustable dailY• one obtains automatic 

currency conversion. 

<To accommodate small Pro•rams• one misht allow a 
definition facility for undeclared variables! Thus 

c '= f(a, bl 

mi•ht establish the Guantitw c with the dimensions and units 
defined by the expression f, But because such a mechanism is 
extremely dan•erous• suitable limits (such as a site-defined 
UPPer bound to the number of such variables in any one 
Pro•raml should be set.I 

An aPParentlY small but in fact important reGuirement is 
that Pro•ram listin~s should be ProPerlY set out. with spaces. 
indentations• and blank lines to separate and mark lo•ical 
levels. Certain manufacturers' early versions of FORTRAN havP 
accustomed us to featureless seas of massed sYmbolsi such 
listin•s are unreadable and therefore lead to errors, A 
'PrettYPrint' facility such as many LISP swstems offer could 
improve listinss (and source files !li it should be the 
default oPtion. 

A third facility of imPortance is that buildin• 
structures of any necessary comPlexitw, as for instance ir1 
PASCAL• should be Possible in MEXLANi but ~o•ether with the 
data structures• oPerations on them should be definable• so 
that e,g, sums and Products of matrices could be written in 
standard notation. Complex numbers should be handled both in 
real and imaainarw Parts. as usual• and in amPlitude-araument 
formi this scheme has obvious advanta•es. If OPerstions on 
such structures can be freely defined• the interconversion can 
be made automatic. To make such Possibilities useful ir1 
practice• the MEXLAN system should be able to store complete 
structure-operations Packaees in libraries• to be called in 
automatically when obJects of that twPe are declared. Each 
installation could then build its own libraries. so that 
MEXLAN could be tailored to local reGuirements, 

A fourth feature is that the more complicated operations' 
e,g, matrix diaaonalisations• should not be carried out bs 
al•orithms decided upon when buildina the corr~s~ondins 
library; the system should instead interroaate the user. 
either at compile time or at run time• about the kind of 
matrix to be treated, in order to select the aPProP1iate 
subroutine - and the user should have the option nf answerin• 
'don't know' to ans of the auestions• at a risk <which the 
comPiler explains to him) of aettina a Proaram that works but 
is very slow or has larae error bars. 
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Fifthly, the MEXLAN compiler should be conversational; 
when an error is detected• the user has the oPtion of 
correctins it before continuin9 the comPilation, and anw 
corrections made will be incorporated in a new version of the 
source file. This possibility BPPears to have been 
implemented in a personal computer; that it would save much 
time and effort on a mainframe machine is sometl1in• the 
computer manufacturers have not wet realised, 

SixthlY• the comments should Possess a PrDPer 
orsanisation and be available on-line whenever the promram 
runs. A suitable structure mi•ht be accessible throu•h 
successive menu levels; if the MEXLAN compiler can interact 
with its text editor, a simple analwsis of Pro•ram levels 
would suffice to create comPiler PromPts for comments at 
aPPropriate Points (subroutine entries, first aPPearances of 
variables. or after too lon• a stretch with no comment), 
UnhaPPilY• at the Present sta•e it does not seem Possible to 
let the compiler verify that the comments are clear. complete. 
and correct; should somethin• like this ever be Possible, we 
could do awaw with all lan•uases and Just use the comments. A 
further help to the user would be to disPlaw lhe nearest 
Precedins comments when run-time errors occur. The existence 
of such facilities mi•ht stimulate the user into writing more 
adeauate comments. 

None of these points are at all difficult to imPlement; 
but thew do reauire that we Sive UP the all-too-common concept 
of a series of independent software facilities on the machine 
which the user calls exPlicitlw. Instead• thew would have to 
be desisned accordir•• to a common Philosophy, and thew would 
call each other as needed, The next Points, however, would 
imPlY more extensive chanses. 

Point seven covers the need for a flexible waw to analYse 
and correct errors durin• runs. The sYstem should suspend 
rather than abort a Pro•ram when an error occurs (even in 
batch: here a recursive• ALGOL-like structure to the lan~ua•e 
means that the comPiler can determine at suitable break?oints 
the minimal information reauired for restartins, instead of 
coPYin• the comPlete ima•e to disk), In the same or a 
followin• interactive session the user can then backtrack and 
discover how the pro•ram arrived at the result in error; he 
can chanse anY relevant values; and he can, finallw• restart 
the Pro•ram at a suitable Point. 
Possible to set breakPoints• 

Of course• it should also be 
where the examination of 

intermediate results is Possible even when no error occurs. 
<Note that such a facility would offer automatic Protection 
asainst machine errors or Power failures• since the oPeratin• 
system could now restart anw Pro•ram that had not concluded 
when the failure occurred.) 

a 
Eishth Point: 

simulated desk 
In order to facilitate on-line debugain•• 
calculator should be available that has 

access to the symbols and values in the Pro•ram. AnY chanses 
in these values made in usin• this desk calculator should b~ 
default only be temPorarY• but could be made Permanent if 
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exPlicitlY stiPulated. Whether. as an extension of this idea, 
it would also be Possible to let the desk calculator execute 
any function in the subroutine as if it were a defined 
operation has yet to be explored, 

The ninth Point is a more complicated extension in the 
same veinl to make an automatic •raPh facility available• so 
that either the final output or intermediate results (when an 
error has been detected• for instance) could bY a means of 
simple interactive commands be displayed sraPhicallY at the 
terminal. Considerable further research miSht be needed 
before a suitable form and default action for these commands 
could be defined; the huse variety of Present-day di&Play 
formats (and sraPhics terminals' internal codes) makes this 
almost impossible at the moment. 

Ten: It should be Possible to set suitable limits on the 
acceptable values for any Guantities in the Pro•ram (includina 
intermediate ones), and to do so interactively durinS 
execution. If the currently new value of a variable exceeds 
these limits• an error condition arises; but the user should 
have the oPtion of allowins the excePtion. 

Eleventh - and last - Point: One of the most ursent 
Problems in comPuter PhYsics is our lack of automatic or even 
semi-automatic methods for determinins reasonable error bounds 
on the results of lensthY calculations. If such methods 
existed• they would aid SreatlY in eliminatins useless 
calculations and establishing the exact value of the better 
ones; above all• they would much reduce the Problems I have 
mentioned of usins Pro•rams outside their scope, One such 
Procedure misht be an extension of somethins imPlemented in 
the IBM Stretch: with the OPtion of settinS the fill bit for 
left shifts in addition and normalisation either to 0 or to 1• 
one could on that machine run a Prosram twice; any disits in 
the final outPut that coincided were then taken to be 'Sood'. 
If insted of usins merely the fill bit• one could sPecifw for 
each number how many bits should be affected• PerhaPs as an 
extra byte in the word• then Guite seneral alsorithms usinl 
this device misht be developed. Another possibility misht be 
to comPute simultaneously with every numerical oPeration on 
two or more operands a worst error estimate <the sum of either 
the relative or the absolute errors on the operands) and the 
uncorrelated error estimate; at the end of each block or 
subroutine• an exPlicitlY Prosrammed calculation of the error 
in that block is made• usins a Ponderation that characterizes 
the alsorithm. Whether such a method is feasible and wields 
reasonable error estimates is at Present under study; it maw 
not be sufficiently Seneral to cover all needed cases. In anw 
case• much further work in this area is clearlw reGuired. 

To conclude with a seneral Point of the desisn Philosophy 
for MEXLAN• sreat efforts should be made to make the sYntax 
flexible. It should be desisned so that different syntactic 
forms differ bw as many elements as possible• so that the 
comPiler could correct trivial mistakes because they would not 
in seneral introduce ambisuities, On the other hand• the 
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UPPer-case and lower-case letters should be taken to be 
distinct: Phwsicists are accustomed to treatins x and X as 
different swmbols. PerhaPs reserved words should be all UPPer 
case: this would make it easw to pick them out in listinss. 

Manw other 
outlined those 
contributing to 
Phwsicist <and 
ambitious at the 
insufficient to 

III 

ideas could• of course• be added. I have 
I consider to be comPatible, in the sense of 

a useful and intesrated lansuase for the 
Probably verw manw others), and not too 
Present moment. But thew are evidently 
define a lansuage1 rather. they constitute 

minimum reauirements. Moreover• thew are bw no means eauallw 
easw to implement, and at the least• a good deal of further 
work on them is needed. Some comments are in order. 

In the first Place, it has been stated above that what is 
Proposed here under the name of MEXLAN is a comPlete 
prosrammins swstem rather than simPlw a languase definition; 
in fact• further elements such as a sPecial-purpose editor 
misht conceivablw be added. I believe this is vitall to a 
larse extent• Present-dew lansuases restrict and hamper the 
user because thew do not function in a reasonably well-defined 
environment of ProsramminS and debussins services: 
'user-friendlw' is often no more than a sales Point• instead 
of indicatins that users' needs are considered. FORTRAN• for 
instance• is a lansuase that has been imPlemented on almost 
ever~ computer1 but the different imPlementations varw 
sreatlw in usefulness. to a larse extent because of the 
enormous differences in the remainins elements of the FORTRAN 
swstem as between different machines. If we do not do 
somethins to provide a reasonablw comPlete and well structured 
environment- to users, the defects in some of these 
imPlementations <and I need hardlw sive examples• for this 
audience) will hold even the best lansuase back bw reducins it 
to its lowest common exPression. But there is a further 
Point: we use computers in order to solve specific problems. 
and the machine is useful <or 'user friendlw'J to the extent 
that it can make use of anw information relevant to the 
Problem but does not need anwthins else; the extended 
declaration of variables and the limit checkins described 
above are a first steP in that direction. To Put it 
differentlw, what the computer must handle are not numbers but 
auantities: obJects that possess not onlw a value but also a 
ranSe• a dimension <and units), and certain specifications as 
to twPe of variable, limits of Phwsicallw meaninsful values 
and form of representation. 

At the same time• and because the need is ursent• I have 
tried to limit mw ambitions to somethinB that could be 
achieved in a reasonablw short time. even if it is later 
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superseded bw somethins better. Provided MEXLAN has 
contributed to stimulatins the Production of this 'somethins 
better'• it will have done its Job. 

For the first few Points the software techniaues are all 
available; but much more work will be needed before e.s. the 
backtrackins mechanisms I have asked for can be built in a was 
that is not enormouslw wasteful in disk SPace. Presumablw 
some sort of limitation will have to be set UP• makins the 
backtracking less and less detailed as one soes further back 
from the current Position in Prosram execution; a fullw 
recursive structure for the lansuase will be of sreat help 
here1 but Preciselw how this is to be ensineered has still to 
be worked out. 

Lastlw• Points ten and eleven so bewond Present computer 
architectures. Thew could onlw be imPlemented if we add some 
new Parallel arithmetic Processors: one that keeps track of 
how new values compare with the limits set on them• the other 
that evaluates error bounds bw the Stretch method (or a better 
one• if ever it becomes available>. Such Parallel Processing, 
fortunatelw• creates no Problems from the prosrammins Point of 
view• since the oPerations are well defined• disJoint from 
those carried out in the main arithmetic unit• and no complex 
interlockins is reauired. The main difficultw - once the 
alsorithms have been ProPerlw defined in SettinS such 
Processors into our computers would appear to be economic: 
can we Persuade the computer manufacturers to take UP such 
ideas ? 

Whether the develoPment of such swstems as MEXLAN will 
make a decisive difference in how Phwsicists use comPuters 
onlw time will show. But it must be remembered that• as I 
have insisted above• comPutins science is onlw half the 
Problem: we ourselves are the other half• and to avoid future 
disaster we must imProve both our comPutins services and 
ourselves. 
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QUESTIONS AND ANSWERS 

Q: Please co11U11ent on the following: 

There are no bad languages, only bad programmers. 

F. Beck 

A: I agree partially, but some languages help, whereas other 
hinder, good progra11U11ing. 

Co11U11ent: Isn't it true that most of the errors detected by interactive 
compiler or executor are single, "trivial", easily corrected. 

P. Lebrun 

A: As yet errors, like inverting, bad flow chart, bad 
optimization cannot be caught by the most intelligent compiler. It is 
unfortunately those errors which are time consuming. 

Q: There is a lot of software being written for personal computers 
that incorporates some of these ideas. How do you view the migration 
of these packages into scientific computing? 

M. Delfino 

A: There seems to be migration in both directions from mainframes and 
micros. 

Q: Is your group working on these ideas (to create such a system) 
or do you know someone who is? 

O. Kaplan 

A: No, but I'll be happy to work with anyone who's interested. 
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SOFTWARE FOR LARGE SCALE TRACKING STUDIES 

J. Niederer 
Brookhaven National Laboratory 

Upton, New York 11973 

Over the past few years, Brookhaven accelerator physicists have 
been adapting particle tracking programs in planning local storage 
rings, and lately for SSC reference designs. In addition, the 
Laboratory is actively considering upgrades to its ACS capabilities 
aimed at higher proton intensity, polarized proton beams, and heavy 
ion acceleration. Further activity concerns heavy ion transfer, a 
proposed booster, and most recently design studies for a heavy ion 
collider to join to this complex. Circumstances have thus encouraged 
a search for common features among design and modeling programs and 
their data, and the corresponding controls efforts among present and 
tentative machines. Using a version of PATRICIALl) wiLh nonlinear 
forces as a vehicle, we have experimented with formal ways to describe 
accelerator lattice problems to computers as well as to speed up the 
calculations for large storage ring models. Code treated by 
straightforward reorganization has served for SSC explorations. The 
representatio~ work has led to a relational data base centered 
program, LILAL 2 J, which has desirable properties for dealing with the 
many thousands of rapidly changing variables in tracking and other 
model programs. 

The mathematical basis of tracking is being refined to find a 
manageable formulation that preserves the off axis position and 
momentum phase space of orbiting particles over many turns in the 
presence of numerous nonlinear forces. The PATRICIA and RACETRACK[3) 
programs with relatively simple transfer matrices do not have this 
symplectic behavior, and hence fZ1 introduce artifacts in simulated 
particle tracking. The MARYLIE approach has shown how to express 
the tracking problem properly through low orders, but gets very 
complicated when higher order multipoles are included. Approfche, 
which synthesize an appropriate Hamiltonian are bei~g pursued 5,6 , 
and will be included in a future version of the MADL 7 1 design programs 
at CERN. 

We are collaborating with CERN colleagues in a broad effort to 
make the MAD programs more flexible and general for the accelerator 
community. The programs will respond to an agreeable input and 
control language, with familiar and dynamic vocabulary, applicable to 
all[alcelerator programs in principle. The language is to be that of 
MAD 8 , with T~Yh modification as suggested by the TRANSPORT 
collaboration • The generalized language and input handlers 
developed for LILA apply to MAD. The MAD physics internals will be 
modified for a message-object [IO) style of coding, based upon LILA 
prototypes which in effect are quite flexible data base handlers and 
operators. The accelerator physics parts are to work from a centrally 
managed relational data base that permits an almost unlimited variety 
of relations among the components of the accelerator model. The new 
version will make use of interactive capabilities and displays, and be 
developed on a modern workstation to make use of program development 
techniques. Finally, the language and the data base services will be 
acceptable to both design and control programs. 
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The language and its interpreter make use of the notion of 
objects, relaTi~ys, and operators. Details are available in BNL 
documentation 1 , An object is anything that can take a unique name; 
in the computer it is a stored collection of information about some 
real life "thing". Relations are simple lists of objects. Operators 
read relations, which in turn point to objects, and the objects tell 
the operators how they are to be processed. Attributes are properties 
of objects; parameters help to describe operators. Keyword (class) 
objects show how attributes and parameters are to be contained in the 
data structures of objects or operator descriptions, 

The data base itself has to create, modify, or delete objects and 
relations. Other duties are to find objects by name, or to link the 
names of relations to their objects and data. Memory management and 
directory services are included, The user drops a number of 
statements describing the accelerator into a pool of memory, and the 
programs treat all of the storage and association details. Normally 
initialization routines will convert the input variables into forms, 
such as matrices, better suited to rapid computation. 

The MAD programs being aimed at immediate LEP applications are of 
obvious interest to the larger SSC. As the newer algorithms are 
verified, they will be optimized and programs will move from the 
slower workstations to more suitable computing machines. Although 
largely a matter of programming technique, the formulations noted here 
replace almost half of the MAD code with more general language and 
data handlers, aiding expansion and further program development. The 
data st•uGturing scheme resembles that of the Xerox Smalltalk 
ProjectLlLJ, but there is no correspondence between these languages. 
The central idea of using a common data base mechanism over many 
classes of ay~~}cation program is often noted as "Data Driven 
Prototyping" in the commercial world, with exuberant claims about 
speeding up the construction of application programs. 

This work has benefited through discussion and encouragement from 
D. Lowenstein and R. Peierls at BNL, and F. C. Iselin and E. Keil at 
CERN. Support has been provided by DOE Contract DE-AC02-76CH00016. 

1. S. Kheifets, 
the Influence 
SLAG PTM-151, 
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53 MHz DIGITAL PROCESSOR FOR REAL TIME CALCULATION 
OF BEAM ORBIT CORRECTIONS IN THE FERMILAB TEVATRON 

Marvin Johnson* and Louis Rolih 
Fermi National Accelerator Laboratoryt 

P. o. Box 500 
Batavia, Illinois 60510 

Abstract 

We have built a pipelined processor which takes the measured 
position and intensity of each radio frequency bucket, computes 
deviation from the aesired orbit and then computes the voltage to 
be applied to a fast kicker to correct the orbit. The device also 
computes the average positions of the beam and the fractional 
part of the betatron tune. All computations are done in real time 
at a 53 MHz rate. 

Betatron oscillations in the Tevatron ring are a primary 
limitation on the intensity of the Fermilab accelerator. These 
oscillations are caused bv magnetic fields from eddy currents 
induced in the stainless steel bore tube by the passage of 
particle bunches themselves. This is commonly referred to as the 
resistive wall affect. 

To combat this affect, we have built a device which measures 
the beam position of each particle bunch, calculates the amount 
of displacement, and then provides a kick in the opposite 
direction. All the calculations are done with a pipelined 
processor using Motorola lOK and lOKH integrated circuits. Since 
the separation between bunches is only 18.9 ns, the digital 
processor part of this system was designed to run with a clock 
period of 17 ns. The boards are all hand wired using insulation 
displacement prototype boards from Robinson-Nugent Co. The system 
had to be compatible with the Fermilab control system so it is 
packaged in CAMAC. The design makes heavy use of pipelining to 
achieve these clock speeds. 

*Presented by Marvin Johnson. 

toperated by Universities Research Association, Inc., under 
contract with the United States Department of Energy. 
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A block diagram of this device is shown in Fig. 1. A four 
foot long, two plate detector measures either the horizontal or 
vertical beam displacement. The signals from the two plates (A 
and B) are summed to give the total intensity (A+B) and 
subtracted to give the displacement (A-B). This is done by 
passive power splitters, inverters and combiners. The signal is 
then integrated over the length of a bunch (2 ns.) and digitized 
by a flash analog to digital converter (ADC). The ADC consists of 
four 6 bit ADC~s (Analog devices 5010s) stacked to give ± seven 
bits of resolution. 

This system needs a position resolution of approximately ±64 
and a total intensity variation of 20. This gives a total dynamic 
range of ±1200 which is much greater than our 8 bit system can 
provide. We solved this problem by using 2 sets of ADCs. The 
first set has an additional analog gain of 10. When the first set 
overflows, the input to the rest of the system is automatically 
switched to the second set. This gives an overall dynamic range 
of ±1280. 

The effect of intensity variations is removed by dividing 
the (A-B) signal by (A+B). This is done digitally by using PROMs 
to find the loq(A-B) and -log(A+B). These signals are added and 
another set of PROMs is used to exponentiate the sum. Base 2 
logarithms are used. We obtained a maximum error of 3 per cent 
with 8 bit log tables and 8 bit exponential tables. Going to 9 
hit log tables increases the accuracy to about l.S per cent. 

Although the use of logarithms allows fast computation, they 
have significant draw backs. The log of zero is not defined. The 
log of a negative number is complex. Even though (A-B) is in 
principle alwavs less than or equal to (A+B), our system has some 
noise in it so we must take care of the case where (A-B) is 
greater than (A+B) also. Each of these problems can be solved 
rather easily but when taken together they add circuit 
complexity. Because of this and the availability of fast, 16K 
static RAMs, we are designing a board that simply uses a 14 bit 
wide table look up. Negative numbers are obtained by using PROMs 
to convert the 8 bit quotient to twos complement. 

Since the particles travel at the speed of light, the 
results of the calculation must be delayed until the particles 
come back around again. This delay is about 21 ms. We achieved 
this delay by using RAMs to imolement a long shift register. A 
straight forward shift register cannot be implemented at these 
frequencies since this would require both a read and a write to 
the same memory chip in one 19 ns. cycle. To solve this problem, 
we divided the memories into two parts - an even one and an odd 
one. Each memory is lK long by 12 hits wide. An 11 bit counter is 
used to determine the memory address to read. The write address 
then determines the delay. It is computed by adding the delay 
(set in switches) to the counter address. That is, if the delay 
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is 600 clock steps and the counter is set to 1, the current 
result is written to address 601 and the delayed result is read 
from address 1. Six hundred steps later, the delayed result would 
be read from address 601 and the current data would be written to 
address 1201. In order to avoid the memory conflict mentioned 
earlier, the delay address is forced to be odd always. Thus, if 
one is reading from an odd address, one is always writing to an 
even address and vice versa. This means that the delay increment 
is 2 cloc~ steps, but this is not important to us. 

The delayed quotient is then fed into a module that computes 
the damping voltage that is to be applied to the given bunch. 
This module subtracts the average position of the beam and then 
uses a look-up memory to determine the amplitude of the kick. 
Durinq the acceleration cycle the beam energy and the magnetic 
fields do not track precisely. Thus the average beam position 
varies throughout the cycle. To correct for this, a module 
(described below) calculates the average position of the bunches 
in the preceeding turn. This is subtracted from the present bunch 
position before the data is sent to the look up memory. 

The look up memory is 12 bits wide and the position is only 
8 bits wide. This gives 16 different operations that can be 
applied to a given bunch. Which one of the 16 to apply to a given 
bunch is aetermined by a function select module. There is one 4 
bit function code for each of the 1113 bunches in the machine. 
Eight of the sixteen functions can be gated by an external clock. 
An example of a special function is the set-up for proton 
anti-proton collisions. One would select normal damping on 1 
bunch and anti damping on all the others. This would remove all 
but one bunch from the machine. 

The output of the lookup memory is then fed to a high speed 
Digital to Analoq Converter(DAC) and then to a power amplifier 

The average position of the beam is determined by summing 
selected bunches and dividing by the number of bunches. Since the 
number of bunches is not crucial, they are restricted to a power 
of 2 so that the division is just a shift. Bunches are again 
selected by a memory and are accumulated by a recursive adder, 
i.e., the output of the adder is connected (via a latch register) 
to its input. A new average position is output at the end of 
every turn. Because of the speed limitations of fast adders, this 
board skips every other bunch. 

We hope to use the damper for continuous tune measurements 
of the machine. One of the 16 functions will be programmed to 
anti-damp a bunch if the position amplitude is small and to damp 
if the amplitude is large. This will then excite betatron 
oscillations of roughly constant amplitude. This function will be 
selected for only one bunch in the machine so that we don~t cause 
the entire beam to blow up. In principle, the position of this 
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one bunch needs to be Fourier analyzed to obtain the betatron 
frequency. However, the betetron frequency is a single frequency 
so all that is required is to count zero crossings. We are 
designing a module to do this. The module~s input will be the 
bunch position corrected for the average offset. · 

Finally, a large diagnostic memory has been built which will 
record the position of the last 64K bunches. This can be all the 
bunches for approximately 58 turns or 1 bunch for 64K turns or 
any combination in between. The memory is constructed from 16K 
static rams interleaved 4 ways. This will be quite important for 
machine studies and for finding problems in the machine. 

Since this processor cannot test itself, we developed a 
computer assisted test setup using a 60 MHz. random number 
generator. This system has 16 input bits of 65000 different 
states. We also wanted to test the affect of the previous state 
on the present state. This gives 65000 squared different states 
which is about 4 billion. 

The random number generator is a Tausworthe[l] generator 
based on Mersenne primes. We used the trinomial generator 
x**3l+x**l3+1 which can be shown to have a period of 2**31[2]. 
This generator passes all first order Chi-square tests for 
randomness but fails second order tests (pairs of numbers are not 
random). This problem could be solved with more hardware but 
first order randomness is adequate for testing. 

Next, one needs to know how long to run so that every 
interval of a given size has been tested at least once. With 
random numbers this becomes a statistical question. For a small 
fraction of the total interval the distibution of uniform random 
numbers follows a Poisson distribution. Thus the probability of 
having no number in the interval is just exp(-m) where m is the 
average number that should occur in the interval. Therefore, to 
find the necessary running time, one selects the minimum size of 
the interval to probe and the probability of testing each 
interval of this size at least once. The natural logarithim of 
this probability gives the average number of tests for this 
interval. 

[l]Tausworthe,R.C. "Random Numbers Generated by 
Recurrence Modulo Two,"Matl-i. Comp. 19(1965) ,201-209. 

Linear 

[2]Bright,H.S. and Enison,R.L. ,"Quasi-Random Number 
Sequences from a L·ong-Period TLP Generator With Remarks on 
A~plication to Cryptography," Computing Surveys,11, 
4 (1979) ,357-370. 



Fig. 1. Block diagram of the beam damper system for the Tevatron. 
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THE DESY BEAM ORBIT PROCESSOR 

W.Neff, H.Quehl, H.J.Stuckenberg, 
Deutsches Elektronen-Synchrotron DESY, Hamburg, 

P.Leu; E.Lohrmann, P.Wilhelm, 
II.Institut fUr Experimentalphysik, Univ. Hamburg, Germany. 

1. Overview of the Problem 
Computing the motion of particles in a storage ring is an important task 
in accelerator physics. In realistic studies one has very often to go beyond 
the approximation of linear optics, and consider the effect of higher order 
multipoles and other deviations from a simple machine consisting only of 
dipoles and quadrupoles. A standard approach consists of tracking one particle 
at a time through the magnetic elements of the storage ring by explicit 
computation of particle motion in each element of the storage ring. 
In order to determine important properties of the ring like its aperture 
and the stability of the beam, one has to consider a rather large number 
of particles, whose initial conditions are chosen to cover the expected 
aperture of the storage ring. Moreover, in order to study instabilities 
one has to track particles through many revolutions around the ring. 
This task can be very costl1 in computing time. As a specific example we 
take the program RACETRACK , which is widely used at DESY for studies of 
the HERA proton ring, and which we implemented on the DESY Beam Orbit Pro-
cessor (DBOP). In simulating the HERA proton ring, the tracking part of 
the program has to consider 850 linear beam elements (quadrupoles and dipoles). 
The nonlinearities are taken into account by describing them in the form 
of 800 nonlinear elements placed6around the ring. For one revolution one 
has to carry out about 0.25 x 10 floatingpoint operations (addition, sub-
traction, multiplication). A study of the necessary numerical accuracy shows, 
that the floating point operations have5to be carried out in double precision 
(64 bit word), if one wants to go to 10 revolutions. Under these conditions 
one revolution needs about 50 ms of CPU time on an IBM 30810. 
The structure of the tracking program is simple. The particles are considered 
independently one at a time. Most of the CPU time is used for evaluating 
polynomials in double precision. The program contains about 180 FORTRAN 
statements and uses about 100 k bytes of core storage. The relatively small 
size of the tracking part of the program suggest the parallel use of many 
microprocessors, each of which contains the same tracking program and works 
on one particle with specific starting conditions. 
2. System Design 
Some general requirements had to be taken into account when designing the 
processor system: 
- Execution speed: For the RACETRACK tracking program the complete system 

should have adequate computing power as compared to a major computer like 
the IBM 30810. 

- Programming: FORTRAN programs must run on the system, program modifications 
must be easy. 

* Presenter 
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Time scale: To make maximum use of the machine for HERA construction, 
prototypes should be finished within 1/2 year and a first system of 8 
processors run within about 1 year. 

In Fig. 1 the conceptual design showing a microprocessor (µP) and the host 
is shown. The system is controlled by the host computer which is master 
on the global bus. All microprocessors are interfaced to the global bus 
as slave devices. The local bus is the µP bus itself. The µP is connected 
via the local bus to various interfaces, program memory and the floating 
point unit (fpu). The fpu consists of a fast dual ported data memory of 
128 k byte and the floating point processor. As a further extension a hardware 
subroutine for the evaluation of polynominals is foreseen. The floating 
point modules are interconnected by the floating point bus which has 2 x 64 
bit data lines. 
For the µP we have chosen the Motorola MC 68000 with 12 MHz clock. The program 
memory is 128 k byte of 8 k byte static RAMs. There are two serial line 
interfaces and one 8/16 bit parallel I/0 port connected to the µP. The µP, 
program 2~emory and interfaces for the prototype processor are commercial 
products . 
Each microprocessor has the same version of the tracking program. The host 
computer supplies the same load module to each µP and then transmits specific 
starting values of the particle orbit to be computed. The computing time 
is mainly determined by floating point operations. Since µP with fast floating 
point hardware for double precision are presently not available, we have 
built a special floating point unit. 
One of the basic ideas of the system was to avoid any cross software compli-
cations by using a host computer with a MC 68000 CPU. The host then also 
serves as a software development machine and edited, compiled a~~ linked 
programs can run directly on the microprocessors. A workstation is used 
running under the UNIX operating system. It supports C and FORTRAN 77. 
To support the requests for operating system services embedded in the linked 
program modules we have developed a supervisor program which is permanently 
loaded on each of the microprocessors. This supervisor intercepts and services 
all necessary system calls. 
The host compiler generates floating pointqjnstructions which meet the require-
ments of the Motorola software coprocessor MC 68341. This emulation soft-
ware package is also installed on each µP so that programs using floating 
point arithmetic can run on the system without the hardware fpu. 
Having on the assembler level explicit floating point instructions instead 
of subroutine calls makes interfacing to the hardware fpu straightforward: 
All floating point instructions which are to be executed by our special 
hardware are replaced on assembler level. 
The speed of the MC 68000 gives an upper limit on the floating point computing 
speed. Neglecting the t~me required by the fpu itself the maximum computing 
speed is 0.2 - 0.7 x 10 floating point calculations per second. This depends 
mainly on the length of the arithmetic expression to be evaluated, where 
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long calculations are favoured. 
Assuming such a machine, the shortest possible execution time for RACETRACK 
can be estimated to be about 0.5 sec per revolution per particle. This is 
about 10 times more than on a IBM 30810 or about as long as on a VAX 780 
with floating point accelerator. 
To achieve this fast execution time the fpu must be able to transfer 64 bit 
operands from/to memory within about 400 nsec and to perform 64 bit arithmetic 
calculations within about 800 nsec. 
3. Floating point hardware 
Since there are no 64 bit floating point units for microprocessors available 
which fullfill our needs for execution speed we have built a fast 64 bit 
floating point processor for addition, subtraction, multiplication and operand 
compare instructions. Division, which is a very rare operation, is carried 
out by software. The fpu is shown in Fig. 2. The µP communicates with the 
floating point controller and data memory via the local bus. An essential 
property of the fpu are the internal 64 bit data paths for operand transfer. 
Otherwise passing the 64 bit operands via the 16 bit µP data lines would 
require 4 read/write processor cycles and thus be much too slow. The floating 
point controller is a microprogrammed device with 55 nsec cycle time to 
match the data memory access time. The controller has 16 floating point 
registers, of which 8 are used by the software. The additional 8 registers 
and sufficient space for microprogramming is foreseen for an implementation 
of hardware subroutines. The arithmetic units get their input from two 64 
bit busses and pass the result back on one of them. 
4. Present status and Outlook 
At present we have one microprocessor running. The floating point unit uses 
250 nsec for an add instruction and 1200 nsec for a multiply instruction 
in double precision. The computer needs 0.8 s to track a particle once around 
the HERA storage ring and thus performs at about 6% of the speed of an IBM 30810. 
We now plan to build 8 identical microprocessors to bring the system to 
full capacity. 

References: 
1) A.Wrulich, DESY Report 84-026 
2) KWS Computersysteme GmbH, Ettlingen, West Germany 
3) PCS - Periphere Computersysteme GmbH, Munich, West Germany 
4) M 68 KFPS, Motorola. 
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QUESTIONS AND ANSWERS 

Q: Do you have plans to expand the system beyond 16 processors, 
and what about interactions among the particles? 

D. Kaplan 

A: Yes, if we get more money. The global bus is low 
bandwidth, but interfaces among processors are easy to build to allow 
dealing with interactions. 

Q: How many boards and how expensive is your Floating Point? 

M. Fischler 

A: 3 boards (+1 for memory). (No cost number recorded.) 
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ON-LINE USE OF MICE FOR MONITORING pp -+- J/'i! AND 

FILTERING pp .... nc EVENTS IN THE R704 EXPERIMENT 

J.P. Guillaud, Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), 

Annecy-le-Vieux, France. 

ABSTRACT: 

MICE, a fast user-microprogrammable processor is part of the on-line system of 

the R704 experiment. Two different uses have been implemented: monitoring the 

detection of J/'i! decays in pp annihilations and pp -+- nc event filtering. In 

both aspects, MICE has proved to be efficient, flexible and reliable. 

1) MICE 

MICE is a fast user-microprogrammable processor which emulates the PDPll fixed 

point instruction set. It has been built at CERN with MOTOROLA ECL 10800 bit-

slice family and ECL 10146 memory chips (1). Its block diagram is shown in 

figure 1, a detailed drawing of the CPU architecture can be found in ref. 1. 

Its micro cycle time is 105ns, In our configuration, MICE has 2 separate mem-

ories (fig. 1): 

- the Target Memory (TM), 16 bit-wide with a total size of 20kw split in 4kw of 

fast ECL memory (access-time -40ns) and 16kw of MOS-memory (access-time -lOOns). 

The maximum possible TM size is 28kw. TM contains the PDPll code, program and 

data. 

- the Writeable Control Store (WCS), 1 kw of 120 bits, where the emulator (400w), 

the diagnostic routine (50w) and the microcode reside. The maximum WCS size 

is 4kw. 
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A fast multiplier (-210ns multiply time) is connected to the CPU via extensions 

of the 2 internal buses (TTL extended buses XIB,XOB). MICE conmunicates with 

the external world through 3 interfaces: 

- a simplified Unibus adapter for connecting standard PDPll peripherals 

- a CAMAC interface connected to the CAMAC Dataway. It allows the control of 

MICE from the main computer: loading and dumping of the 2 memories, Program-

Counter loading and various control actions as "start", "halt", "dump regis-

ter content" It allows to send and receive 4 interrupts to and from the 

experiment. 

- a cycle stealing Direct-Memory-Access (DMA) interface with 2 different inputs: 

1) a Receiver-Memory-Hybrid (RMH) interface that reads the data from multi-

wire proportional chambers (MWPC) and counter hodoscopes at -410ns per 

word (due to the limited number of words (~ SOw), no effort was made to 

decrease this time to the possible -150ns figure), 

2) a Romulus-Remus interface which allows, through a specially built inter-

face (2), (IDC), to spy the content of the System Crate Dataway during 

the transfer of the data from the experiment to the main computer. The 

cycle stealing mechanism allows to interleave this read-out with the pro-

cessing of the data previously read from the RMH. 

2) THE R704 EXPERIMENT 

The principal aim of the R704 experiment (4) is the study of the Charmonium 

states directly produced in pp annihilations obtained in the interaction of 

an intense p beam (-SmA), circulating in the ring 2 of the CERN ISR, with a 

molecular Hydrogen "jet target". This provides a high luminosity (~ 10 30 cm-2 

• sec- 1), a very good definition of the center of mass energy with the momentum 

cooling of the ISR (Lim $ 0.3MeV) and a favourable geometry of the detection of 
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the final states. The experimental apparatus has been designed to select the 

pp collisions with final states e+e-, e+e-y, yy, yyy. These events correspond 

to the production of the states J/~, nc' n~, x0 , x
1

, x2 ••• (for ex, pp+ x2 

+ e+e-y). It is based (fig. 2) on 2 symetrical detection arms arranged in a 

trapezoidal shape following the 6/¢ acceptance in the lab system. Each arm 

consists of charged detectors (for e+e- pairs) and calorimeters (fore and y 

shower conversion). The charged part consists of hodoscope counters, MWPC 

and a freon Cerenkov counter. The calorimeter is divided into 4 parts: a pre-

calorimeter (PC) a set of analog chambers (AC), a shower hodoscope (SH) and 

a lead-glass wall (LG). Extra counters, charged and neutral guard detectors, 

cover a large part of the remaining solid angle (Veto's). 

The general flow of data from CAMAC modules to magnetic tape is supervised by 

a NORD-10 computer. It provides the data acquisition, through Direct-Tasks, 

the steering of the experiment and the sample analysis, through Real-Time-Tasks. 

Before being read out by the NORD-10, the calorimeter information (ADC's) is 

pre-processed: 2 LRS 2280 µ-processors are used for pedestal subtraction and 

compaction of the analog chamber ADC's, a CAB µ-processor rejects events with 

too low energy deposit in the calorimeter ADC's (PC+LG). The total read-out 

time is -Smsec. 

3) MICE AS A J/~ DETECTION MONITOR 

The RMH information (3), MWPC and Charged hodoscope registers, is read out by 

MICE via its RMH interface (fig. 3). Consistency checks (in assembly code) 

are performed within SOµsec, the spatial reconstruction (track and vertex 

finding, coplanarity, written in Fortran) is completed within 2.2msec. MICE 

has even enough time left to spy via its Romulus-Remus interface, the infer-

mation read by the NORD-10: when the data from the calorimeters is available 
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on the System Crate Dataway, MICE reads it in parallel with the NORD-10, using 

the IDC mechanism (Indirect Data Channel). The energy deposit in the calori-

meters, inside roads centered on the electron tracks, is calculated and a fast 

kinematical analysis (Fortran) is performed giving the effective mass of the 

e+e- pair (3.3msec). An event is thus fully reconstructed within S.Smsec. 

Due to the very small width of the J/~ (60keV) and to the very good momentum 

resolution of the p beam, the on-line J/~ reconstruction allows to optimize 

the mass scanning operations leading to the absolute momentum calibration 

of the ISR. 

4) MICE AS A pp + nc EVENT FILTER 

The trigger logic of the R704 experiment is mainly based on a two level system: 

- a system of EGL discriminators and coincidence matrices followed by a pro-

grammable logic unit (PLU LRS4508) selects different types of triggers based 

on topological 8/¢ considerations (for charged hodoscopes: 8arml s 8arm2, 

¢arml s ¢arm2, for shower hodoscopes: SHarml s SHarm2). 

- a second level of decision is performed by a Majority Decision Unit (MDU) 

whoRe selection criteria are based on the multiplicities in the charged hodo-

scopes, shower and veto counters. 

This system has proved to be very selective. But in the case of the decay 

nc + ¢¢, each ¢ decaying in 2 Kaons, it is difficult to distinguish a single 

track (coming from elastic pp) from the 2 nearby tracks of the Kaons. The 

resulting trigger rate is too high (-lOHz/lmA). MICE has thus been inserted 

in the trigger as event filter. 

The RMH is read out (fig. 4) and consistency checks on MWPC are performed as 

in 2) within SOµsec. A very limited spatial reconstruction (Fortran) requir-
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ing at least 2 tracks per arm is completed within 800µsec. In the case of a 

"bad" event, bad content in MWPC or wrong topological configuration, a RESET 

is sent to the fast logic, giving a dead-time between 50 and 850µsec (depend-

ing on how close to the 4-prong configuration the event is). This decreases 

the trigger rate by a factor 10. 

5. CONCLUSIONS 

In the R704 experiment, two important roles are assigned to MICE: monitoring 

and event filtering. 

Using the device to perform track finding and event reconstruction (in pp+ 
+ -

J/~ + e e , pp + X2 
+ -

J/~ + e e y ... ) has been very easy due to the possi-

bility of progrannning it in high-level languages such as assembly code or 

Fortran. As the reconstruction time is not too long, there was no need of 

using the microprogrannning facility. The on-line reconstruction of the J/~ 

decay optimizes the mass scanning operations. 

On the other hand, the role of event filtering devoted to MICE in pp nc 
+ - + -¢¢ + K K K K is even more important as the event rate would have been an order 

of magnitude too high with only ECL fast trigger logic. 

Finally, the software envirornnent of MICE was found to be so "user friendly" 

that program development could be done with minimal effort on the NORD-10 host 

computer. MICE has proved to be a valuable, flexible and efficient device 

in both monitoring and event filtering tasks. 
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FIGURE CAPTIONS 

Figure 1.- MICE block diagram. 

Figure 2.- Set-up of the R704 experiment. 

Figure 3.- MICE as a monitor in the R704 on-line system. 

Figure 4.- MICE as event filter in the R704 on-line system. 
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QUESTIONS AND ANSWERS 

Q: Was the reconstruction program written in FORTRAN? 

R. Verkerk 

A: Half in FORTRAN. - for spatial reconstruction and kinematics; 
half in PDP Assembly code - for key routines (interrupt handler and 
square root calculation, for example). 
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TRIGGER AND SPECIALIZED COMPUTING HARDWARE 
FOR THE COLLIDING DETECTOR AT FERMILAB 

Myron Campbell 
The Enrico Fermi Institute, The University of Chicago 

I. Detector Description 
The collider detector at Fermilab will provide the first look at 2 TeV center of mass 

jip collisions. The detector has complete calorimetry coverage from 2 • to 178 •. The 
central region is instrumented with a silicon vertex detector, a vertex time projection 
chamber and a large central tracking chamber. A central muon chamber covers the 
region between 51' and 129' . Muon coverage in the forward region is provided by 
toroids from 2' to 10' and 170' to 178' . A more detailed description of the detector 
can be found in the CDF design report.1 

The jip collider at Fermilab will have up to 6 bunched beams with 3.5µsec between 
crossings. At the design luminosity of 1030 cm-2sec-1 and at 2 TeV center-of-mass energy 
we expect an inelastic interaction rate of 50,000 events per second. The total number of 
detector elements is approximately 75,000 with 10% occupancy for typical events. The 
expected rate for events being written to tape is between one and five Hertz. The 
trigger system and online processes must perform this factor of 10,000 reduction in event 
rate. 

II. Overview of Data Acquisition System 
The trigger electronics and data acquisition system are built to allow the detector 

to be partitioned into several independent systems. This will be important in the early 
stages of detector operation when the several different parts of the detector are being 
brought online. Also operation of the majority of the detector will not be inhibited by 
the failure of one part. The partitioning scheme will be useful later for maintaining cali-
brations of the various parts of the detector. 

The detector can be divided into a maximum of 64 subunits, each of which can be 
assigned to any of up to 16 independent partitions. The large number of subunits allow 
for minimal disruption of the main detector when a piece must be removed for testing or 
calibration. The limit of 16 independent partitions is set somewhat arbitrarily by 
FASTBUS broadcast protocol.2 The cleavage lines for splitting the detector are deter-
mined by the scanner and front end card assignments: a scanner and its associated RAB-
BIT crates3 can be in only one partition. The central calorimeter is divided into 48 
wedges each wedge containing the electromagnetic and hadronic calorimetry, strip 
chambers, and muon chambers. The electronics for the rest of the detector is divided 
mainly along detector component lines. 

CDF is designed to be a multi-purpose, multi-use detector. During data taking 
there can be several processes active each looking for different types of physics processes 
and each having different types of signatures. All detector components will be then in 
one partition. The different classes of events will be selected and tagged by separate 
trigger algorithms. The events will then be routed to the appropriate consumer process. 
The consumer process could be in the form of a level 3 trigger which would either reject 
or pass the event on to be written to tape or an analysis process which maintained 
online tables and histograms. 

The computing power needed to analyze the data acquired from a one month run 
at 5 Hz is estimated to be one year of available offiine resources. It is important to be 
critical in the event selection to reduce the number of events needing reconstruction. 
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Dedicated hardware for event recomtruetion iD the data 11eqaiaition system woald also 
greatly reduce the omine eomputing requirements. 

Ill. Trigger 
The trigger system is divided into three levels.4 The first level examines the signals 

from selected parts of the detector via dedieated cables. A fast decision based on analog 
processing and coincidence logic is made in the 3.5 microeeconch between crossings. The 
level one trigger is therefore deadtimele1111. Upon receipt of a level one accept the front 
end electronics is prohibited from resetting and hold the event data in analog sample 
and holds. The level two trigger then generates a more detailed deseription of the 
events. The list used by the level two processors contain information on calorimetry 
energy clusters, muon candidates and high momentum tracks from the central chambers. 
These lists are scanned by up to 4 independent trigger processors each of which can be 
programmed to look for different signatures. Upon the generation of a level two accept 
the event readout is started. The third level trigger operates on all of the information 
from the event after it is digitized and read via the scanners. 

During the level two trigger and event readout the detector, or the partition 
involved if multiple partitions are running, incurs deadtime. The goal is to keep the 
total deadtime at 10%. Contributions to deadtime due to the trigger and the readout 
are shown in figure 1. Level one reduces the event rate by a factor of ten without dead-
time. During the early running of the collider when the luminosity is 1028cm-2sec-1 level 
one will be sufficient to reduce the event rate to 50 Hertz. At the design luminosity of 
1030cm-2sec-1 two options are shown for different types of track finders. A simple 
hardware straight road track finder will have results at the start of level two such that 
cuts on muon and electron candidates can be made early. A more 110phisticated track 
reconstruction processor using curvature modules incorporating shift registers will not 
have results available until later in the level two analysis. The difference in event rate is 
from the expected muon and single electron backgrounds which cannot be rejected 
without central tracking information.5 

The trigger system is based on the projective calorimetry of the detector. The elec-
tromagnetic and hadron towers are divided into a logical 24 x 42 array of t:.9 = 15 • 
and f:.y = 0.2. The energy deposited in each tower is represented by a D.C. voltage and 
transmitted to the trigger system by dedicated cables (figure 2). The receiver circuits 
have programmable gains and offsets. The gain is used to convert energy to transverse 
energy, E,, by multiplying each signal by sin/I where II is the angle from the proton direc-
tion. The offset is used for removing biases during running and injecting test signals 
during testing. The digital values for sin/I and offset are loaded via FASTBUS.6 

The resulting E1 signals are used in analog processing. The level one trigger sums 
together all towers in the detector over a preset threshold to generate the total 
transverse energy. The towers are also weighted by sin9, cos9, and y to produce the 9 
and y components of energy to be used for a missing energy trigger. The resulting sums, 
EE1, EE,ain9, EEf:os9, EEJ, are compared to global thresholds and used to generate 
level one accepts. There are four independent sets of analog summers. The threshold 
for including a tower in the global sum can be set differently for each of the analog 
sums. This will allow the total energy threshold for a level one accept to be set high for 
diffuse events which include a large number of relatively soft particles and still accept 
events which have a lower total energy but where the energy is concentrated in one or 
two regions. 

After a level one trigger is generated and the front end electronics have been prohi-
bited from resetting, the level two trigger will start. The first task of the level two 
trigger system is to generate a brief list or table which describes the event. The informa-
tion generated for the calorimeter is the total energy, position, and width of each cluster 
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or energy. These are described by E=EE,, 
EEcos~ 2 EEy 2 

<cos~>=~, <r> = EE , and <I> =l 

The procedure used for finding and summing clusters is now described. The value 
representing E1 Crom the receive and weight card is compared to a programmable refer-
ence. The output or the comparator is sent to the cluster finder via a digital bus. The 
first reference level is set high and the towers over this threshold are latched in the clWl-
ter finder as seed towers. The threshold is then lowered to a minimum value and towers 
over this low threshold are stored in the cluster finder's second set or latches. The bus 
drivers in the compare and sum card are turned off and the cluster finder now returns 
sets or connected towers. A tower is in a cluster if it is either the selected seed tower or 
a low threshold tower adjacent to a tower already included in the cluster. The time 
needed to locate and define a cluster is about 100 nanoseconds and the time needed to 
make the analog sums for a cluster is about 600 nanoseconds. In order to provide a 
better match between these two sets or hardware four independent summers are used 
working in parallel. The throughput for the analog sums is then one cluster per 150 
nanoseconds. 

The 2016 towers or electromagnetic and hadronic calorimetry are divided between 
ten FASTBUS crates of analog sum modules. The results of each crate are digitized by 
the crate sum module and sent to the list makers. The list makers take the serial infor-
mation coming from the crate sum modules and enter it in a master list. When a cluster 
crosses a crate boundary the list makers must combine the information into a single 
entry. The master list is made available to the level two processors. 

It is at this master list that all information to be included in the trigger must come 
together. Muon candidates from the muon chamber and high P1 charged particle track 
from the central track finder together with the calorimeter information proved a power-
ful handle on selecting specific signatures. 

The muon candidates are generated by requiring a coincidence in two sets of drift 
cells such that a line pointing to the interaction region is reconstructed. The P1 cutoff 
and multiple scattering limit can be controlled by adjusting the width of the overlap 
coincidence in drift times. The signal used for level one will be the OR of all coin-
cidences indicating a muon candidate. During the construction of the calorimeter list 
the ~ and Y coordinates of the muon candidates will be generated. The energy in the 
corresponding electromagnetic and hadronic towers can then be examined, checking that 
they contain only energy equivalent to a minimum ionizing particle. 

There are two methods proposed for producing the list of high P1 tracks from the 
central tracking chamber. The first method is a sophisticated processor using curvature 
modules similar to the kind or track finder used at MARK II. This device would recon-
struct all tracks, not just the high momentum tracks. The tracking information would 
not be available to the level two processors until after the lists were constructed. The 
high multiplicity or particles in an event in a hadron collider would seem to prohibit 
being able to trigger on low momentum particles • unlike electron-positron colliders 
where soft pions can be used to tag 1/J' or D• decays. The second type of track processor 
would look at the first wire in each of nine superlayers which collected charge7• A coin-
cidence or wires matching one or 504 predefined roads determined by the outer drift 
tubes indicates a high momentum particle. The results of this track finder would be 
available at the beginning or level two processing. 

The level two processors are dedicated to the trigger system. The internal architec-
ture is ECL based with the micro sequencer using a bit slice sequencer sequence, the 
MC10801. The processing element include FASTBUS 10 controls, special hardware for 
manipulating the cluster sum information, and a general arithmetic and logical 
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processing unit based on the MC10900. The micro- instruction cycle time is 12 
nanoseconds. The output of the level two processors will be a level two accept or reject. 
A level two accept will result in the event being digitized. 

IV. Data Acquisition 
The majority of the front end electronics is in the RABBIT system ( Redundant 

Analog Bus Based Information Transfer system). There are two separate and indepen-
dent analog busses in a RABBIT crate, each controlled by a separate module, the EWE. 
The EWE's are controlled by the scanner (MX)8 via independent communication links. 
Each analog channel is then accessible through two separate paths. During normal 
operation the two paths will be operation in parallel, however, in the event of a com-
ponent failure in one path all information is accessible through the remaining link. This 
is important because the front end electronics is located in the collision hall which will 
have only restricted access. The analog cards designed for the RABBIT system are the 
strip chamber ADC, muon chamber ADC/TDC, hadron calorimeter ADC/TDC, and 
electromagnetic ADC. 

The scanner used to control and read the RABBIT system via the EWE is called 
the MX. This is a micro-coded ECL machine specifically designed for this task. The 
data collected from the EWE is corrected for gain shifts and ollsets then stored in one of 
four hullers from which the event data is assembled by the event builder. The MX has 
six separate memories (figure 3). Three memories, the DMA, DMB, and DMC, store the 
operands needed for the a + b•c correction. The list of commands needed to control the 
EWE is in the UM memory. The event memory, EM, holds the assembled event. The 
MX's micro-instructions are stored in the 2048 word by 64 bit IM memory which can be 
loaded via FAST BUS. The instructions are 64 bits wide; the first 32 bits specify the op 
codes and the second 32 bits specify the operand addresses. 

The synchronization between the trigger system and the MX is managed by the 
trigger supervisor. The start scan message is delivered via a FASTBUS broadcast and 
the MX done signal is returned via dedicated cables to the trigger supervisor. 

Other non-RABBIT electronics must obey the scanner protocol involving receiving 
a broadcast message, storing data in quadruple hullers and returning done signals. The 
LeCroy 1800 F ASTBUS system0 is being considered for the tracking readout system. 
However, since the 1800 system does not obey the scanner protocol a FASTBUS to 
FASTBUS interface is required. A device under development at SLAC, the SSP10 

(SLAC Scanner Processor), is being considered for use as the 1800 system scanner. This 
module implements the IBM integer instruction set and has a cycle time of 150 
nanoseconds for most instructions. It is a FASTBUS master and slave on both a cable 
segment and crate segment 11 • 

V. Level Three Processors 
The level two trigger system receives incomplete detector information via dedicated 

cables. After the event is constructed by the event builder the full data set, gain and 
ollset corrected, in a formatted form is available. A third level trigger using the com-
plete event data will be needed to reduce the rate to a manageable level. 

The third level trigger must provide flexible event selection using algorithms 
developed in a high level language. A processor for level three must have enough 
memory to contain the 100 to 200 kilobytes of data from an event. The processor must 
be able to accept the data at 20 megabytes per second from FAST BUS. Current plans 
for the level three system is a collection of identical processors which are loaded by the 
huller manager and pass accepted events to the host VAX12• CPU's under consideration 
are the 3081/E currently under development by a CERN-SLAC collaboration13, the 
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168/E and the 370/E. All of these depend upon having FASTBUS interfaces; the choice 
remains to be made. 

VI. Summary 
The high event rate and large multiplicity of events expected at CDF present new 

challenges in online triggering and processing. To meet this challenge an array of new 
dedicated analog and digital processors are being built. The trigger involves a combina-
tion of fast analog and digital techniques. The data acquisition system is designed to 
provide corrected data from the redundant analog front end. 
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QUESTIONS AND ANSWERS 

Q: How does HX compare with, say, a VAX? Could the HX have been 
replaced by a commercially available processor? 

D. Kaplan 

A: Simulation indicates the HX is 2-3 times as fast as a 3081E, 
or around 10 VAX 780's. But probably the main motivation for building 
was that it was fun for the people who did it. 
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THE DO EXPERIMENT: ITS TRIGGER, DATA ACQUISITION, AND COMPUTERS* 

Authors: 
D. CuttsJR. Zeller, Brown University; D. Schamberger, S.U.N.Y. - Stony Brook; 
R. Van Berg, University of Pennsylvania (presented by D. Cutts) 

Abstract: 

The new collider facility to be built at Fermilab's Tevatron-I DO region is described. 
The data acquisition requirements are discussed, as well as the hardware and software 
triggers designed to meet these needs. An array of MicroVAX computers running 
V AXELN will filter in parallel ( a complete event in each microcomputer) and transmit 
accepted events via Ethernet to a host. This system, together with its subsequent offiine 
needs, is briefly presented. 

THE DO EXPERIMENT 

The DO project is an experiment to study pp interactions at the DO intersection region 
at Fermilab's Tevatron-I colliding beam accelerator. The collaboration at present consists 
of 12 institutions[l] with Paul Grannis of Stony Brook as spokesman. It is fair to say that 
this experiment is the "most approved" of any current project. Because of funding uncer-
tainties we have over the past year been repeatedly reviewed, always with positive re-
sults; and I'm happy to say that finally appropriate commitments are forthcoming. 

At the Tev-I, the expected signatures of new physics at 2 TeV involve high pt leptons 
and jets (as from massive intermediate states) or large missing Pt (carried off by neutrinos, 
say). As will be seen, these event characteristics will be used by the hardware trigger; but 
more fundamentally they provide the basic goals for our detector design; to optimize the 
lepton (electron and muon) and photon identification and energy measurements at the 
same time as maintaining the best possible energy and angular resolution for jets. 

To be both competitive with and complementary to the other detector at Tev-I (CDF, 
at intersection region BO) we have concentrated on a design with superior lepton measure-
ments and calorimetry, while doing without a central magnetic field. The detector will 
have three basic divisions, beginning with a central tracking section surrounding the inter-
action point and extending radially to 70 cm. This device will include a transition radiation 
detector providing an independent hadron/electron rejection of order 50/1. Surrounding the 
central tracking will be a uranium (and copper)/liquid argon calorimeter extending over the 
full angular range, to within 1 degree of the beam. This calorimeter will be divided in two 
sections: an electromagnetic region with fine sampling and a hadronic part with coarser 
sampling. Outside the calorimeter will be a muon detector, consisting of planes of propor-
tional drift tubes spaced about three magnetic iron torroids. A full description of the de-
tector is available[2]. 

To give a measure of the real strengths of the detector, some parameters for the cen-
tral calorimeter and the muon detector are shown in Table 1. Note the superb calorimeter 
energy resolution, the fine segmentation in towers, with multiple samplings, and the near 
equality of electromagnetic and hadronic response, a feature of this type of calorimeter. 
The muon detector extends over nearly the complete angular range; with the large total 
absorption length, hadronic punch-through is minimized. 
':'This work has been supported in part by grants from the Department of Energy and the National Science Foundation. 

tPresenter 
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DATA ACQUISITION OVERVIEW 

The DO detector, with approximately 100,000 separate channels of electronics, will 
reside in a region where the interaction rate is of order 50 KHz. In the detector, the typi· 
cal size of an interaction event will be rougly 60 K bytes, including both digitized data and 
address. We will handle this data flow with two sequential trigger systems, the first done 
quickly with hardware and the second more slowly with software. Given an interaction, 
fast output signals from summed elements of the detector will flow into custom designed 
hardware capable of filtering events with a rejection factor of roughly 250 within the time 
between beam crossings (3.5µsec). Although complicated, such an electronic trigger is 
standard and straight forward to build (see Figure 1). 

In order to reduce the number of events saved on tape or disk to one or two per sec-
ond, a further selection will be necessary, with a rejection factor of order 100/1. Imple-
mentation of this step will also be straight-forward, since it will be based on commercially 
available (and supported) hardware and software. At this stage, event selection will be 
made with a filter program, with of order lOOK · 200K instructions on average needed per 
event. Several microcomputers, capable of handling the filter requirements, are commer-
cially available now or in the near future. These include projected MicroVAX units as well 
as those based on the Intel 286/386 series and on the Motorola 68000 series. Analysis in 
these microcomputers will be done in parallel, each essentially an isolated system receiving 
an event directly and analyzing in completely. We have chosen as this microcomputer the 
MicroVAX[3] ;for the Level-2 trigger we will have an array of MicroVAXes each running 
V AXELN and each linked via Ethernet to a central host VAX, which will collect those 
events surviving all filtering. 

The structure of the data acquisition system is shown in Figure 2. The fast electron-
ics digitization and readout crates will be grouped into 7 sections; each section reading out 
on its own data cable, which will be daisy chained to each microcomputer in the array. A 
separate MicroVAX, the "Acquisition Supervisor", will control the event flow - allocating 
the data cable within the readout section and assigning which analysis MicroVAX will re-
ceive the event. For its control functions, the Supervisor will be interfaced to all elements 
of the acquisition system: the Level-1 trigger, the readout crates, and the Level-2 analysis 
units. 

LEVEL-1 TRIGGER 

The hardware trigger decision will be made in the 3.5 microsecond interval between 
beam crossings. The fast response together with the double-buffering of the input analog 
signals will insure that deadtime associated with this trigger will be minimal. As input to 
the Level-! trigger, signals from the calorimeter towers will be grouped in towers 4x4 lat-
erally and summed in depth; thus there will be available a fast calorimeter signal from 
each dimension of 22.5 degrees in azimuth and 0.4 units of rapidity, for a total of 16x25 = 
400 e.m. and 400 hadronic trigger towers. Also present will be data from the TRD, from 
the muon detector, from the interaction tagging scintillation counters (the "Level-0" trig· 
ger) and from accelerator monitors, as well as a 3-bit vertex position measurement from 
the central detector. This last data may not be available within the initial decision time, 
but may be used as a "Level-1.5" since a corrected angle can make a significant improve-
ment in transverse energy calculations. 

Figure 1 shows the design of the Level-1 trigger[4]. In addition to the detector data, 
various signals which will be preset externally control the response of the trigger hardware 
to each event. Listed in Table 2, these signals define such parameters as thresholds for 
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transverse energy or transverse momentum in the electromagnetic and hadronic 
calorimeters, and minimum energies for the "jet finder". These signals also will allow the 
definition of particular trigger types as some combinations of the separately-tested event 
characteristics. 

LEVEL-2 TRIGGER 

The Level-2 trigger will be accomplished by routing the complete data for one event 
from the digitization crates to one microcomputer which runs the entire filter program. In 
this mode the micros will operate in an independent but parallel fashion. As discussed 
previously, of several commercially available microcomputer systems, we have chosen for 
these units the QBUS based MicroVAX family. We expect that its performance will be 
comparable to that of a VAX-11/780, that it will have sufficient direct memory for the 
complete analysis program and event data, and that it will be available on a time scale 
suitable to our experiment. To provide a means of loading the data into the analysis unit, 
one of us (R.Z.) has designed a dual-port memory board using 64K static rams. The ex-
ternal port cycles at 100 nsec. with a 32-bit wide input, for a bandwidth of 40 Mbytes/sec. 
We plan to have eight dual-port input channels per Level-2 box loaded in parallel with 
event data and accessed by the MicroVAX via QBUS block mode transfers. 

The MicroVAX units will be interfaced to the digitization crates via data cables which 
carry a few control lines supporting a simple protocol (no handshaking) as well as the 
32-bit wide data Jines. Each of the units will be Jinked to a host VAX via Ethernet for 
shipment of events which pass the software filter as well as for initial program download-
ing. To enable real-time control of the acquisition process, each unit will also be Jinked (to 
the Supervisor) via "extended registers". We expect to incorporate in the system approxi-
mately 50 MicroVAX processors to meet the Level-2 trigger requirements. 

As indicated above, the Supervisor will be a separate MicroVAX (running a separate 
VAXELN task) which will exercise the data acquisition control functions, such as deciding: 

1. which Level-2 unit is free and should receive the next event; 

2. which Level-1 triggers should be enabled; 

3. given a Level-1 trigger, which electronics readout crates should initiate digitiza-
tion; 

4. as digitizations complete, which crate should use the data cable associated with 
its readout section. 

In addition to the seven data cables associated with the readout crates, one cable will be 
used by the Level-1 trigger to ship the fast trigger data (about 4 Kbytes) directly to the 
Level-2 analysis unit. Preliminary analysis of this data can give rise to a fast abort signal 
communicated to the Supervisor, which in turn could terminate unfinished readouts and 
reset the digitization buffers. 

Another way in which the Supervisor will exercise a central control over the data 
taking is its loading an external "fast trigger memory". This simple interface acts as a 
matrix, with one dimension being Jines associated with each of the different hardware 
triggers and the other dimension providing the corresponding patterns of electronics crates 
which should initiate digitization. For calibration and test data, for example, the Supervi-
sor will be able to allocate a specific, single crate to digitize and, if useful, to route the data 
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to a specific analysis unit. Indeed, for testing, the Supervisor will also be able to direct a 
given event to be read into a number of Level-2 systems and analyzed identically. Be· 
cause of its central role in the acquisition, the Supervisor will be connected to the host 
VAX via a separate Ethernet line. 

A number of additional interfaces will be developed for the acquisition system. The 
various detector readout devices will transmit data via data cables described earlier. The 
simple protocol of these cables will allow straightforward interfacing of the special calo-
rimeter electronics[5], CAMAC, and FASTBUS. To enable control of the digitization and 
readout process, and to permit downloading to local crate intelligence, interfaces similiar to 
the "extended register" used in the analysis units will couple each of the electronics crates 
to the Supervisor. 

A key element in our design is the use of commercially available system software. 
With our choice of the microcomputer system, the new DEC software package V AXELN 
will provide the complete framework for development and operation of the Level-2 analysis 
software, encompassing the host VAX and all the satellite MicroVAXes. This "software 
product for the development of dedicated real-time systems for VAX processors"[6] runs as 
a task under VMS on the host VAX. The task image is then downloaded to the appropri· 
ate MicroVAX using Ethernet. The analysis software can be written entirely in high level 
languages: "EPASCAL" for the control functions and FORTRAN for the Level-2 filter 
code. Downloading from the host to the MicroVAXes is supported as is remote symbollic 
debugging. The V AXELN program in each of the MicroVAXes has little system overhead, 
yet is multitasking (each interrupt service routine can be a separate task), and has trans-
parent Ethernet support. Thus a user at a terminal on the host can access any Micro· 
VAX, and the VAXELN program in a MicroVAX can read and write the host's disks and 
tapes. This latter feature might make MicroVAXes an ideal choice for an offiine analysis 
farm: events can be read from the host's data tape by V AXELN analysis packages run-
ning in each MicroVAX. All these aspects of V AXELN make it very desirable, especially 
since it is a currently available and supported product. 

ONLINE AND OFFLINE COMPUTING 

We plan to incorporate a large VAX (hopefully the "VENUS" will be available) as the 
central online computer for the experiment. This machine will serve as a host, for 
program downloading and reception of events passing the Level-2 filter. The host will 
maintain direct overall control over the data taking (via the separate Ethernet link to the 
Supervisor). This VAX will carry a large assortment of necessary peripherals and support 
the usual online functions such as displaying data. 

In an experiment of our size it is important to consider the implications of saving 
events. Even with an event filter having an overall rejection factor of 25000/1 we will still 
collect events at a rate of 2 Hz. During the roughly 3 months per year that DO operates, 
we will then require of order 8 Cyber 175-equivalents per year for the complete analysis. 
This result is based on an estimate[7] of 16 sec. of Cyber 175 time per event; adding in 
other offiine tasks (Monte Carlo, reanalysis, development, etc.) yields roughly 16 Cyber 
175-equivalents per year needed by our experiment. Still, this translates to roughly 100 
MicroVAX-years, which may in fact be obtainable by microcomputer farms similiar to that 
described here. 
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SUMMARY 

The DO experiment is facing data acquisition requirements that are extreme, forcing 
the use of parallel processors as the only commercially available means to obtain the nec-
essary reduction in trigger rate. There is an extremely attractive option for parallel pro-
cessing which will exist soon, an option with both hardware and software fully supported: 
the MicroVAX and VAXELN. We anticipate having a prototype acquisition system based 
on these products operational this year. 
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TABLE 1. Some parameters of the DO detector 

Central calorimeter 
depth: 7 :\ 
energy res. : .37//E+.005 (had) 

.11//E+.OOS (em) 
seg.: 576 towers/4 sampl. (had) 
3360 towers/4 sampl. (em) 
em/had. response ratio: 1.1 

Muon detector 
coverage B0 -172° 
dP/P:::; 17% 
thicKness: 13;\ (90°) 

18;\ ( 10°) 
punchthrough (min. E" ) 

600 GeV (90°) 
5000 GeV (10°) 

TABLE 2. Control Signals for the Level-1 Trigger 

Et electromagnetic thresholds e.m. jet low energy cutoff 
Et hadronic thresholds had. jet low energy cutoff 
Pt electromagnetic thresholds jet counter energy limits 
Pt hadronic thresholds AND-OR networK programming 

specific trigger prescaler ratios 
specific trigger enable register 
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QUESTIONS AND ANSWERS 

Q: We have heard during the conference that DEC did not manage to 
achieve parallel processing on VAX's. What does that mean in your 
context? 

H. Kasha 

A: Each of our VAX's will process an event independently of the 
others. There will be no shared code. This works today. 

Q: Does FORTRAN work under VAX ELAN? 

A. Brenner 

A: By writing a short main program in PASCAL a FORTRAN subroutine 
can be linked and run under ELAN. 
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THE UA I VME-BASED DAT A READOUT 
AND MULTIPROCESSOR SYSTEM 

S. Cittolin, M. Demoulin, W.J. Haynes, W. Jank, E. Pietarinen, P. Rossi 
CERN 

1211 Geneva 23, Switzerland 

I. Introduction 

The UAl experiment is a large multi-purpose particle physics detector system. 
It was designed to provide full solid-angle coverage around the LSSS intersection 
region of the CERN proton-antiproton collider operating at a centre of mass energy 
of 540 Gev. The experiment has been operational since November 198 l and the next 
data-taking period is scheduled for September 1984. At present an upgrade 
program (4) involving the installation of new detectors and the improvement of the 
data acquisition system is in progress. 

This paper describes the current upgrade of the data readout and online data 
handling facilities by means of a multicrate and multiprocessor system based on 
the industrial standard VME/VMX bus (1) and the M68000 microprocessor family. 

The various parts of the detector and the data acquisition system have already 
been described elsewhere (2,3). In short, the apparatus consists of a central 
detector built of drift chambers with image readout to provide particle tracking, 
surrounded by a variety of complementary electromagnetic and hadronic 
calorimeters In both the transverse and longitudinal directions of the beam. A 
dipole magnetic field provides momentum analysis, and the whole detector is 
surrounded by an iron shield, which is being instrumented with multiple planes of 
Iarocci tubes, and a matrix of muon chambers (2). Additional drift chambers, in the 
forward and backward directions, complete the detector's 411 coverage. It is 
planned to insert a high resolution cylindrical drift chamber in the beam pipe in 
order to improve track reconstruction around the collision point. 

The data digitization and formatting are performed by about 200 Camac crates 
grouped in 28 Remus branches cs>. These are read in parallel into a multievent 
buffer system. A variety of specialized processors such as ROP (6) , FAMP (7), 

168/E CB), Super Caviar (9) and NORD computers, share the tasks of event data 
compression, digital trigger, readout control and mass storage. The number of 
channels and the amount of data generated by the digitizing electronics for each 
event are given in Table 1. In Table 2 are listed the main components of the UA l 
data acquisition system. 
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2. Trigger Levels and Data Acquisition Phases 

At the design luminosity of the SPS proton-antiproton collider ( I0'30/cm'2 
sec) the collision rate is of the order of 50 kHz, with a beam crossing every 3.8 
µsec. The average luminosity obtained during the last data-taking period, in 
1983, was 3 10'28/cm'2 sec, and an increase by a factor of 10 is expected for 
the next data-taking period starting in September 1984. This corresponds to a 
collision rate of about 15 kHz. 

The maximum event readout rate is limited by the magnetic tape speed to 
about 4-5 Hz. In order to reduce the trigger frequency from several KHz to a few 
Hz, and maintain the overall system efficiency above 90%, the data acquisition 
operates In separate phases. Distinct levels of triggering take place before and 
during the data digitization, the data reduction, and the data readout phases. 

A pre-trigger selects beam-beam interactions using standard NIM logic to 
demand a coincidence between hodoscopes in the proton and antlproton directions 
to within ± 20 ns. A first-level decision is then made between beam crossings, 
using a purpose-built processor system to fast Identify energy distributions and 
prompt muon signals from the muon chambers. At this moment the data are In the 
phase of digitization and the data reduction and reformatting are enabled. 

A second-level trigger decision can be activated only If a muon candidate Is 
Identified In the first-level, using M68000 microprocessors C7l to attempt to 
establish whether the muon candidate comes from the Interaction region. At the 
same time 'data are formatted In parallel by a set of specialized processors and 
read into a multi-event buffer system. The system dead-time Is determined 
mainly by the central detector data processing time (of the order of 35ms> 
However, the future Incorporation of a hardware double buffer Into each digitizer 
channel of the central detector readout will limit this dead-time to the ADC 
conversion time of 3ms. In order to reduce this dead time, further, to a few 
microseconds, the addition of an analogue double buffer to the calorimeter 
channels is also being studied. 

Finally more refined decisions are made, based on the analysis of the event 
data by 168/E processors. These processors re-check the trigger condition 
matched In the preceding levels with greater precision and execute more 
sophisticated selection algorithms. This event filter Is used either to flag or to 
reject an event. The maximum Input rate to this phase of readout Is about 30 Hz 
while the output rate, depending on the mass storage speed, Is 4-5Hz. 

J. Data Readout Structure 

Figure I indicates the general structure of the data readout. Two systems 
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run concurrently during data acquisition: the parallel readout and the event data 
builder. They are controlled by two independent processor units: the readout 
supervisor and the event manager. 

The Para I lei Readout system consists of a set of detector busses 
autonomously driven by independent bus drivers associated with dual port 
memory units. These dual port memories are able to store several events, with a 
common port for data sorting. Data processing for reformatting and trigger 
selection can be executed in parallel by each driver unit accessing the data via a 
private bus. The readout supervisor handles the first level trigger signals, 
initializing the drivers for data readout, allocating the available memory for 
event buffering and controlling all the phases of data input. In addition this 
processor accomplishes the task of controlling and testing the digitizing 
electronics. 

The Event Pata Builder system accesses the parallel readout buffers and a set 
of event units, which are able to accept full event data for data acquisition and 
data sampling tasks. The event filter is part of this system. The event manager 
supervises the event building process, serving any event request coming from an 
event builder unit, initializing a multi-OMA transfer from the parallel readout 
buffers into the event unit memory, and starting and monitoring the event 
process. After the completion of an event transfer, for data acquisition, the 
event manager enables the corresponding multievent buffers for further trigger 
data input. 

Such a structure was implemented from the beginning of the experiment in 
1981, using Camac crates and Remus readout modules, with hardware FIFO 
memories for the parallel readout. The readout control processor was made of 
hardwired standard NIM logic. A Super CAVIAR microcomputer performed the task 
of event manager, controlling a stack of five 168/Es acting as an event builder 
unit. Other data sampling tasks were executed by a HP21MX and two NORD 
100/500 computers, spying the data during acquisition. This solution was 
satisfactory in the previous data-taking periods with a trigger rate of the order 
of a few Hz, at first level trigger, and an overall system efficency of 90%. Its 
main limitations were the speed of the event readout at the third trigger level, 
at maximum 3 Mbytes/sec, and the difficulty of extending the system 
performance by including additional processing and control units. In order to cope 
with the higher rates expected in subsequent data-taking periods, and to allow 
for the modular expansion of the system in order to extend the second level 
trigger and the event data handling facilities, a hardware double buffer is being 
added to all the digitizer electronics channels that most affect the data 
reformatting dead time (namely the central dectector charge to time digitizers 
CTD c20)). In addition the data readout system is being partially rebuilt with the 
use of the general-purpose multiprocessor VME/VMX bus. 
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4. VME-VMX Bus 

The VME bus is a 32-bit data and 32-bit address asynchronous 
multi-processor bus (20MHz bandwidth) introduced by industry (Mostek, 
Motorola, Signetics) in 1982 and now IEEE standard. 

It is based on double size Eurocard mechanics. A large variety of general-
purpose modules for processing, control, communication and display are 
commercially available. In addition, in order to improve the performance In 
applications where local data access and private memory extension are needed, 
a 32-blt data and 24-bit address local bus VMX is specified. Since the UA 1 data 
acquisition Improvement essentially involves the data readout part, and not the 
digitizer electronics system itself, the VME/VMX solution appears more 
attractive and suitable for this stage of the data acquisition system than a 
solution based on the high energy physics standard Fastbus. This does not exclude 
the use of Fastbus crates for digitizing and fast data compression in the front 
end of the data acquisition system. 

The development of CAMAC-based equipment for UA I, and the monitoring and 
control of the experiment, made extensive use of CAVIAR microcomputers. With 
the introduction of the VME system, a successor to CAVIAR is being developed 
based on Apple Macintosh personal computers. This new system, called MacVEE 
(Microcomputer Applied to the Control of VME Electronic Equipment) allows up to 
eight VME crates and eight CAMAC crates to be directly memory-mapped into 
Macintosh address space. 

The logical structure of the full readout system is shown in figure 9. It 
comprises the following four functional busses: 

4.1. I) The Detector Bus links the digitizing electronics crates to a controller 
unit, the bus driver. It is a 16-blt data bus with a few control functions and 
sequential data access, its implementation depending on the standard of the · 
digitizer electronics. For the old equipment of the UA I experiment, the detector 
bus is a Remus vertical branch. For the upgraded detector program non-standard 
solutions have been chosen; these are the Iarocci STAR system readout c10> with 
an 8-bit data and 8-bit address special bus, and the microvertex detector 
Lecroy 1879 TDC readout, where a Fastbus crate with a VME/VMX interface is 
planned. 

4. 1.2) The Readout Control Bus is a general-purpose bus hosting all the 
detector bus driver units and the readout supervisor processor. The bus is used 
for readout Initialization, calibration procedures and multi-processor control. 

4.1.J) The Event Builder Bus performs the high speed data transfer between 
the multievent buffers and a requesting event builder unit memory, under the 
control of the event manager processor. Both the readout control and the event 
builder system are based on the VME bus. Physically they consist of several VME 
crates linked together with a crate Interconnect system (figure 7). 



-4i 7-

4.1.4) The Local Bus is used for private data access between the driver unit, 
and the corresponding multievent buffer memory and the event builder processor, 
and its memory. The local bus is implemented by a VMX segment. 

The system is composed of the following two modular elements: 

4.2.1) The VME Parallel Readout Unit (VPRU) (figure 2) is the basic element 
of the parallel readout. It consists of a detector bus driver (DBD), a control 
processor unit CPU and a VME/VMX dual port memory (DPRX) of 128Kb size. This 
is suitable for storing several event data blocks coming from the associated 
detector electronics. The DBD and the CPU are connected via the VME port to the 
readout control bus and operate under the control of the readout supervisor 
processor. 

The dual port memory VME port is connected to the event builder bus. The VMX 
port shares a VMX segment with the CPU and the DBD that act, respectively, as 
VMX primary and secondary master. An event unit may not have an associated 
CPU; in that case all the readout control is performed by the readout supervisor 
processor. During data acquisition each event unit takes care of the detector data 
readout and buffering. Data reformatting and/or second level trigger selection 
are executed at the end of readout by the CPU unit accessing data via its local 
VMX bus segment. The CPU is also responsible for the monitoring, calibration and 
system test tasks. 

The detector bus driver can be a single VME module, such as the VME Remus 
branch driver used to read the old system, or It can have a substructure as in the 
case of the Iarocci STAR readout (figure 3) where an entire VME crate perfoms 
the function of the input driver. The full parallel readout system consists of 28 
event units with VME Remus branch driver, a VME crate for the Iarocci detector 
and a Lecroy 1879 Fastbus VME/VMX Driver. Figure 7 indicates the physical 
layout of the VME crates. 

4.2.2) The VME Event Builder Unit <YEBV> (figure 4) has a structure 
symmetric to the event unit. The event unit accomplishes the task of full event 
data analysis. It consists of a dual port memory accessible from the event 
builder VME system and from a VMX segment hosting a CPU. Optionally it can be 
accessed by an output driver unit for data communication. The dual port memory 
has a size of 256Kb, suitable for storing two full event records for double buffer 
operations. The CPU and output driver VME ports reside in an independent VME 
segment bus in order to avoid the event builder bus overloading during the event 
building data transfer. The task of an event builder is either to process a full 
event data record for data sampling, executing statistics, histogramming and 
display applications, or for data communication with the third level trigger and 
the mass storage. In general, a single event unit is associated with each task and 
several such units can be modularly inserted into the system without affecting 
the overall speed performance. 
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A special event unit Is dedicated to the data acquisition and the third level 
trigger. In this case an output driver module acting as secondary master on the 
VMX bus accomplishes the data transfer Cat 6 Hbyte/sec) between the dual port 
memory and the 168/E emulator stack. The latter is interfaced to a Camac 
system via an auxiliary crate controller (PAX) ca> (see figure 5). This represents 
a temporary solution to the event filter problem. 

In the final configuration the 3081 /E emulator crn will be Integrated into the 
system as a VME event unit processor (figure 6). Such a system can also be used 
for offline data analysis. Additionally new mass storage devices, such as digital 
video disk, can be included directly Into the VHE system when commercially 
available. 

5. VME Components 

Owing to the specialized functions of some of the units and to the recent 
introduction of the VMX local bus specification, not all of the VHE modules 
needed for the implementation or this project were commercially available at 
the start of the data readout improvement program, in October 1983. 
Consequently an Important development program has had to be pursued, partly 
within the UAl collaboration and partly by commissioning specified projects to 
commercial firms. The module specification was finalised in December 1983 c12> 
and all the prototype modules where developed during the first half of 1984. At 
the time of writing production and installation are in progress. 

The following modules were developed for the UA f VHE readout system: 
5.1) Control Processor Unit CPUAl (13). . 

The CPUA I module ts the baste processor unit used In all the VHE readout 
subsystems. Its main features are: M68010 BMHz processor, VHE/VMX bus 
master, 256Kb dynamic memory, 8Kb static memory dual ported CPU-VHE, NS 
16081 6HHz floating point processor, HK68901 peripheral controller (interrupt 
handler, timer, RS232 serial Interface), a variety of control and status registers 
ror CPU identification, address modifier control, VHE bus arbiter control and VMX 
base address setting. 

5.2) Dual port Memory PPRX (14). 
The DPRX ts used both for the parallel readout and the event builder units. Its 

main features are: 128Kb/256kb static RAM VHE/VMX dual port memory 32-bit 
data. 400 ns 32-blt word data transfer on both ports, programmable VHE memory 
base address via a VHE register, write broadcast mode Implemented via address 
modifier selection (this mode allows the loading of several event builder untts 
by a single OMA transfer, when all the corresponding memory units are set to the 
same VHE address). 

A version of the DPRX with 1Mbyte dynamic RAM Is used as a local memory 
extension of an event bui Ider CPU. 
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5.3) Remus VME/VMX Branch Driver RVMEX c1s>. 
The RVMEX is used in the parallel readout unit as a detector bus driver. It is a 

multi-path REMUS-VMX, REMUS-VME and VME-VMX bus driver module. 
It implements the Remus branch driver read/write functions and, acting as 

secondary master of the VMX bus, it handles autonomously the readout of a 
Remus branch and stores the data into an assigned VMX buffer. All of the 
module's functions are programmable via the VME port. 

5.4) Crate Interconnect Cl (16). 

This module drives a high speed ( 10.7 Mbyte/sec) vertical bus allowing the 
linking of a VME crate (master) with up to 15 VME crates (slaves). The vertical 
bus master crate can operate in two modes (figure 8): the window mode and the 
DMA mode. In the window mode a master crate CPU can map 64Kb memory of a 
slave crate into a 64Kb segment of the master crate interconnect module. In the 
DMA mode any length of data block transfer can be executed under the master 
control between any two crates on the vertical bus. 

The 32-bit data transfer has a three phase pipeline: the source data read (a 
VME cycle in the source crate), the vertical bus data transmission and the 
destination data write (a VME cycle in the destination crate). 

5.5) 168/E VME/VMX-Camac Fast Data Link (17). 

This system consists of two modules, a VME/VMX data output driver and a 
Camac data input driver. The VME module acts as a secondary master of a VMX 
segment and provides the DMA transfer between a VME/VMX dual port memory and 
~ Camac module. The latter is read by the 168/E PAX auxiliary controller, linked 
to the 168/E emulator memory via a 'Greyhound Bus' (8). The maximum data rate 
is determined by Camac, and is of the order of 4Mbyte/sec. The modules are part 
of the VME event builder unit dedicated to the third level trigger and mass 
storage (figure 5). 

5.6) VME/VMX Parallel Input Output VXPIO (18). 

This is a general-purpose input-output module. It performs synchronous 
and/or asynchronous 16-bit TTL/NIM parallel 1/0 via a front panel connection and 
either VME or VMX ports. Both input and output are driven by a high speed FIFO of 
512 16-bit words. This allows for the special application of the module as a data 
communication unit with an external system, or as a programmable output 
sequencer or as a logic/ state analyzer. 

5.7) VME Interrupt Vector Generator IVG (19). 

This module generates interrupts from 8 TTL/NIM front panel inputs at two 
presettable levels. For each channel the VME interrupt vector, the mask and a 
semaphore flag are programmable. Each input provides a channel status output 
signal and an internal counter allows the detection of double 'click' situations. 
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Conclusion 

In an experiment such as UA 1, the detector complexity, high trigger rates, and 
large data volume per event require distributed intelligence at many stages of the 
readout system. In addition a very modular and easily upgradable system structure 
is desirable, so that developments in technology can be readily applied to improve 
system performance. 

It is believed that these aims can be achieved by the introduction of a readout 
system based on the industrial VME bus standard. This approach appears to be 
powerful, flexible, and cost-effective, and to prepare the way for the efficent 
exploitation of the enhanced potential of the UAI detector in the future. 
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QUESTIONS AND ANSWERS 

Q:. How many man-years of effort in software for UA 1? 
J. Amann 

A: 4 people for 6 years: 24 man-years. 
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Table 1. Number of Channels and Data/Event 

Detector No. Channels Raw Dela (Bytes) Fonnetted P•ll (Bytes> 
Central Detector 
Hadron Calorimeter 
Electromagnetic Cal. 
Cal. Position Detector 
Forward Chamber 
Muon Chamber 
Iarocci Tube 

Average Event Size 

6200 
1200 
2200 
4000 
2000 
6000 
40000 

1600000 
2'400 
4400 
8000 
32000 

•2000 
40000 

Parallel Readout and Data Reduction dead lime 

-80000 
2400 
4400 
8000 
8000 
2000 

-4000 

Third Level Trigger Maximum Rate (901 Efficiency) 
Event Data Mass Storage Maximum rate 

100Kb 
3+40 ms 

30Hz 
4Hz 

Table 2. Data Acquisition Components 

VME Modules 50 Dual Port Memory VME/VMX DPRX 12B/256Kb Static RAM. 
12 VME Crate Interconnect. 
12 256KbEPROM. 
10 512Kb Dynamic RAM. 
20 Parallel 1/0, Interrupt Generator. Graphics .... 

200 Camac crates. 
26 Remus branches. 
12 VME crates. 

6 bil Processors 200 M6600 µP . 
110 Slgnellcs 6X300 µP. 
20 Super Caviars. 

16 bil Processors 7 FAMP M68000 1 OMHz. 
60 VME CPUA 1 M66010 6t1Hz. 

256Kb, NS 16061 FP. 

32 bit Processors 6 168/E IBM Emulators. 

Main ComPUters 2 NORD 100/500 2 Mbyte 
6 6250 BPI 125 IPS 

Data Digitization 
Parallel Readout 
Readout Data Handling 

Electronics Control 
Data Reduction/Formatting 
Equipment Test and Control 

Muon Second Level Trigger 
Parallel Readout. Data Formatting 
and Event Data Sampling 

Event Filler and Online Monitor 

Data Acquisition and 
Software Development 
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Figure 1. Data Readout Structure 
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Figure 2. VME Parallel Readout Unit 
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figure 5. VME-VMX-CAMAC Link. 166/E Event Builder Unit 
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Figure 7. VME Crate Physical Layout 
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TRIGGER AND SPECIAL PROCESSORS 
IN CERN'S SPS AND ISR EXPERIMENTS 

C. Verkerk, CERN 
Geneva, Switzerland 

This report presents a brief review of the various uses of specialized 
processors in CERN's SPS and ISR experiments. It does not pretend to be 
exhaustive, nor does it contain exclusively new information. In fact, some 
applications of a number of devices were reported before; they are 
mentioned here again mainly to illustrate the wide variety of processors 
and of applications. Without counting the - often nameless - special 
trigger boxes or devices, a dozen or more types of specialized processors 
or systems a re in use at CERN. The present report is arranged by type of 
processor. It illustrates each time the use of the device in an experiment; 
for detailed descriptions of the devices themselves the reader is referred 
to the litterature [1]. In this respect it is interesting to note that the 
original designs of some of the devices are as many as ten years old: Some 
have reached now the end of their useful life and their use is not planned 
for new experiments, others continue to be employed satisfactorily. 

This report also contains some indications on future use of 
processors in experiments at present in the preparation state. On 
the other hand, the processors used in coll i der experiments or 
planned for LEP are excluded, as they are described in other papers 
presented at this conference. 

2. MBNIM 

MBNIM [2] is a modular system for building second level triggers, 
originally developed for the Omega facility. A number of experiments (UA2, 
EHS, SFM, WA78) now make use of the system and MBNIM has been adopted as a 
standard at GAMIL in Caen, France. Many of the modules are available from 
industry and in the course of time a pool of approximately 400 modules has 
been built up. 

The modules are interconnected with a 16-bit flat cable front panel 
bus which runs at 100 MHz. Typical propagation times for a module 
are 50-100 ns. External timing can be applied to the modules ("fast mode"), 
or else a simple handshake can be used, which goes down the whole chain of 
modules before the acknowledge starts to travel back. 

[Photograph opposite courtesy of David Carey, Fermilab, who is a life member 
of the Roy Rogers Fan Club.] 
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The range of modules comprises : a 16-bit ALU (10181); a lK x 16-bit ECL 
look-up memory (RAHM); a multiplicity logic module (MUSIC) with a 5-bit 
output and an adder for combining with outputs from other modules; a 
pattern unit (PATRRO) which contains a MC 6801 microprocessor and a 10 
Kbyte pattern table. The latter module will deliver a bit-pattern upon 
request or compare a pattern with the stored ones. A frequently used module 
is the bit-assigner, which assigns to every 11 111 in the input word a 16-bit 
output word. When more than one bit is set in the input, the outputs are 
OR-ed together. The module is used to predict from a pattern of hits in a 
given detector the expected hits in another detector. The comparison of the 
predicted and the observed pattern can then be done with the ALU. Two more 
module types (FASTRO and FASTREN) have been added recently for the fast 
read-out of MWPC of the Omega facility. FASTEN encodes the bits of a single 
plane and stores the cluster centres in a memory. Automatic scanning of the 
contents of the memory, in combination with other FASTREN modules, allows 
looping over the data from several planes, at a rate of 200 ns per 
combination. 

In a recent Omega experiment, the 2nd level trigger required 3 tracks with 
Pr > 0.9 GeV/c in different quadrants of the downstream detectors. The 
number of bits in each quadrant was 3-4. The central regions of the 
chambers had been made insensitive, which resulted in a primary trigger 
rate of 500 per burst, for 106 interactions in the target. The second level 
trigger was entirely built from MBNIM modules and performed the selection 
of the transverse momentum : 

Pf = p2 (sin 2$ + tan 2 A) > Threshold 

Pf was calculated using 

tan A "' A = Z, 

where a, b, a and B are constants, Z is the di stance along the beam 
direction, y1 and y are coordinates in two different chambers, 
relative to y0, the tratk coordinate at the target position. 

This MBNIM system achieved a reduction of the trigger rate by a 
factor 12-14, in an average time of 30 µs. 

3. CAB (Camac Booster) 

The Camac Booster (CAB), is a microprogrammed machine, based on the 
Amd 2900. It was developed at the Ecole Polytechnique, Palaiseau, 
France, presents itself as a triple width Camac module and is 
commercially available. It has a 24-bit wide micro-instruction 
format, 4K memory for program. Data are 16-bit wide, 4K memory is 
included in the processor, but 3-port extensions of 32K, 200 ns 
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memory are available. CAB can be configured as a crate controller, 
or as a branch driver. By virtue of its GPIB interface it is widely 
used in France for small experiments and for test set-ups together 
with a hobby computer (Commodore in particular). 

At CERN, where some software support is provided, CABs are used in 
a number of experiments [3] : NA3 (3 processors), R704 and in the LEAR 
experiments PS177 and PS183. In addition, test set-ups for RICH (Ring 
Imaging Cherenkov detectors), ALEPH and the CHARM2 experiment are based on 
CABs. 

For instance, in PS177 a CAB does the complete data acquisition and 
histogram filling. The role of the NORD 10 computer is practically 
restricted to control of magnetic tape recording and, 
exceptionally, the treatment of complicated events. The experiment 
PS177 is the first application of a CAB in a multiprocessor configuration. 
In the CHARM2 experiment two or three CABs wi 11 be used to acquire data 
from thousands of ADCs. 

4. ESOP 

ESOP is one of the oldest devices in use (its design was completed 
before bit-slices were available on the market). It is a 
microprogrammed processor, constructed from MSI (S-TTL) chips. It 
has a lK x 48-bi t microprogram memory, a 125 ns cycle and up to 64 K x 
16-bit data memory. 

The European Hybrid Spectrometer used two ESOP processors [4] : one 
for the read-out of ISIS, a large detector for particle 
identification, based on the relativistic rise of ionization; and one for 
the Optical Fiducial Volume Trigger (OFVT). In the latter application, a 
pre-flash (with a colour outside the sensitivity of the photographic film) 
is used to produce on an array of photodi odes an image of the growing 
bubbles in the Rapid Cycling Bubble Chamber (RCBC). This pre-flash takes 
place about 0.3 ms after the beam traversal. The photodiode array is 
read-out into an ESOP which detects interacting beam tracks and prepares a 
decision in about 0.6 ms. In case an interacting beam track is detected, a 
photograph is taken by triggering the main flash at about 1.5 ms after the 
beam traversal. The ESOP makes use of data provided by a downstream wire 
chamber. The optical background of the RCBC varies with time and ESOP 
builds up a "background memory", to be subtracted from the optical image. 
At each expansion this background memory is updated. 

In the 
detected 

ISR experiment R807 
high Pr particles, 

two ESOPs were 
using a list of 

used [ 4]. The first 
sector pairs in the 
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barrel shaped drift chambers, which was provided by the second 
level trigger. This second level trigger was generated w-ith look-up 
tables, arranged into a rather general purpose device; the Very 
Fast Bus [1] (VFB). It contained 5 sets of 51 lK x 1-bit ECL 
memories, providing 50 inputs forming an address pattern. The 
outputs of 5 memories - one from each set - are ANDed and thus 51 different 
trigger outputs are available. A satisfied trigger selects one of three 
data paths : straight to tape, to ESOPl or to ESOP2. The memories can be 
loaded via Camac and also the discriminator levels and the assignment of 
data paths to each trigger are under computer control. Signals at all 
stages are accessible for checking. Once the data path to ESOPl is 
selected, ESOP reads 16 wires/sector and stores the data in a buffer memory 
(the DTR read-out is destructive). For a luminosity L = 2 x 10 31 cm- 2s, the 
following rates were obtained [1] : 

rate (s- 1 ) decision time 

barrel counters 6.10 5 10 ns 
pre-trigger 6.10 4 60 ns 
VFB system 1.104 700 ns 
ESOP few "'250 µS 

ESOP achieved a rejection of 2000 with a reject time of 120 µs. To 
accept definitely an event with a particle with Pr > 5.0 GeV/c, 370 µS were 
needed. 

The second ESOP in experiment R807 was used to reconstruct electron tracks. 

Two ESOPs were used in the past in experiment NAll, and they were 
carried over into the successor experiment NA32 [4]. NA32 studies 
decays of DD pairs (10- 13 - 10- 12s lifetime), using an active target 
consisting of silicon diode strips with a pitch of 20 µm (see figure 1). A 
short distance downstream two silicon strip chambers with a pitch of 400 µm 
are installed. Then follows a magnetic spectrometer and a calorimeter. 
ESOPl performs the read-out of the active target and detects a change of 
multiplicity of charged particles, all within 0.5 ms. The exact test can be 
described as follows : with the vertex in plane K, the primary multiplicity 
is defined as Mp= min (CK+l' CK+2), where C. is the number of particles in 
plane j. Similarly the seconaary multipl'4city in the two downstream 
chambers is M = min (ClJ, c18 ). An event is accepted if M - M 
> threshold. Ttfe data flow ror this process in shown in figure 2. EsOP2 iR 
experiment NA32 is used for compressing data from the calorimeter. 

As the experiment has started recently, performance figures are not yet 
available. 
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5. GESPRO 

Another microprogrammed processor of early design and in use in 
experiment NAlO is GESPRO [5]. It was built at Strasbourg, is based 
on the Intel 3000 bit-slices, uses 2K x 48-bit microprogram memory 
with a 150 ns eye 1 e and works on up to 32 Kwords of 24-b it data. It 
was previously used in experiments WA2 and WA42. Recently, to cover the 
needs of NAlO, a floating point unit was added [5]. The experiment NAlO 
studies inclusive production of massive muon pairs, and uses 4 GESPROs with 
floating point units for the event selection. The detectors are arranged in 
sextants around the beam. A pre-trigger is derived from two hodoscopes and 
with the help of coincidence matrices the track with the highest Pr is 
selected from two further hodoscopes. This is done for each sextant ana by 
combining different sextants the highest di-muon mass is selected. All data 
are read-out with RMH into 1 of 4 multiport memories (see figure 3); a 
special controller choses the first memory and GESPRO which are free. The 
memories can also be accessed by Camac. The selected GESPRO checks all 
di-muon candidates by calculating their invariant mass. 

As GESPRO and RMH have simultaneous access to the memories, a reject can be 
made by GESPRO before the read-out is complete. Approximately 1/15 of the 
triggers are retained, 60% of those are definitely kept in the off-line 
analysis at low beam intensity, 40% at high intensity. With the 4 GESPROs 
working in tandem, triggers are accepted during 98% of the time (with a 
beam intensity of 10 6TI/burst) or 80% of the time (with a beam of 
2.106TI/burst). Figure 4 gives an indication of the decision time per event. 

6. MICE 

MICE is an emulator of the PDPll, which is 3x faster than the 
fastest member of the family, the PDPll/70. It executes normal 
PDPll instructions on 16-bit data, with an address space of 28K. It 
has a lK x 128 bit writeable control store (WCS) with a cycle time 
of 105 ns. A little over one half of the WCS is coded to emulate 
the PDPll instructions, the rest is available for user 
microprograms, if desired. Single instruction loops can be speeded up a 
factor two by the use of the REPEAT instruction, which is not part of the 
PDPll repertoire. A JUMP to microcode instruction is provided to al low 
mixing of high-level languages and user-written microcode. MICE can 
communicate with the external world via a simplified UNIBUS or via OMA 
interfaces to RMH and Romulus read-out systems. MICE is loaded and 
controlled from a Camac module. It can be expanded with special hardware 
units. Seven machines are at present in use in experiments WAl, R704, 
Omega, WA78, UA6 and in Computer Aided Tomography [1]. In addition, on a 
number of occasions, MICE replaced a PDPll in a SC experiment. The 
preparatory work was entirely done using a real PDPll and a· few hours 
before data taking started MICE was installed in its place. A factor 4 
improvement in data taking rate was obtained. 
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The first application of MICE was in the neutrino experiment WAl, where 
cosmic rays are used for calibration of the calorimeters. The problem is to 
select cosmic ray muons which travel horizontally (>.. < 25 mrad). The 
read-out of the MWPC does not deliver directly wire coordinates, and zeroes 
must be suppressed. MICE does this zero suppression on the fly, using 630 
ns out of the 1.5 µs Romulus cycle. The total read-out time is 1.6 ms and 
plenty of time is available to transform the valid data into coordinates. 
The track finding and selection then takes 400-500 µs. The program consists 
of 350 1 ines of straightforward PDPll assembly code and 250 1 ines of 
Fortran. After installation of MICE, the total number of calibration events 
decreased, but in critical regions of the detector lOx more calibration 
tracks than before became available. 

In the Omega facility MICE is use for data buffering and dead-time 
reduction [6]. The data acquisition computer is a VAXll/780. Events 
vary in size from experiment to experiment (1000-3000 words/event) and so 
do the rates (10-1000 events/burst). MICE and its software handle 
interrupts forty times faster than the VAX operating system. This fact, 
together with combining severa 1 events in MICE into superevents before 
sending them to the VAX, results in a considerable increase in throughput 
(see figure 5). The program occupies 2 Kwords, 1 ea vi ng 26K free for event 
buffering. Hooks are provided for event filtering in MICE with user 
supplied Fortran routines. At the time of this symposium, WA77 had recorded 
~ 5.10& events through MICE, at a rather low rate of 100-150 events/burst. 
From figure 5, it can be seen that the overall performance is 1200 
events/burst at 400 words/event or 650 events/burst at 1000 
words/event. 

Another recent application of MICE is in experiment R704, with a 
hydrogen jet target in the ISR machine. This application is presented in 
more detail at this symposium (J-P. Guillaud, ref. 6). 

MICE will be used in WA78 which studies hadronproduction of BB pairs. Here 
MICE will buffer the events and also do additional filtering using the 
software developed for Omega. The trigger will use ECL memory look-up and 
MBNIM. 

7. FAMP 

In the fixed target programme, the FAMP 68000-based multiprocessor 
system was used in experiment NA32. It is however not used there at 
present. Other uses of FAMP particularly in UAl are presented at 
this symposium [7], [10]. 
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8. 168/E Off-line pool 

CERN runs an off-1 i ne poo 1 of 7 168/Es, with 3 PD Pl ls and the usu a 1 
mass-memories, Bermuda triangles, etc. The machines are used by R807, SFM 
and Asterix [9]. The facility is particularly appreciated because it can 
provide many CPU hours to a single experiment in a short period of time and 
at short notice. In the period December 1983 to March 1984 2600 IBM 168 
equivalent CPU hours were delivered. 

9. 168/E on-line 

168/Es built at Saclay are used in experiments NA3 and NA4. In the 
experiment NA3 [10] events are stored in 4-port memories during the burst. 
After the pre-trigger (rate 0.5 - 1 x 10 5s-l) a second level trigger using 
data from the special checker board chambers is employed. This special 
device selects tracks with a large vertical component of p and 
approximates the mass of the di-lepton. It uses FPLAs and look-up tables 
and brings the rate down to 20-30 s- 1 with a 200 ns processing time. 
Together with a few other trigger sources the overall rate is~ 100 s- 1 • 

The accepted events are then read by 3 CABs into the buffer memory. The 
CABs do re-formatting, subtract pedestals and do a first reject on simple 
criteria. The events are sent to MORPION [1], a hard-wired straight-track 
finder. The results are returned to the memories. The 168/E then performs a 
complete spatial reconstruction of the events. At present 15 events per 
burst, of a certain trigger type, are treated in 2-3 seconds total. 

The transfers Memory + MORPION + memory + 168/E + memory + PDPll +tape are 
controlled by a PDPll/45 at present, but it is planned to run these tasks 
in a 68000 in future, liberating time on the PDPll and improving throughput 
to 50 events/burst. In addition, in NA3, two 68000's are used; one makes 
histograms for monitoring purposes and the other re-formats MWPC data from 
~ 40 000 wires. These data travel again from the memory to the 68000 and 
back to the memory. 

The use of 168/Es in UAl will be presented in another contribution to this 
symposium [10]. In addition to these actual uses of 168/Es, UA2 plans the 
installation of 1 machine and NA31 of 2 processors (see below). 

10 FASTBUS 

NA 31 is the first fixed target experiment planning to make largely use of 
FASTBUS [11]. It proposes to measure within a few permille the ratio : 
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Several trigger levels can be distinguished : 

trigger 
pre-trigger 
trigger 
1st level 
2nd level 
3rd level 
4th 1 evel 

rate/burst 
5.10 4 

15000 
12000 
1200 

300 
100 

selection 

analog thresholds in calorimeter 
analog peak counting 
digital, AFBI 
rrrr mass; vertex; 168/E 
refinement by VAX; to tape. 

Figure 6 gives an outline of the data-acquisition and trigger system. The 
AFBI is part of the ORSAY sequencer. The sequencer reads data from the ADC 
crates at 12 Mbyte/s. The AFBI then calculates, on the fly, partial sums 
(the x or y are provided by the number of the strip of the calorimeter) : 

J 1. Energy : LE; 

where = 1, 8 (4 times x and y) 

and J 1, ... , 4 (e.m F and Band hadron F and B) 

2. 1st moments 

3. 2nd moments 

The AFBI then applies a cut on the ratio e.m. calorimeter/rest. 

At the second level the data may follow two routes : i) the back-up route, 
via FASTBUS and the CFI (Camac to Fastbus Interface) to a VAX11/750, at a 
rate of less than 1000 events/sec, or ii) via FBM (Fastbus Block Mover) to 
a 168/E at 70 ns per 32-bit word. The 168/E will perform a mass calculation 
in ~ 10 ms and the accepted events are transferred to a 2 Mbyte memory at 
100 events /sec. The transfer is controlled by a 68000. It is expected that 
25% of the events will pass the 168/E. The data are then sent in blocks of 
64 K to the VAX where further filtering should reduce the number of events 
by another factor 3. 

Beside the AFBI (designed by Drulot, Orsay) a number of other interesting 
modules - all with internal buffering and self-test facility - are 
foreseen : 
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- THU, the Time History Unit, which contains a stack 24-bit wide 256 words 
deep. Every 20 ns a 24-bit pattern from various detectors is written 
into it; the trigger marks t = 0. In this way the history from 2.56 µs 
before the trigger till 2.56 µs after is recorded. At read-out only 
those patterns which are different from the preceding pattern are read, 
together with their time-mark. The THU is designed by Passuelo and 
Galliotto (Pisa). 

- Block Mover (designed by Pregernig, CERN}. 

CFI (designed by R. Mclaren, L. Gustavsson and E.M. Rimmer, CERN) is 
6BOOO controlled; it can be triggered. 

- ADCs. 16 channels are routed to 1 ADC, 6 ADCs will be placed on a board, 
19 boards in a crate. Designed in Saclay. 

- TDCs. Every 4th wire connected to TDC, resolution 5 ns. Designed at 
CERN (Leferrier). 

After the initial system will be completed, NA31 will evolve towards a 
two-crate FASTBUS system. A FIFO will be added to de-randomize the events 
for the 16B/Es. It will be 64 Kwords in 4 interleaved banks. Built from 
standard chips, it should provide overlapped reception and transmission of 
data at better than 100 ns per 32-bit word. 

11 XOP 

When speaking of the future, XOP [BJ should be mentioned as a possible 
processor for a number of SPS and LEP experiments. It is an ultrafast and 
modular successor to ESOP, microprogrammed as its predecessor. The cycle 
time is 50 ns, the machine consists of several units and the horizontal 
microinstruction allows to perform different operations simultaneously. A 
number of shortcomings of ESOP have been remedied. Tests of the first 
complete XOP should be made this summer; a number of modules have been 
tested separately. 

12 Conclusion and Acknowledgements 

At the end of this long list of devices and applications, one is~struck by 
the wide variety of both, and one is led to admire the inventiveness of so 
many people. In addition to being incomplete in substance, this report is 
also bound to be imperfect in acknowledging all the contributions to the 
use of specialized trigger and processing devices at CERN. For the 
preparation of this talk I received a wealth of information from my 
colleagues mentioned in the reference section. My sincere thanks· go to all 
of them. 
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QUESTIONS AND ANSWERS 

Q: How fast is XOP? 
D. Notz 

A: XOP should be 4 times faster than ESOP. Introduce nested loops. 

Q: Who is working on the 68000 FORTRAN Compiler and why is a commer-
cial product not used? 

T. Nash 

A: Two FORTRAN Compilers are at present evaluated. One has been 
written by Hans von der Schmitt, using a compiler-compiler. The other 
is a commercial product from ACE (Amsterdam). 
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