J

J)

Proceedings of the Symposium on
Recent Developments in
Computing, Processor and Software Research
for High-Energy Physics

Guanajuato, Mexico, May 8-11, 1984

Editors
Rene Donaldson

Michael N. Kreisler

Sponsored by CoNaCyt (Mexice), Fermilab, National Science Foundation (USA),
Secretaria de Educacion Publica, Universidad de Guanajuato, Universidad de Mexico,
University of Massachusetts at Amherst, the U.S. Department of Energy

—ii-

FOREWORD

The Symposium on Recent Developments in Computing, Proces-
sor, and Software Research for High Energy Physics was held in
early May 1984 in Guanajuato, Mexico. The Symposium brought
together many of the experts in the field who have been addres-
sing the problems of handling huge data samples and gargantuan
computational tasks.

In these proceedings, we have tried to capture not only the
details of the technical papers, but also the intensity of the
give-and-take in the questions and answers. The Symposium was
extremely exciting as the many different groups hotly debated the
relative merits of various proposed solutions. The active par-
ticipation of computer industry representatives gave the
Symposium an added flair. We hope we have been successful in
capturing that intensity.

In addition to thanking the sponsors of the Symposium, a
special note of appreciation must go to Governor Velazco Ibarra,
the Govenor of the State of Guanajuato. In addition to being the
gracious host of our international gathering, he is to be thanked
once again for a spectacular conference banquet and the
callejoneada which followed.

The Symposium was organized by C. Avilez, Universidad
Nacional Autonoma de México; A. Garcia, Universidad de Guana-
juato; M. Kreisler, University of Massachusetts at Amherst; and
T. Nash, Fermilab. The Symposium Secretariat was R. Donaldson,
Fermilab, and I. Menocal, Universidad Nacional Autonoma
de México.

We would also like to thank several people who made the
editing of these proceedings possible. Angela Gonzales of
Fermilab has done a stellar job on the artwork; Susan Winchester
of Fermilab and Nellie Bristol and Judy Ksieniewicz of the
University of Massachusetts have suffered under many revisions.
The hotograph of the Teatro Juidrez on page 456 was taken by
Joaquin Escalona, Universidad Nacional Autonoma de México.
Thanks to all.

R. Donaldson
M. Kreisler
August 1984

-iii-

PROCEEDINGS OF THE SYMPOSIUM ON RECENT DEVELOPMENTS
IN COMPUTING, PROCESSOR, AND SOFTWARE RESEARCH
FOR HIGH-ENERGY PHYSICS

TABLE OF CONTENTS
Page
Opening Ceremony

Discurso Pronunuado.......:.....................................1
Nestor Raul Luna Hernandez

Introductory RemarkS.ceeeeesosesseocencnsoscssvecssoncencnsnnseal
Michael N. Kreisler

Fixed Target On and Offline Reconstruction and Trigger Processors

A Rev1ew of Trléger and On-Line Processors at SLAC....eveerecceed
J. Lankford

A Parallel, Pipelined, Event Processor
for Fermilab Experiment 605..cc.cceeccecencccrococossrecscssacssell
D. M. Kaplan

A Data Driven Parallel Pipelined
Hardware RecConstruction ProCessOfcceesescsccssscsssscsssscasessidd
C. Avilez, L. Borten, C. Christian, M. Church,
W. Correa, J. Escalona, E. Gottschalk, G. Gutierrez,
E. Hartouni, S. Holmes, R. Huson, R. Hylton,
D. Jensen, B. Knapp, M. Kreisler, H., Morales,
M. Rabin, P. Salas, W. Sippach, B. Stern, J. Strait,
A. Wehmann, and A. Zentella

On-Line Filtering of High Energy Physics Data
with an Array ProCesSSOre..cceecteccccocscecssoosccssccssscsesasead)
J. P. Rutherfoord

A Charged Kaon Trigger Using the M7...cceeeseeevecssassoessaesad9
The E~400 Collaboration

A Trigger Processor for a Fermilab Di~Muon Experiment..........63
J. F. Greenhalgh

A Review of Triggers and Special Computing Hardware
for the Fermilab Fixed-Target Program..cccescsscececceccssasesabd
S. Conetti

~iv-

Lattice Gauge and General Theoretical Processors and Computing

Parallel Supercomputers and Lattice Gauge TheorieSee.eecscacens 79
A. Terrano

GIBBS - A Programming Environment and Workstation
for Scientists....... e ereeaas e seereeneaaann ceessecene vees..89
The GIBBS Group

The CMU Multi-Micro Computational Enginesscececeececvsscaeceeaa9d7
M. J. Lewvine

Algorithms for Concurrent ProCesSSOrS....seessccescevecsscssssslOl
S. W. Otto
Multiprocessor Projects

Problems in Parallel ProcesSing.secesscceesssssasceccscsvsanassl29
D. D. Gajski

Experience with Scientific Applications

on the MIDAS Multiprocessor SySteMe...eeseesecsccacas cesvsensa 145
C. Maples
Work in Amsterdam on Local Intelligence.eseeeeeessss S 1Y

J. Dorenbosch, D. Gosman, L. 0. Hertzberger,
D. J. Holthuizen, F. Tuynman, and J. C. Vermeulen

Software for Event Oriented Processing

on Multiprocessor SyStemS.sieseevsecssecsossnsoassssnsnsssasa o175
M. Fischler, H. Areti, J. Biel, S. Bracker,
G. Case, 1. Gaines, D. Husby, and T. Nash

The Fermilab ACP Multi-Microprocessor Project.c.ievesseescesss 183
I. Gaines, H. Areti, J. Biel, S. Bracker,
G. Case, M. Fischler, D. Husby, and T. Nash

The 3081/E Processor.e..e... ceessaesesecaens Cessasesereereeaaas 197
P. M. Ferran, A. Fucci, M. Gravina, R. Hinton,
D. Jacobs, P. F. Kunz, B. Martin, H. Masuch,
G. Oxoby, P. Rankin, K. M. Storr, and Q. Trang

ete™ Colliders On and Offline Reconstruction Processors

The 370/E Emulator at DESY..eeeeecoecnan seesseseseas st tecaccane 211
H. Brafman and D. Notz

A Review of Triggers and Special Computing Hardware
at DESY.eevevneinneeneennann A
D. Notz

-y-

The ARGUS Trigger Processor ''Little Track Finder"...eeeeeees..227
H. D. Schulz

The Use of MC68000 Microprocessors
in the TASSO Experiment...ceeeceeeccsscessscsssssssssssocsssanssl3l
V. Mertens

Triggers and Signal Processing at CESRececcreeecesescesoacanes239
P. Franzini

Trigger and Data-~Acquisition Plans
for the LEP EXDeriMentS.ccecsceesccsssssassssssonssranssssssssald3
W. von Riden

State of the Art in University Computer Science and Industry

The Fastbus Micro-VAR..iieieeessssoscossssssossssnscssisnsncassesel8l
E. J. Siskind

Lattice Gauge Theory Calculations on the CDC Cyber 205........285
D. Barkai, K. J. M. Moriarty, and C. Rebbi

The VLSI Revolution in Commercial RNumber-Crunching
Opportunities for Improvement Via SpecializatioNicesseececsce.s289
A. E. Charlesworth

ETA Directions in Large Scale Computingeseeecesccscesscescssss307
K. Steiner

Digital Equipment Corporation's Present and Future
Computing Engines for Scientific Problems (Questions and
ANSWET S)eeesesoesonsssssssnsessssossssossossssssansssrsanssssnsessldl’

FACM Vector Processor System: VP-100/VP-200
Current Status and Performance MeaSurementSeseesscsesesssssasss3l?
K. Miura

The CYBERPLUS Multiparallel ProcesSsor SySteMie.eeescecccssssss32]
V. Bongiorno

Software Research

A Molecular Mechanics Work Station

for Protein Conformational StudieS.eesevsscsrecssasseosacssasessa33l
G. Dimmler, R. Fine, C. Levinthal,
C. Rankowitz, and B. Schoenborn

Computational Bottlenecks
in Molecular Electronic Structure CalculationS.eiesseceesesess34l
C. F. Bunge

-yi-

Track Reconstruction in Planar Chamber SystemS.....cosecesesess35]
D. Bintinger

Software and the Dangers to Physics from Computing...c........355
T. A. Brody

Software for Large Scale Tracking StudiesSe....ceceeeeeeeneese.367
J. Niederer

pp Colliders On and Offline Reconstruction Processors

53 MHz Digital Processor for Real Time Calculation
of Beam Orbit Corrections in the Fermilab TevatronN...eeeseeses371
M. Johnson and L. Rolih

The DESY Beam Orbit ProCeSSOTeesecsecsssscsssscsssssscscsssecsesdl?
P. Leu, E. Lohrmann, W. Neff, H. Quehl,
H. J. Struckenberg, and P. Wilhelm

On-Line Use of MICE for Monitoring pp > J/¥
and Filtering pp » n, Events in the R704 Experiment....... «e0.383
J. P. Guillaud

Trigger and Specialized Computing Hardware
for the Colliding Detector at Fermilab...ceeoeeeeseasssneasess3d95
M. Campbell

The DO Experiment: Its Trigger,
Data Acquisition, and Computers..... e X
D. Cutts, D. Schamberger, R. Van Berg, R. Zeller

The UA1 VME-Based Data Readout and Multiprocessor System......413
S. Cittolin, M. Demoulin, W. J. Haynes,
W. Jank, E. Pietarinen, and P. Rossi
Post-Deadline
Trigger and Special Processors

in CERN's SPS and ISR EXperimentS..ssesesscescecsscsscosseassssd29
C. Verkerk

List of ParticipantSeeeeeecsceescrscasssssccanscsssssnnvesssnsseib?

Opening Ceremony

[Opening ceremony, La Fiesta de la Primavera, Chichén Itza, Yucatan, México.
Photograph by Anthony R. Donaldson.]

DISCURSO PRONUNUADO

Nestor Raul Luna Hernindez
Rector, University of Guanajuato
Guanajuato, Gto., Mexico

[Editors’ Note: We present here Rector Luna's talk in Spanish as it was
given. The Symposium wae officially opened by Dr. Jorge Flores, the Under—
secretary of Education of Mexico.]

Si el saber tedrico permite llegar al conocimiento en el
campo de la ciencia pura, ésta a su vez deriva a lo que
denominado actualmente tecnologia, es el saber prictico
proyectado hacia la construccién y el progreso.

Mucho se objecta la préctica de 1la episteme por la
inmitacién que impone de la realidad hasta llegar a su exclusién
y son por ello afectados los cientificos que dedicados a
la teoria, de ella parten para forjar otra realidad.

La realidad que de la ciencia deriva no puede ser si no
producto del saber puro, mis no por esto debe permanecer en el
estrato de lo ideal sino plasmarse en su consecuente concreto y
aprovechable por la experiencia sensible.

Este simposio sobre desarrollos recientes de procesadores,
computacidn e investigacién en el campo de 1la fisica de altas
energias, concede la oportunidad de confirmarlo. Su &mbito, per-
teneciente al mids puro y elevado saber, avanza en importancia
para el desarrollo de la tecnologfa indispensable a la evolucidén
de la realidad futura.

Su concresidn se aprecia en técnicas desarrolladas y
aplicadas a 1la solucidn de problemas en diversas 4reas de la
ciencia y manejo de datos esenciales para la informitica.

El porvenir de la humanidad precisa cada vez mds de la
ciencia y sus proyecciones, el deber del cientifico es conocerla
y transformarla para Dbeneficio de wun wuniverso dfa a dia
mis complicado, alejado de 1la naturaleza y dependiente de
la tecnologia.

En estas reuniones cientificas, que permiten el intercambio
de experiencias en problemas de investigadores se afirmarin las
relaciones entre expertos del campo de 1la ciencia pura vy
se establecerédn contactos entre especialistas que expresarédn el
saber mis alto aplicado en la solucién de wuna amplia gama de
complejas situaciones, cuya clarificacién deje ver el avance en
el uso creciente de estos recursos.

El pais requiere de tecnologia propia y la esta produciendo,
solo necesita que sea dada a conocer y evaluada debidamente.

Identificar necesidades técnologicas y dar difusion a los avances
de su conocimiento deben ser preocupaciones fundamentales de
quienes se ocupan de servir a la sociedad a través del mids eleva-
do conocimiento. Bien venidos seffores congresistas. Muchas
gracias.

-3~

INTRODUCTORY REMARKS

Michael N. Kreisler
University of Massachusetts, Amherst, Massachusetts

Governor Velazco 1Ibarra, Subsecretary Flores, Dr. Jaime
Tacher, the representative of the Director General of CoNaCyt,
Rector Luna, other honored guests, and my fellow scientists: On
behalf of the Organizing Committee, I take great pleasure in
welcoming you to Guanajuato and to the Symposium on Recent
Developments in Computing, Processor, and Software Research for
High Energy Physics.

Let me take this opportunity at the beginning of the Sympos-~
ium both to thank and to congratulate our Guanajuato hosts for
their cooperation and extremely hard work in preparing for and
holding this international gathering. Without the diligent
efforts of the Universidad de Guanajuato, the Symposium would not
have been possible. Thank you, Rector Luna.

In addition to the enthusiastic support of our colleagues in
Guanajuato and the Universidad de Guanajuato, we have been for-
tunate enough to recieve the support of the Governor of Guana-
juato, the Subsecretary of Education, and the Director General of
CoNaCyt. Our hosts have done and are doing an excellent job--one
that speaks extremely well as an indication to the international
scientific community of the wisdom of holding future conferences
in Mexico.

They've done their job very well--we now have to get on with
ours.

As most of us realize, the problem that has caused us to
gather in this charming city is extremely pressing. Despite the
rapid growth in computers and related technology, we are pain-
fully aware that there are many crucial questions which cannot be
addressed with either current technology or with that technology
one could reasonable expect to exist in the commercial sector in
a few years. Those problems involve either the analysis of huge
complex data banks or laborious multidimensional calculations as
in gauge theories or weather simulation. Most laboratories and
universities making projections of computer needs for the near
term future recognize that demand for access to even the most
advanced current computers will outrun the financial ability of
those institutions in a few years~--at some, the current facil-
ities are already inadequate.

One could question whether such a demand for computation is
necessary--are the problems sufficiently important? The demand
is not limited to the field of pure research in high-energy
physics but rather represents a broad, growing awareness by all

sectors of the economy--led, as usual, by extremely intelligent
scientists--that one con obtain c¢rucial answers to vitally

important questions if one only had sufficient computation power.

Some of us like to view the importance of the questions in
another related manner. In searching for the answers to the
riddles of the structures and secrets of matter, we have been use
to searching through a small handful of hay or straw looking for
a needle of truth. Such searches have been extremely difficult,
time consuming, and, of course, occasionally very rewarding.
Those of us here realize that not only could a breakthrough in
technology allow us to sift through those handfuls of hay much,
much quicker, but we even might be able to begin attacking the
large haystack against which we have been leaning. There are
even visionaries among us who have taken the time to walk up a
nearby hill and notice that the countryside is dotted with
thousands of haystacks.

Our collective goal is to be able to make those break-
throughs yielding either new technological approaches and/or more
efficient uses of existing resources. We would then be able to
explore the new scientific problems lying so temptingly just
outside our grasp. Obviously we are driven by the problems in
high-energy physics. Our solutions will have a very wide impact
throughout the technological community.

During the Symposium, we'll hear from spokesmen from many of
the approaches which are being developed and tried. We look
forward to learning lots of new things and to participating in
lively debates about the virtues of competing ideas. Coupling
such important, exciting technical problems with the charm of
Mexico in general and Guanajuato in particular seems to promise a
busy, enjoyable time for us all.

Again--welcome to Guanajuato.

[Collage by Max Ernst, 1891-1976, from "Une Semaine de Bonté," first published
in 1934.]

A REVIEW OF TRIGGER AND
ON-LINE PROCESSORS AT SLAC*

A. J. LANKFORD

Stanford Linear Accelerator Center
Stanford University, Stanford, California, 94305

1. INTRODUCTION

The role of trigger and on-line processors in reducing data rates to manageable
proportions in ete™ physics experiments is defined not by high physics or background
rates, but by the large event sizes of the general-purpose detectors employed. The rate
of ete~ annihilation is low, and backgrounds are not high; yet the number of physics
processes which can be studied is vast and varied.

This paper begins in Section 2 by briefly describing the role of trigger processors
in the ete™ context. The usual flow of the trigger decision process is illustrated with
selected examples of SLAC trigger processing. The examples discussed are the energy
trigger of the ASP detector and the charged particle triggers of the Mark Il and Mark
II detectors. Section 3 sketches the features of triggering at the SLC and the trigger
processing plans of the two SLC detectors: The Mark II and the SLD. In Section 4, the
most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor,
the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses
of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in
which these processors are interfaced and the function they serve on line are described.
Finally, Section 5 outlines the accelerator control system for the SLC. This paper is
a survey in nature, and hence, relies heavily upon references to previous publications
for detailed description of work mentioned here. In addition, apologies are deserved
by all the experimenters whose work is overlooked or improperly acknowledged by this
overview.

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.

b~

2. TRIGGER PROCESSING FOR e*e” ANNIHILATIONS

e*e™ collisions are provided by bunched beams of electrons and positrons which
cross with frequency set by the physical scale of the accelerator. Trigger decisions can
be made without deadtime during the period between crossings. This period is shown
for the accelerators SPEAR, PEP, and SLC in Table I. The time between crossings
at SPEAR and at PEP is sufficiently short that trigger decisions are normally made
by multi-level hardware processors. The first-level trigger, made between crossings,
reduces the beam-crossing frequency (1.3 MHz at SPEAR and 420 KHz at PEP) to a
rate set by its allowed deadtime fraction. First-level trigger rates are typically about
a kilo-Hertz. The second-level trigger rate is set by the readout time until an event is
buffered. Rates are typically 2 - 5 Hz and deadtimes less than 10% . Some experiments
also employ third-level triggers for long decision times on small numbers of events. The
MAC experiment at PEP, for instance, reduces its trigger rate by about a factor of two
with a software trigger decision requiring 10 to 20 msec on its VAX.

Table I. Beam crossing and interaction rates at SLAC e*e™ accelerators

Accelerator Period between Rate (opt) Rate (otot)
beam crossings
SPEAR 780 nsec ~2x1072 Hz S1H:z
PEP 2.3 psec ~2x10"% Hz ~0.01 Hz
SLC 5.5 msec ~7x107° Hz 5025 Hz
The rate of ete~ annihilations is parameterized as:
rate = Rype X oy X L, where o, = (—2-%-';)2 (1)

is the point-like cross-section for ee™ — utu~. Ry, is the ratio of the total anni-
hilation cross-section to op;. Ry is in the range 4 to 8 in continuum regions, and is
itself an indication of the onset of new physics processes. On resonances, R, can be
much greater. Ry, is ~ 2500 and ~ 25 on the $(3100) and T(9460) respectively, and is
expected to be about 4000 on the Z° resonance. [is the luminosity, and is characteris-
tically within about a factor of two of 103! em=2 sec™!. Typical physics rates are shown
in Table I for SPEAR, PEP, and SLC. The total physics rates are quite manageable;
consequently, most detectors for et ¢~ physics are general purpose in nature and try to
record all physics events. The detectors generally consist of cylindrical drift chambers
in solenoidal magnet fields surrounded by calorimetry. Typical event sizes range from

a couple of kBytes to about a hundred kBytes. Similar detector geometries result in
similar trigger problems and generic solutions.

The general purpose nature of e*e~ experiments require that triggers include a
broad range of physics topologies, from multiparticle hadronic events to two-track lep-
tonic events, single electron events, two-photon or one-photon final states, and decays
of possible long-lived particles. These events generally fall into two broad categories:
events with two or more charged tracks and events with one or more energetic showers.
Trigger designs generally consist of parallel logic to identify these event types. Charged
particle triggers define a track as a set of tracking chamber hits in a trigger road. The
numbers of planes of tracking available to and required by the trigger processor vary
among experiments, as do the precision with which roads are defined and the momen-
tum range covered. Neutral energy triggers discriminate on local or global sums of
energy from calorimeter channels. The thresholds accessible and chosen depend on
the type of calorimeter and the way in which the sums are formed. Information from
charged particle and neutral energy triggers may be combined in other triggers. Ad-
ditional parallelism at all decision levels provides redundancy helpful for determining
trigger efficiency.

The backgrounds to the physics triggers arise from cosmic rays, beam-gas collisions,
beam-pipe collisions of off-energy electrons, synchrotron radiation, and electronic pick-
up. The sources of background can generally be reduced to quite manageable magni-
tudes by careful masking and shielding. Residual background is reduced by limiting
acceptance in the radial and longitudinal position of and in the time of the interaction.
Ability to reject random hits can also be important. Most trigger processors require
that the projection of candidate tracks in the plane perpendicular to the beam axis (r—¢
plane) pass through a fiducial area surrounding the beam-crossing point (r =0,z = 0).
In addition, the track must be in time with the beam-crossing. Few experiments are
able to project track candidates longitudinally along the beam-direction (z); so ex-
periments commonly have inner trigger chambers or vertex detectors which restrict
the acceptance in this dimension. The TPC detector(!) at PEP, however, uses its drift
time measurement along the beam direction to project tracks toward the beam-crossing
point in r — z planes instead of the r — ¢ plane.

The following sections describe examples of SLAC trigger processors which illustrate
solutions to the problems of trigger efficiency and background rejection. The examples
discussed are the energy trigger of the ASP detector and the charged particle triggers
of the Mark III and Mark II detectors.

2.1 THE ASP ENERGY TRIGGER

The trigger logic of the ASP Detector(?) provides an example of an energy trigger
accomplished between PEP beam crossings so as to have no deadtime. This new
detector, designed for the detection of anomalous single photons, consists of four walls
of lead-glass shower counters, called quadrants, which surround the interaction point.
Each quadrant consists of five layers of glass separated by proportional chambers. The
ASP trigger, with several thresholds and programmable logic, provides simple and
general logic for triggering on both localized and overall energy deposit.

The flow of the trigger decision is shown schematically in Fig. 1. The 632 photo-
multiplier signals from the lead glass are each split to a digitizing system and to the
trigger. The trigger signals are summed to eighty sums of eight and then summed
again to twenty sums, each corresponding to a layer. These twenty layer sums (five
per quadrant) each go to integration circuits and then are discriminated to define hit
layers.

20X 32pr

to SHAMIVs
—Summers
640
shanals |
'gnals I 20x ax 1x
. Total Energy Sum
—» Splitter “S'F"'d Laoyer Sums 53'5"'0 Quadrant Sums 4éF°‘d 9y
ums ms um
|) f] ET I
t ET2
20X 4 pr

”—‘ A
'B—D

JHPH [

20 L

L A
- N Channels of tﬂ
{ntegration (Gated)] Eo G'Ial}al
ontro

_ N Channels af Wire Chambers x

" Discrimination

= Memary Logic Unit

[erz][zv] (2]

M
L
U

Fig. 1. ASP Energy Trigger block diagram.

The hit layers address a memory look-up which in turn defines allowed combinations
of hits; for example, the first two layers of a quadrant but not the last two. The layer
sums are also summed in turn into four quadrant sums, which are integrated and each
discriminated against three levels defining three energy thresholds for deposit within
a quadrant. The resulting twelve signals address a memory look-up that counts and
defines combinations of quadrant hits. The quadrant sums are also summed to form
a total energy sum, which is also integrated and discriminated against two thresholds.
The resulting two total energy sum signals, four-bit combinations of quadrant sums,
and four-bit combinations of layer sums, along with signals from PWC’s and low-angle
shower counters, address a final memory look-up which forms a four-bit output used
by the global control module, which issues the trigger interrupt to the data acquisition
computer and controls the overall system timing.

"ASSOCIATION" BOARD

Jo {10 fo {0
1Kx4 IKx 4 1Kx 4 IKx 4
RAM | |[RAM | [RAM| |RAM

I T p|)
13 13 13 3

4
4K x1 RAM A

2
4K x1RAM

ol aKarm —e

OR
o[4Kx1RAM |——>D

12

Fig. 2. Memory Logic Unit (MLU) block diagram.

The memory look-up is performed by Memory Logic Units (MLU’s) with twenty
inputs which address RAM’s to provide five outputs, as shown in Fig. 2. To reduce the
size of the RAM needed, the latched information from the twenty inputs is passed to
an “association” board with forty outputs. This association board is simply a plug-in
piggyback card which allows the twenty inputs to be patched in arbitrary fashion to
four sets of ten outputs which address four 1K x 4-bit RAM’s on the main board.
One output from each of these RAM’s is ORed with a bit from each of the others to

-10-

produce an OR output from the MLU. The remaining three bits from all four RAM’s
are combined to address each of four 4K x 1-bit RAM’s in parallel. These RAM’s
provide four additional MLU outputs. The RAM’s are all read/write, and test inputs
to the MLU exist for diagnostics.

2.2 THE MARK III CHARGED PARTICLE TRIGGER

The Mark III charged particle trigger is another example of a fast trigger decision
that could be made between beam crossings. In fact, since the Mark III drift chamber
has maximum drift times longer than the available decision time at SPEAR, the Mark
III trigger has multilevels. The first-level decision is made between crossings, the two
second-level decisions are made before the second subsequent crossing, and the third-
level is made in the following 100 psec. Only levels 1 and 2b are described here. All
levels of the charged particle trigger are described in Ref. 3.

Sense Wire

Inner Drift Chamber
Ib Ia

Foils at
Ground

10.5¢m ,' Vacuum Pipe
™~ 00Mev
Interaction N Trajectory

Point

For Each Pair _
of Sense Wires: Gate Timing
Controlied by VAX

From Ia
Sense Wire To

Lumped Element Trigger
Delay Line Control
with 10 Taps

From Ib

Sense Wire

Fig. 3. Mark III Inner Drift Chamber,
showing delay line logic for Level 1 trigger.

The Level 1 trigger utilizes the inner drift chamber of the Mark III. This one-
meter-long chamber, located 10 ¢m from the interaction point, has two overlapping
layers with 1-cm drift, as shown in Fig. 3. The Level 1 decision is based on the
fact that the sum of the drift times in the two overlapping layers is a constant for
tracks originating at the interaction point. It uses a chronotron composed of a lumped

-11-

element delay line with 10 taps to define a hit. Level 1 reduces the rate to about
300 Hz on the ¢ resonance, by restricting the longitudinal acceptance to the length of
the chamber and by restricting the radial acceptance and time acceptance using the
chronotron. No scintillation counters are used; however, time-of-flight scintillators can
also be incorporated if desired. A similar technique is used by the TPC experiment(4
as a first-level trigger.

The Level 2b trigger is based upon fast circle finding using programmed logic arrays.
Three drift chamber layers, with radii at 10, 40, and 65 c¢m, are used as shown in Fig.
4. Since each of the outer layers consists of three sense wires among which only two hits
are required, the track-finding efficiency remains at about 95% . The logic searches in
parallel for tracks through any of the eighty cells in the outer layer. Through any one
outer cell and the interaction point, there exist less than sixteen possible trajectories
with momentum greater than 50 MeV. A PAL is associated with each outer cell. Its
inputs are that cell, the cells which lie on possible trajectories through the other two
layers, and control lines to select a momentum cutoff. The PAL is programmed as an
OR of up to 16 AND’s such that satisfying any possible trajectory identifies a track.
Demanding two or more tracks reduces the trigger rate on the ¢ resonance to 3.5
Hz, composed roughly equally of physics, cosmics, and beam-gas. Level 2b decision
time requires 25 nsec after the maximum drift time. Searching 80 sets of conditions in
parallel provides this speed. Having only 80 sets of conditions by using only three layers
to define a trajectory allows the parallel search for tracks. Although this approach has
worked effectively, it is potentially susceptible to inefficiency or noise should a chamber
layer not operate correctly.

75 MeV

Trajectories
Drift Chamber | PAL for Each
Cell Boundries Cell in LayerV
AY

LayerV

QOut is True if
Valid Cell Pattern
and Proper Control
Lines are True

PAL —Out
18CH_ a5

=

Control Lines
from VAX for

Layer Beam Momentum Cuts

Line
Fig. 4. Mark III Drift Chamber Layers I, III, and V,
showing circle combinations and PAL logic for Level
2b trigger.

~12-

2.3 THE MARK II CHARGED PARTICLE TRIGGER

The Mark II charged particle secondary trigger, described in detail in Ref. 5, is an
example of a second-level trigger processor which utilizes more complete drift chamber
information in a flexible manner. The HRS Curvature Processor(®) is essentially iden-
tical, with some minor extensions. The DELCO secondary trigger(") is also somewhat
similar except that only one road pattern is defined. The Mark II processor reads out
the cells serially in each of twelve drift chamber layers. This serial readout, which is via
shift registers, translates the polar angle of a hit wire into a time t. By shifting twelve
layers in parallel at a constant angular velocity, a straight track at an angle ¢; gives a
coincidence among layers at readout time ¢;. Curved tracks are found by appropriately
varying the relative delay of the readout of the various layers. This process effectively
rotates a set of curved masks through agimuth (see Fig. 5), searching for tracks which
match a mask.

Shift Register Direction

Effective Mask Rotation

Drift Chamber TRACK
Shift Registers

Fig. 5. Mark II Charged Track Finding Principle.

The trigger processor is shown schematically in Fig. 6. Hits in the drift chamber
cells are recorded by time-to-amplitude or time-to-digital converters and registered
in shift registers in those modules. The shift registers of twelve layers of cells are
simultaneously shifted under the control of the Master Clock through a Test and Pickoff
module, which places the shift register output onto the auxiliary bus of three CAMAC
crates. In these crates, 24 Curvature Modules, operating in parallel, search the data

-13-

on the bus for tracks in 24 different curvature ranges. A complete set of curvature
“masks” is shown in Fig. 7. Identified tracks of three types are signalled to three Track
Counter modules which count tracks and record their angles and curvatures. At the
end of the process, the track counts are sent to the master interrupt controller where
the trigger decision is made.

CURVATURE MDDULE BUS

«~TEST 8 PICKOFF MODULE

'l

R,
SCINTILLATORS A
LL NERATOR
{1 LAYER) 24 CURVATURE
MODULES
DRIFT CHAMBER
SECTION OF BARREL B es ABC
e —
REGION(EACH ELEMENT = | I
REPRESENTS | CELL
OF THE DATA SHIFT
REGISTERS) 23 lg_q l 24 o
SCDPE
TRACK TRACK TRACK
COUNTER| |cOUNTER| [counTER
DRIFT CHAMBER A 8 c
GATED
GITER GATE RESET
TRIGGER
¢ OUT 70 ¢—{ MICKEY MR
BEAM LINE COMPUTER BUSY
BURPED CLOCK ¢ STIRY
TO DATA SHIFT 12 (FROM
REGISTERS A

TRIGGER)

Fig. 6. Mark II Charged Particle Trigger Processor block diagram.

The Test and Pickoff module shifts circularly through 490° in order to find tracks
of all curvatures and of both signs at the ¢ = 0 boundary. It also allows the injection
of patterns to test the integrity of the shift registers and of the rest of the logic. The
Curvature Modules contain programmable logic to define a momentum bite (curvature)
and a road width. Hits in the twelve layers address a 4K x 2-bit RAM which is
programmed to identify three exclusive track types (seven types in the HRS logic).
The programmed parameters are chosen for optimal efficiency using off-line simulation

-44 -

of the hardware interfaced to a physics Monte Carlo. Efficiency is measured using real
tracks. The Master Clock module provides twelve separate “burped” clocks for the
twelve layers. All clocks are based on the same frequency of 10 MHz; however, clock
transitions are periodically skipped for each layer in order to shift all layers at a constant
angular velocity. Twelve such clocks are necessary because each drift chamber layer
has a different number of cells. The Master Clock is programmable to allow choice of
the twelve layers used in the trigger. The Track Counter modules contain logic to avoid
double counting of tracks from the same or different Curvature Modules. They also
permit CAMAC readout of information about tracks found. This information is used for
diagnostics and to aid track reconstruction. In addition, the trigger processor includes
a Display Generator, which serves as an invaluable diagnostic tool, and a Colinear
Track Finder, which identifies back-to-back track combinations such as small-angle
Bhabha events. The master interrupt controller MICKEY manages the multi-level
decision process, including gates, resets, and interrupts. It also has memory look-up
to trigger on programmable combinations of signals from various trigger processors,
including the count of each track type, a count of hit calorimeter modules, and an
overall energy threshold. A complete package of diagnostics perform routine tests of
the entire processor and identify failing modules.

R=1.7 meters

U

Beam
Line

TOF radius
(1.5 m)

Fig. 7. Mark II Curvature Masks for a given azimuth

The charged-particle trigger decision using this processor requires 35 usec. A com-
promise between serial and parallel processing is achieved which economizes on the
number of connections and on speed. Much drift chamber information is available
to the processor, permitting tight roads pointing to the origin which are effective at

-15-

rejecting background but efficient for finding tracks. Programmability has enabled the
processor to function effectively at SPEAR and at PEP with various inner drift cham-
bers and despite the inefficiencies of an aging central drift chamber. This processor
will also be used with a new drift chamber at PEP and at SLC.

3. TRIGGERING AT THE SLC

The unique features of the SLC with respect to trigger processing are the long,
5.5-msec interval between beam crossings, the high luminosity without high beam cur-
rent, and the high event rate provided by the Z° resonance. The long interval between
beam crossings allows complex, hierarchal trigger processing, including software pro-
cessing. Such triggers would allow maximum flexibility through programmability, use
existing data paths, and allow uniform treatment of all detector subsystems. The lower
beam-crossing rate also limits background. Beam-gas rates, with similar vacuums and
numbers of electrons per bunch at PEP and SLC, are reduced by more than 10° at
SLC by the lower crossing rate. Cosmic rates are similarly reduced. Synchrotron ra-
diation, beamstrahlung, and radiation from the beam dump can all be masked, except
very near the beam-pipe; however, synchrotron radiation could be a surprise. It could
slow trigger processing times and data acquisition times, as well as increasing the back-
ground rate. Ability to recognize and reject synchrotron radiation hits could prove to
be important.

3.1 THE MARK II TRIGGER AT SLC

Trigger processing for the Mark II detector at the SLC is shaped also by the need
to trigger the upgraded detector during checkout at PEP. Consequently, the existing
trigger processor (see Section 2.3) will continue to be used. Information from the new
central drift chamber will be processed first by trigger cards which interface FASTBUS
TDC modules® to the existing trigger. These trigger cards connect and are addressed
through the FASTBUS auxiliary connector. They latch hits on and do majority logic
on the six wires in each drift chamber cell. The results of the majority logic, performed
by addressing programmable RAM for all 972 cells in parallel, are then shifted through
the existing logic. The ability to do majority logic at the cell level will allow a tighter
majority requirement at the road level, which could help reject random background
hits. Other new detector elements will be incorporated into the trigger in the fashion
of the elements which they replace.

The Mark II at SLC will also be prepared to do software trigger processing if
required by severe backgrounds. Synchrotron radiation hits could be rejected, based
on pulse height, before shifting drift chamber hits through the existing logic. Beam-
gas tracks could be rejected by determining the event vertex position by fitting tracks

-16-

found by the hardware trigger processor. Such processing would be performed by the
SLAC Scanner Processors (SSP’s; see Section 4.2) and 3081/E processors (see Section
4.4) which are part of the data acquisition system. The 3081/E’s will have available to
them the entire event record for trigger considerations.

3.2 THE SLD TRIGGER

Trigger processing for the SLD detector!®) will use data paths similar to the event
acquisition paths. Input data for the trigger will be derived in the data acquisition
modules. Chamber data, acquired in Waveform Sampling Modules, will be reduced
to one bit per wire. Calorimeter data, acquired in Calorimetry Data Modules, will be
the digitized energies. This trigger input data will be read out by the same crate-level
SLAC Scanner Processors (SSP’s; see Section 4.2) used in event acquisition. At the
crate level the trigger data will be tested for evidence of tracks and further compressed.
For instance, five out of eight drift chamber wires hit in a cell will define a hit cell, and
one bit per cell will indicate whether a cell was hit. For calorimeters, the digitizations
within a tower will be checked for consistency and compressed to one bit per tower
and to a total energy per tower. The crate-level SSP’s will send the compressed trigger
data to dedicated Trigger Processors. All Trigger Processors and their programs will
be identical. The program will perform pattern recognition by table look-up and will
result in simple numeric descriptions of recognized patterns. Pattern recognition will
be done by separate Trigger Processors for each of the three stereo views of the drift
chamber and for each of four calorimeter units. SSP’s may serve as these processors.
Finally, the recognized patterns will be read by a Trigger Master which makes the
final trigger decision. The Trigger Master will also be the event acquisition master,
controlling detector resets, waits, etc., data flow, and the running environment. It may
be an SSP or a FASTBUS VAX (see Section 4.4). The trigger decision will be complete
in time to reset the detector before the next beam crossing.

4. ON-LINE PROCESSING AT SLAC

Large, general-purpose ete™ detectors require on-line processors for data acquisi-
tion, calibration, monitor, and diagnostic tasks. In order to reduce readout times and
to simplify downstream processing, event and calibration data is typically compressed
by the data acquisition modules or by crate-level processors such as the BADC and the
SSP. Some monitoring and control may be provided by microprocessors, such as the
SFC. Thorough monitoring and diagnostics, which frequently involve studying sampled
events, sometimes after complete event reconstruction, is usually done by host comput-
ers, which at SLAC are VAX’s. The host generally writes the data to tape for transfer
to off-line processing; however, the MAC experiment at PEP transfers data directly

-47-

from disk on their VAX to disk on the SLAC IBM facility via a Long Line Adapter.
For the complex SLC detectors, processors such as the 3081/E or the FASTBUS VAX
will supplement the hosts at the system level in monitor and diagnostic tasks. Mi-
crocomputers will manage the flow of data among the on-line processors. The on-line
processing systems for the Mark II and SLD detectors at SLC are described in Refs.
9 and 10, respectively. The following sections describe some of the on-line processors
commonly used at SLAC.

4.1 THE BADC

The BADC!Y) is a microprocessor-based semi-autonomous controller for CAMAC.
It was designed to control readout of a CAMAC crate of data acquisition modules,
such as sample-and-hold and time-to-amplitude converters. It controls the multiplex-
ing of data onto an analog bus, digitizes the analog data, compresses and processes
the data, and buffers results until CAMAC readout. The algorithm most often used
for processing of event data discards data below some threshold, corrects data by a
quadratic polynomial, and relabels data by function, such as by drift chamber layer
number and wire number. Threshold and correction constants for each channel and
labeling information are stored in local RAM. This algorithm requires about 3 msec
per channel for data below threshold and 10 usec per channel for data above thresh-
old. Another algorithm streamlines calibration procedures by calculating an updated
mean and variance for each channel after each event and thereby reducing the amount
of CAMAC readout and of host computation. Certain diagnostic algorithms are also
implemented.

The BADC economizes on cost, by amortizing the cost of digitizing hardware over
hundreds of channels and by allowing higher channel densities. It economizes on readout
time, by allowing several crates of electronics to be sparse scanned in parallel followed
by block transfer from a small number of BADC’s. It economizes on host processing
time by correcting and relabeling data at high execution speeds and in parallel, and it
simplifies host program structure by handling many thousands of constants.

The architecture of the BADC is described in Ref. 11. Its features are only high-
lighted here in order to illuminate how it fits into a data acquisition system. The BADC
is a triple-width CAMAC module with CPU, RAM, and ADC boards. The ALU is
four AMD 2901 four-bit slices controlled by an AMD 2909 microprogram sequencer.
Program memory is two 256-word pages of 48-bit PROM. In practice, the second page
has never been used in an application. Memory is either 4K or 12K 16-bit RAM with
220-nsec read access. The RAM is used to contain control tables, correction constants,
and data buffer. Three clock cycles are defined; short (200 nsec) for most operations,
long (360 nsec) for conditional branches, and pause for operations such as CAMAC 1I/0

-18-

which require acknowledgement from another execution unit of the BADC. Interrupts
are not implemented. CAMAC commands to the BADC, as well as front-panel signals,
force branches to predefined locations in PROM.

The BADC addresses modules within a crate by transmitting an encoded station
number N to a SLAC type-U crate controller. The BADC directly accesses the F, A,
S1, and S2 lines. Handling of contention on the CAMAC lines is limited. If contention
occurs during BADC execution, an error breakpoint is set. A software timer allows a
CAMAC cycle which starts BADC execution to complete before the BADC commences
CAMAC operation. Control of CAMAC scans is provided by the ADC board which
receives the analog data into a three-step pipeline, consisting of address data module,
sample-and-hold, and digitize. All CAMAC data is routed through the RAM board,
where the D and Y busses of the ALU are interfaced by buffers to the CAMAC W and
R Lines. The output buffer from Y to R is gated by a READ from CAMAC. The input
buffer from W to D is loaded by a WRITE from CAMAC and gated onto the D bus by
microcode which moves data from the buffer, onto the D bus, through the ALU, onto
the Y bus, and into RAM in a single CAMAC cycle. Interconnection of the RAM and
ADC boards to the CPU and CAMAC are shown in Fig. 8. The modular construction
of the BADC has allowed easy modification of the basic design, for instance for 12K
RAM boards and for replacement of ADC boards by interfaces for alternate hardware.

Microcode for the BADC is now generated using a machine-independent meta-
assembler written in FORTRAN named MAMIC. MAMIC consists of two passes: the
first defining the machine and instructions in terms of microcode fields and operations,
and the second assembling the user code. It was also used for the SLAC Scanner
Processor microcode PROM’s and microcode for various other devices such as the
VAX CAMAC Channel. In the case of the BADC, the generated microcode can be
tested using a debugging RAM in a separate CAMAC module before burning PROM’s.

Since its first use in 1977 with the Mark II detector at SPEAR, the BADC has been
a central element in the data acquisition systems of many SLAC experiments. Seven
different SLAC detectors{!? have used more than fifty of these units (which are now
commercially available(!3)) for a variety of detector types: MWPC, drift, lead glass,
and liquid argon shower counters, drift chambers, MWPC cathode and charge division
readouts, time-of-flight counters, muon detectors, and luminosity monitors. Associated
data acquisition modules developed for use with BADC’s include: four types of sample-
and-hold circuits, single-hit and multi-hit time-to-analog converters, and a time-of-flight
module containing time and pulse-height measurements. In addition, BADC units have
been adapted to alternate hardware configurations, including readout of a second crate,
a remote crate, and separate hardware. In the Mark II experiment, BADC’s have
performed the readout of every detector component except the proportional tubes of
the muon system. At SLC, the Mark II will use twenty-two BADC’s; however, SLAC
Scanner Processors will be used for readout of FASTBUS electronics for the new drift
chambers.

-49-

: D BUS 1 Analo
f Y BUS 2
-1 = - -_—— 7T |
M S | — 1T |
] D Y | ‘ Qutput S/H
¢ Al | pata | Buffer i
rRE¥ ALU I &L memory [Y
0 | I RAM Test y I
g | 2| [orniesit |1 Cogic [yl mux TedaDC l
2 I S I f
E o l R/W Y Latch | | CAMAC
. cLK| | Logic =mzml Sean Control | |
g)' j I___.._ﬁ_ﬁ_._____‘}__lL__ I I O 1 |
H Azgogns's y Status N
ress,
Dl Branch ACK (encoded)
Logic
; Ri-R1B
T v BRKPT 2] AcK
y
— I EXT OPCODE || ¢
CAMAG C
Logic Wi-Wi6 |Wi-W16 U
N,FAC $51,52 F,A,81 | TRdecoded)
A

A 4
<7 CAMAC DATAWAY >

Fig. 8. BADC block diagram.

4.2 THE SLAC SCANNER PROCESSOR

The SLAC Scanner Processor {or SSP), which is described more completely in
Ref. 14, is a general-purpose, high-speed, programmable FASTBUS module. It has
been designed for the Mark II Upgrade to provide crate-level processing of data from
FASTBUS modules similar to that provided in CAMAC by BADC’s. The SSP, however,
provides a more general, and, hence, more powerful means of moving and processing
data in a FASTBUS system. Consequently, SSP’s can also be used for various system-
level tasks.

From the FASTBUS point of view the SSP can be attached as either a master or
a slave to either a crate segment or a cable segment, while being physically connected
to both. As a slave, SSP memories can be read and written. The program memory
of the SSP maps into CSR space, and data memory maps both into data space and
CSR space. Host control of SSP operation as a master is exercised through CSR# 0.

~20-

As a slave, the SSP operates without CPU involvement. DS-to-DK response times are
about 100 nsec.

As a master, the SSP implements a large number of FASTBUS operations. FAST-
BUS primitives, such as primary address cycle, are implemented as single SSP instruc-
tions which include a pointer to an argument list. Other FASTBUS operations, such a
read data block, are implemented as single SSP instructions which execute a sequence of
FASTBUS primitives at the microcode level. Finally, other FASTBUS operations, such
as write random data with pattern select, are implemented as macros of SSP instruc-
tions at Assembler level. Instructions which terminate a block transfer normally upon
an end-of-block response (SS=2) from a slave and instructions which terminate block
transfers upon exhausting a word count are both implemented. Block transfers involve
a DK-to-DS delay of about 100 nsec. All IBM integer and many byte instructions are
implemented for control and data processing.

The SSP consists of two FASTBUS boards, control and processor. The control
board contains the interface and I/O logic, which are symmetric with respect to the
crate and cable segments, instruction logic, address calculation logic, branch logic, and
word count logic. The instruction logic consists of 4K words of program memory,
PROM address logic, and microcode PROM’s in a three-level instruction pipeline.
Instructions have IBM format. They are decoded in the microcode PROM’s to 56
bits which control the instruction logic and 1/0O logic and to 48 bits which control the
processor. As many as 256 instructions can be defined in the microcode proms. The
processor board contains a 32-bit CPU (eight AMD 2901C bit-slices), dedicated input
and output shifters to expedite multiple shifts, 32 K x 32-bit words of data memory, two
registers, and condition code logic. The data memory is byte-addressed. It is composed
of 16 K static RAM’s and will be easily expandable when 64 K RAM’s become available.

The SSP is designed to be easily programmed. Source code can be written in
IBM Assembler or in FORTRAN. Code is then assembled or compiled, translated into
separate program and data, optimized, and linked into an image by a translator/linker
program on a host computer. This program produces a single file comprised of program
and data memory images and of a header which contains information on program size,
locations of COMMON blocks, etc. The program and data memories are down-loaded
to the SSP over FASTBUS. The initial program status word is loaded into data memory
location 0, and execution is started via CSR# 0 or by a hardware signal. Completion
of execution can be signalled by a service request or by a front panel output. Execution
can be interrupted between instructions if the SSP is so enabled. Instructions can be
executed in single-step mode, and a cross-debugger can be implemented via FASTBUS.

The initial application of the SSP is in the drift chamber readout system for
the Mark II, where SSP’s will scan, process, and buffer data from commercial TDC
modules(®) and from SLAC-designed FADC modules. At the crate level, these SSP’s

—24-

will also process calibration data and perform crate initialization, data acquisition mod-
ule testing, self-testing, and crate segment verification. In addition, SSP’s will serve at
the system level as cable segment masters and buffers for the cable segments linking
the TDC and FADC crates and as data block movers and buffers to and from on-line
3081/E processors. More than 25 SSP’s will be used by the Mark II. The SLD detector
also plans to use SSP’s at the crate level for all detector subsystems (~ 80 units) to
readout and process data from Waveform Sampling Modules and Calorimeter Digiti-
zation Modules. The crate-level SSP’s also preprocess data for the event trigger, and
additional SSP’s act as Trigger Processors for each subsystem and as a Trigger Master
to complete the trigger decision.

4.3 THE SLAC FASTBUS CONTROLLER

The SLAC FASTBUS Controller (or SFC), which is described more completely in
Ref. 15, is a single-card FASTBUS microcomputer suitable for real-time monitoring
and control applications. In fact, an SFC can transfer blocks of data at rates of about
5 psec per 32-bit word {800 K B/sec), which is faster than effective UNIBUS rates
{500 KB/sec) and within a factor of about two of fastest CAMAC speeds. It can
also implement all possible FASTBUS operations as both a master and a slave and can
serve as a host for a FASTBUS system. Moreover, it can be programmed in higher-level
languages such as FORTRAN.

The SFC consists of an interface between FASTBUS and MULTIBUS and of any
MULTIBUS single-board computer, such as Motorola 68000, Intel 8086, or National
16032, which mounts in the FASTBUS module. The interface connects the 8- or 16-
bit MULTIBUS data bus to the FASTBUS AD lines and maps an 8-bit MULTIBUS
I/O address onto FASTBUS AS, DS, RD, MS lines. As a master, the SFC executes
a FASTBUS cycle by performing a read/write to MULTIBUS I/O space. Processors,
such as the 68000 and 16032, which can move a 32-bit longword on the data bus with
one instruction are able to execute a FASTBUS cycle, either address or data, in a
single instruction. The interface hardware is designed to reduce software overhead by
arbitrating for the FASTBUS and by issuing the strobes AS and DS and waiting for
acknowledge signals AK and DK while managing a timeout counter, checking parity,
and checking for non-zero SS responses. The interface signals cycle completion with
the XACK"* signal and indicates a FASTBUS error with BERR, thus eliminating soft-
ware status checking. Interrupts from FASTBUS, such as incoming service request,
mastership granted, or selected as slave, are signalled to the processor via GINTR.
Three different modes of mastership are supported to enhance execution speed. All
FASTBUS operations are supported.

As a slave, the SFC responds in hardware to all types of address cycles and em-
ulates data cycles in software. When the SFC is attached as a slave, the processor is

-22-

interrupted by GINTR. Then it polls 1/O space for DS, reads command bits (RD, MS),
and branches to the appropriate command handler which responds to the command
and causes the interface to produce DK and SS responses. During the DS-DK interval,
the interface normally asserts WT to avoid timeouts. After response is complete, the
processor returns to polling DS until the AS-AK lock to the SFC is removed.

As implemented for monitor and control of the Mark II cryogenic system, the SFC
is equipped with an Intel iSBC 86/30(‘6) (8086, 8087 Numeric Data Processor, 256K
RAM, and 64K EPROM). FASTBUS standard routines are implemented in ROM,
along with a boot program which allows the SFC to be addressed via FASTBUS. Since
this SFC uses the same SBC as used in the SLC control system (see Section 5), it
can also use the sophisticated software tools developed for the SLC. Applications code
can be written in FORTRAN and cross-compiled and linked on a VAX. Code can be
downloaded and started via MULTIBUS or FASTBUS; however, the symbolic cross-
debugger currently runs only over SLCNET-MULTIBUS. An SFC with a 68000-based
SBC has also been implemented at SLAC, and several units have been delivered for
implementation outside SLAC.

The SFC is capable of serving as host for a FASTBUS system since it is capable of
loading its own logical address and arbitration level registers and of asserting RB and
GK to preempt a segment. Additional features include self-diagnostic capability and
board area available for wire wrap, for instance, of a sequencer. MULTIBUS is available
on the FASTBUS auxiliary connector and to plug-in modules for some expansion and
peripherals.

4.4 THE 3081/E PROCESSORS AND FASTBUS VAXES

The 3081/E and FASTBUS VAXes have been described in Refs. 17 and 18 and
discussed at this conference.(19:20)

Implemented on line, the 3081/E is a powerful (4 to 5 VAX 11/780 equivalents)
processor for applications such as data preprocessing, software triggering, and event
reconstruction. It is capable of executing on line the same code used off line for event
reconstruction on IBM mainframes. Mark II plans to use 3081/E processors interfaced
to FASTBUS through a quasi-dual-ported FASTBUS slave interface. These processors
will preprocess drift chamber data from TDC and FADC systems and fully reconstruct
events for on-line processing. They will also be used for an on-line software trigger if
necessary.

The FASTBUS VAX, equivalent to about 90% of a VAX 11/780 in CPU, offers the
easy programmability of VMS, software compatibility with the on-line host computer,
and in situ debugging. The SLD plans to use these microcomputers as a master trigger

~23-

processor and to separately tag physics and background events with a fast filtering al-
gorithm. In addition, they will be used as stand-alone microcomputers for development
work.

4.5 THE 168/E PROCESSOR

The 168/E processor has been described and discussed comprelensively in Ref. 21,
These processors have been used at SLAC for off-line event reconstruction by LASS(22)
and DELCO and for lattice gauge theory calculations.(?3) On line at SLAC they have
been used by the SLAC Hybrid Facility (SHF) to provide camera triggers and for
monitoring.(**) At SHF, the processors could obtain their data by listening passively
to data transfers on a CAMAC backplane.(?®) In addition, circuits whose results were
sufficiently time critical for triggering were built into a 168/E, where they interacted
with the processor as locations in data memory. Data input from PWC digitizers and
space point finders were implemented as read-only memories. Camera triggers were
provided by accessing memory addresses on other 168/E boards.

4.6 THE VAX CAMAC CHANNEL

The VAX CAMAC Channel (or VCC), described in Ref. 26, is a UNIBUS to
CAMAC interface utilizing a bipolar microprocessor to supervise the CAMAC system
and minimize the host computer’s work. The high speed 16-bit CPU is composed
of AMD 2900 bit-slice bipolar microprocessor components. The interfaces to a DEC
UNIBUS and to CAMAC are peripherals to the CPU linked by input and output data
busses, a status bus, and a microcode bus for interface control. The CAMAC interface
connects, via SLAC CAMAC protocol, to a set of system crates which house Branch
Drivers for parallel or serial branches or for other data links. A VCC operation is
initiated by a software device driver which passes the VCC the addresses of control and
data buffers. No further VAX CPU activity is required until the VCC has completed
the list of data transfers implied by the control “channel program” buffer. The VCC
fetches commands from VAX main memory, sets up the Branch Drivers and transfers
data between the CAMAC modules and VAX main memory at rates limited by the
UNIBUS. Address scanning for block transfers is handled by the Branch Drivers. Data
acceptance, conditioned by X and Q responses, and data packing into 16-bit words are
performed by the VCC. The VCC also serves as a channel to the VAX for hardware
interrupts. A coherent software package integrates high-level programs with system
driver-level programs and microcode control of the system.

-24-

5. SLC CONTROL SYSTEM

The SLC control system('") will be an order of magnitude more complex than
SLAC’s other accelerator control systems. In addition to modernizing and streamlin-
ing the operation of the present linac/beam switchyard system, the SLC control system
must provide machine modeling to support the extensive accelerator development re-
quired to meet the tight SLC beam requirements. In its final configuration, the SLC
control system (see Fig. 9) will provide a combination of two VAX 11/780 central pro-
cessors networked to 70-100 powerful microprocessor clusters which interface through
CAMAC with the equipment to be monitored and controlled.

The dual-VAX complex provides a centralized human interface for the machine
operators, as well as on-line execution of the large modeling programs. In addition,
these computers provide an environment for fast, efficient program development and
maintenance for both the VAX and the micro-processor clusters.

The distributed micro-processor clusters are located in each of the 30 linac sector
alcoves and near the damping ring, electron and positron sources, and the SLC arcs and
final focus. The clusters are based on the Intel Multibus architecture, which provides
support for an arbitrary number of single-board computers which communicate with
each other through the use of shared memory and interrupts. The micro-processor clus-
ters contain an Intel iSBC 86/30(16) with 8087 coprocessor, 786 Kilobytes of RAM, and 8
kilobytes of EPROM, providing about 1/7 of the processing power of the VAX 11/780.
The microprocessor clusters interface to a 5 MHz serial CAMAC branch through a
DMA channel device.

Intelligence is also distributed into the CAMAC crates via the use of dedicated
microprocessors in some of the data acquisition modules. The Smart Analog Monitor
(SAM) is a Zilog Z80-based CAMAC module that continuously scans 32 analog chan-
nels, auto-calibrates, auto-ranges, digitally filters, and provides floating point voltage
values in either VMS or IEEE formats. The Parallel I/O Processor CAMAC mod-
ule (PIOP} is a general-purpose processor based on the Intel 8088. It interfaces to
CAMAC and to a front panel port which is a differential transmitter/receiver version
of the micro-processor’s bus structure. This port provides a standardized method of
interfacing to specific devices or processes. For instance, PIOP’s monitor the phase
and amplitude of the 240 linac klystrons, as well as provide general klystron monitor
and control. Code for the PIOP is cross-compiled or cross-assembled on the VAX, then
downloaded via CAMAC to the PIOP or “burned” into EPROM.

~25-

Central Processor Typical u- Processor Cluster

/ \ CAMAC Crate GAMAC Crat

= =]

S 3 &3

Memory Shared Memory Memory %5 EE’
33 33
[0 S—
l ’g To 14
DEC VAX [P Additional
. el Crates
Multibus Crate
CAMAC Inferface
Data Base Memory Board
VAX Unibus_Interface VAX Unibus Interface Intel 86/30 Cluster SBC
Bit-Slice Processor Bit-Slice Processor Serial DMA Module
Serial {SDLC] Interface Serial {SDLC) Interfoce Modem Interface
Modem Modem
Spare Slots
Sl To O

Frequency = 5-110 MHz ~ 3/4 CATV Goax ~ {lusters and COWS
Tronslator =4 160- 300 MHz —= ~7 A

Multibus Crote

Modem Inter face
Serial DMA Module D
Memory Board
intel 86/12 A Display SBC -
512X5(2X4 Graphics Memory B N
512 X512 Video Generator CALF

Touchpanel and Knob Interface —]

Spare Slots

Video Terminal

KNOBS Monochrome
Touchpanei

Typical "Console on Wheels' (COW)

Fig. 9. SLC Control System block diagram.

There are two types of operator consoles in the system. The Console-On-Wheels
(COW) consists of a micro-processor cluster, high-resolution color graphics display,
touch panel, general-purpose knobs, computer terminal, video monitor, and audio in-
tercom; yet the COW is a fully poriable unit which can be connected at any point along
the system’s Communication Line. The Curser-Addressed Limited Facility (CALF) em-
ulates a subset of COW functions and can be also connected at any point along the

~26-

Communications Line. The number of COW’s and CALF’s that can be supported is
limited only by the system’s processing power.

The Communications Line for the system consists of a broadband (5 - 300 MHz)
cable television (CATV) system. Communications are organized in an inverted-tree
topology with mid-split repeaters. Low frequencies feed from the source to the up-
converters, and high frequencies feed to all receivers. Several sub-systems use the cable
for communications. TFhe micro-processor clusters and the VAX’s are interconnected
by a one Megabaud polled network. A bit-slice processor directs sequential polling
at a rate of about 1000 polls/second and serves as a DMA channel to the VAX. The
logical topology is a star network with communication only between the host and the
microclusters.

A significant effort has been expended to create an efficient and user-friendly en-
vironment for the development of micro-processor software. All SLC software develop-
ment is performed on the VAX. Wherever possible, which has been in about 95% of
cases, FORTRAN 77 is used for applications programming of the micro-clusters. (VMS
FORTRAN is used for the VAX’s.) In collaboration with Intel, FORTRAN 77 and PLM
86 cross-compilers, a cross-assembler, and a cross-linker have been developed to sup-
port the 8086/8088 series of micro-processors. Further, a symbolic cross-debugger has
been developed to allow the remote debugging of micro-processor programs running
under iIRMX. In this complex system, on-line debugging and diagnostic aids have been
essential in order to trace problems efficiently in the system’s operating environment.

6. SUMMARY

Trigger and on-line processors share the role of reducing data rates to manage-
able proportions in large, general purpose e*e™ physics experiments. This paper has
attempted to review a vast amount of work on trigger and on-line processors at SLAC.

Generic solutions to trigger processing have evolved at SPEAR and at PEP, al-
though special-purpose hardware trigger processors have been developed for each ex-
periment. Some of these processors, on the other hand, have a great deal of flexibility
and programmability. The environment at the SLC will offer the possibility of sophis-
ticated, software triggers.

On-line processor development at SLAC has focused on data reduction and pre-
processing at the data acquisition crate level. The BADC and the SLAC Scanner
Processor are examples of such processors. At the SLC, more powerful processors, such
as the 3081/E and the FASTBUS VAX, will be used for more sophisticated preprocess-
ing, software triggering, and event sampling and flagging. The SHF use of the 168/E
pioneered on-line use of such powerful processors. In addition, general-purpose micro-
processors, such as the SLAC FASTBUS Controller and the Parallel I/O Processor,

-27-

are assuming roles in experiment and accelerator control. At all levels, a high pre-
mium has been placed upon uniformity of approach, for both hardware and software,
leading to the development of a small number of flexible yet powerful processors and
sophisticated software tools.

1.

REFERENCES

G. M. Ronan, et.al.,, “Iriggering the LBL Time Projection Chamber,” IEEE
Trans. Nucl. Sci., Vol. NS-29, No. 1 (1982).

. R. Hollebeek, 3rd International Conference on Instrumentation for Colliding

Beam Physics, SLAC-PUB-3347.

. J. J. Thaler, et.al., “Event Trigger for the Mark-III Detector at SPEAR,” IEEE

Trans. Nucl. Sci., Vol. NS-30, No. 1 (1983).

. H. Ailiara, et.al., “Performance of a Drift Chamber System for the Time Projec-

tion Chamber Detector Facility at PEP,” IEEE Trans. Nucl. Sci., Vol. NS-30,
No. 1 (1983).

. H. Brafman, et.al., “Fast Track-Finding Trigger Processor for the SLC/LBL Mark

II Detector,” IEEE Trans. Nucl. Sci., Vol. NS-25, No. 1 (1978).

6. Robert J. Wilson, “A Search for Scalar Electrons at PEP,” Thesis, August 1983.

. Dale Quimette, et.al., ®* A Versatile Secondary Trigger for a Multi-Detector Sys-

tem,” IEEE Trans. Nucl. Sci., Vol. NS-30, No. 1 (1983).

8. LeCroy Model 1879, LeCroy Research Systems Corp., Spring Valley, New York.
9. A.J. Lankford and T. Glanzman, “Data Acquisition and FASTBUS for the Mark

10.
11.

12.

13.

14.

15.

16.

II Detector,” IEEE Trans. Nucl. Sci., Vol. NS-31, No. 1 (1984).
SLD Design Report (Preliminary Edition), April 9, 1984.

M. Breidenbach, et.al., “Semi- Autonomous Controller for Data Acquisition, The
Brilliant ADC,” IEEE Trans. Nucl. Sci., Vol. NS-25, No. 1 (1978).

BADC’s have been used by the following SLAC experiments (numbers of units
shown in parentheses): LASS (6), Hybrid Facility (1), Free Quark Search (1),
MAC (7), ASP (5), Mark III (15), and Mark II (20).

TRANSIAC Mode] 7001, TRANSIAC Corp., Mountain View, CA.

H. Brafman, et.al., “The SLAC Scanner Processor,” submitted to IEEE 1984
Nuclear Science Symposium, Orlando, Florida, Oct. 31 - Nov. 2, 1984,

S. R. Deiss, “A Fastbus Controller Module Using a Multibus MPU,” IEEE Trans.
Nucl. Sci., Vol. NS-30, No. 1 (1983).

Inte]l Corp., Santa Clara, CA.

17.

18.

19.
20.
21.

22.

23.

24,

25.

26.

27.

~28-

Paul F. Kung, et.al., “The 3081/E Processor,” published in the Proc. of the
Three Day In-Depth Review on the Impact of Specialized Processors in Elementary
Particle Physics, Padova, Italy, March 23-25, Naz. Fis. Nucl. (1983).

E. J. Siskind, NYCB Real Time Computing, “Development of 32 Bit Single Board
Computer Systems in Fastbus Packaging,” DOE Small Business Innovation Re-
search Program (Private Communication).

P. K. Kuns, et.al.,“The 3081 /E Processor,” published in these Proceedings.
E. J. Suskind, “VAX FASTBUS Module,” published in these proceedings.

P. K. Kunz, “The LASS Hardware Processor,” Nucl. Instrum. Methods 135, 435
(1976). P. K. Kunz, et.al., “The LASS Hardware Processor,” 11th Annual Mi-
croprogramming Workshop, Pacific Grove, CA, Nov. 19-22, (1978). SIGMICRO
Newsletter 9, 25 (1978). P. K. Kuns, “Use of Emulating Processors in High En-
ergy Physics,” Proceedings of the International Conference on Ezperimentation
at LEP, Phys. Scr. 23, 492 (1981).

P. K. Kunz, et.al.,“Experience Using the 168/E Microprocessor for Off-Line Data
Analysis, IEEE Trans. NS-27, 582 (1980).

J. E. Hirsch, et.al., “Monte Carlo Simulations of One-Dimensional Fermion Sys-
tems,” NSF-ITP-82-44.

J. T. Carroll, et.al., “On-Line Experience with the 168/E,” published in the
Proc. of the Topical Conference on the Application of Microprocessors High-
Energy Physics Experiments, CERN, Geneva, Switzerland, 4-6 May 1981.

D. Bernstein, et.al., “Snoop Module CAMAC Interface to the 168/E Micropro-
cessor,” IEEE Trans. Nucl. Sci., Vol. N§-27, No. 1 (1980).

D. J. Nelson, et.al., “The VAX CAMAC Channel,” IEEE Trans. Nucl. Sci., Vol.
NS-28, No. 1 (1981).

R. Melen, “A New Generation Control System at SLAC,” IEEE Trans. Nucl.
Sci., Vol. NS-28, No. 3 (1981). J. D. Fox, et.al., “Application of Local Area Net-
works to Accelerator Control Systems at the Stanford Linear Accelerator,” IEEE
Trans. Nucl. Sci., Vol. NS-30, No. 4 (1983). R. Melen, “Centralized Digital Con-
trol of Accelerators,” invited talk to the Europhysics Conference, Computing in
Accelerator Design and Operation, Berlin, West Germany, 20-23 September 1983.

-29-

QUESTIONS AND ANSWERS

Q: How fast is the ASP memory trigger, and ASP data readout?
H. Kasha
A: I am not fully qualified to give the answer. Fastest available

memory chips have been used. The readout should be accomplished in
about 3 msec.

Q: About the trigger at SLC; signal rate is expected to be ~1/4
Hz, negligible background, so why bother?

P. Lebrun
A: The trigger will be single (single track); but, even with such
a low trigger, one has to choose between ~ 4 crossings due to data

acquisition dead time. Also, the synchrotron radiation might be larger
than expected.

Q: 1) How much development effort was required to emulate IBM
Run-time Library in the 370/g?

2) If IBM sold you a 370 architecture microprocessor, would you use
it?
E. Siskind

A: 1) 3/4 man-year for software.

2) Yes

-30-

-31-

A PARALLEL, PIPELINED, EVENT PROCESSOR
FOR FERMILAB EXPERIMENT 605

D.M.Kaplan

Fermilab

ABSTRACT
I describe the E605 event processor, which
represents the irst use of the Nevis Laboratories

processing system in an experiment. The processor is
constructed of simple general-purpose modules designed
to operate on 16-bit data words synchronously and in
parallel at speeds up to 40 MHz. It uses information
from hodoscopes and wire chambers to reconstruct tracks
in the bend view of a magnetic spectrometer, calculating
an approximation to transverse momentum (pt) for each
track and mass for the most massive pailr 'in an event.
It also distinguishes tracks originating in the target
from tracks originating in the beam dump. The results
from the processor may be used to prescale events of low

mass or p,, and to simplify further analysis of the
events by “an on-line array processcr or off-line
computer. The processor was debugged during the Winter
run of the Tevatron and 1is being utilized in the Spring
run.

Introduction

Fermilab Experiment 605 is a spectrometer for the study of
particles and pairs of particles produced at high transverse
momentum (see Figure 1), 1Its open geometry permits simultaneous
detection of 1leptons and hadrons, and 1ts high degree of
segmentation, sophisticated triggering scheme, and high-speed data
acquisition system are designed to allow data taking at the very
hig?1beam intensities required to study phenomena representing
10 or less of the total proton-nucleon cross section. After a
test run in the Spring of 1982 and a 400 GeV .data run in ; e Fall
of 1983, we are now taking data .at 800 GeV and 10 proton
interactions per acceleratqr pulse (10° interactions per second).

To enhance the power and flexibility of our triggering scheme
we have constructed a parallel pipelined event processor to
reconstruct particle tracks on-line, Using the granularity of the
wire chambers, this processor is able to make more precise
decisions than the first- and second-level triggers, which are
based on hodoscope and calorimeter i{information, and it i{s faster
and more powerful, though more specialized and less flexible, than
the array processor attached to the on—lins computer, which
constitutes the final level of on-line filtering~. In addition to
reconstructing tracks, the processor computes an approximation to
transverse momentum (pt) for each track and mass for the most

-32-

massive pair of tracks in each event. These can be used to reject
or prescale events of low pt or mass.

Originally the processor was conceived as a means of rejecting
particles originating in the beam dump rather than in the target,
but our goal has evolved into the distinguishing of target events
from dump events, with different p, and mass thresholds applicable
in the two cases. This evolution was motivated by our realization
that although muon pairs produced in the beam dump have worse mass
resolution than those from the target by more than an order of
magnitude, they have five times larger acceptance 1in the
spectrometer and are accepted in a different region of phase space
(large Feynman x), where interesting physics may be found.

2 General Description of Processing System

The processor 1is construct?d using the Nevis Laboratories
data-driven processing system , which consists of a set of
processing modules and a standardized bus and protocol for
interconnecting them. Each module implements some simple
operation such as addition of two 16-bit quantities, comparison of
a 16-bit quantity with upper and lower limits, or computing an
arbitrary function of an 8-bit quantity via table 1lookup. The
modules wused 1In the E605 processor are listed in Figure 2, and
Table 1 summarizes the processor bus protocol.

The modules are designed to operate with a cycle time of 25
ns. It takes typically two or three cycles for an input to
propagate through to the output, but the modules are internally
pipelined so that a new operation can begin every cycle. Data
transfers between modules are also pipelined, so that after an
initial period in which the processing pipelines are filling, all
modules in the processor are operating simultaneously to the
maximum extent possible. Data transfers among modules are
synchronized to a central c¢lock, which may be single-cycled,
speeded up, slowed down, or run in bursts for diagnostic purposes,
and every register and counter of every module may be read or
written wunder computer control, facilitating thorough testing of
the system.

Compared to hard-wired special-purpose processors, the system
is quite flexible, since the modules may be recabled or the lookup
tables reprogrammed to make changes in the algorithm. It also
differs from typical hardware processors in that the algorithm is
embodied in the interconnection of the modules rather than in
control logic, so that no bottleneck arises when the system is
expanded; as more modules are added, the total processing power
inecreases proportionately.

The modules are constructed on 9"-square two-layer printed
circuit boards. Most modules consist of a single board,
containing typically 60 ECL 10,000 chips, and can be duplicated

-33-~

for approximately $200 (an exception is the Map module, which
takes two boards). Each module connects to one or two input
processor busses and one output processor bus, as well as to power
and control busses. The control bus is a simple bit-serial bus
used for initialization, downloading of data, and testing.

3 Reconstruction Algorithm

Reconstruction is performed only in the y-z plane (the plane
in which the magnets deflect), using the six wire chambers Y1A,
Y1B, Y2, Y2', Y3, and Y3'. YtTA and Y1B are 2-mm-spacing
proportional chambers, while Y2-Y2' and Y3-Y3' are pairs of drift
chambers with cell widths of 1 and 2 ¢m (respectively), and with
primed chambers offset by half of a cell with respect to unprimed
chambers.

For all particles traversing the three stations of chambers,
the positions measured by the chambers are linearly related:

Y1 = a¥2 + b¥3 + ¢ .

The trackfinding 1loop forms all possible track hypotheses,._
consisting of a hit in station 2 and a hit in station 3, projects
to station 1 wusing the above relation, and demands a hit in
station 1 consistent with a particle originating in the target or
in the upstream end of the beam dump.

The present version of the processor uses only wire numbers
and ignores drift times, except to cut out hits whose drift times
are too small (since with our drift chamber electronics, the first
two time bins contain only hits from previous proton
interactions). At typical beam intensities, this cut eliminates
approximately 30% of drift chamber hits. With _10 hits per plane,
this algorithm is capable of finding all the tracks in an event in
typically 5 microseconds or less. The efficiency of the algorithm
depends on the efficiencies of the hodoscopes and chambers; since
these are all well above 90%, we can expect an efficiency greater
than 95%.

y Detailed Description of the Processor

Figure 3 is a schematic diagram of the processor. The
following paragraphs describe the function of each module,
proceeding roughly downwards from the top (i.e. in the direction

of data flow).

In order to reduce sensitivity 'of the algorithm to chamber
dead time and other inefficiencies (typically 10% per chamber
plane), all track hypotheses having a hit in each station plus at
least one additional nhit are accepted as tracks (i.e. two of the
six planes may be missing). This is facilitated by merging the

-34-

hit address 1lists from primed and unprimed drift chamber planes
before hypothesis generation, using the Ordered Merge and
Associator modules. The Ordered Merge merges the lists while
maintaining monotonicity of wire number, and it appends to each
address a low-order bit indicating primed or unprimed plane. The
Assoclator finds pairs of adjacent hits in a primed and an
unprimed plane and squeezes them into a single address, appending
a low-order bit to indicate pair or single hit. Hit addresses
emerging from the Associlator thus represent position in units of
1/4 wire-spacing.

Between the Ordered Merge and the Associator are placed a
Bloek Buffer and a Comparator. The Comparator eliminates early
hits from previous interactions (as mentioned 1in Seection 3) by
cutting on drift time. The Bloek Buffer is a 256-word memory with
three ports: a processor write port, a processor read pogt, and a
bidirectional Transport Bus port. (The Transport Bus~ is Nevis
Laboratories' answer to CAMAC and FASTBUS, and serves to
interconnect the on-line computer, the processor, and the various
pieces of the data acquisition system.) The Block Buffer stores
up to 255 hit addresses emerging from the Ordered Merge and sends
them to the processor. If the processor accepts the event, the
hit addresses are then read out to the on-line computer via the
Transport Bus. The Block Buffer is designed to connect subsystems’
having independent clocks, allowing the processor to cycle at a
higher speed than the Transport Bus or readout system.

4.1 Hodoscope Masking

The three modules following the Associator wuse hodoscope
information to reduce the number of drift chamber hits to be used
in hypothesis generation. Since the hodoscopes are sensitive to a
much narrower time window than are the drift chambers, many
particles from previous or subsequent interactions register in the
drift chambers but not 1In the hodoscopes; these "out-of-time"
drift chamber hits are eliminated by keeping only those hits which
correspond to hodoscope hits. The usual computer algorithm for
this requires searching a 1ist of hodoscope hits for each drift
chamber hit (or vice versa), which can take considerable time 1if

there are many hits. In the processor, this search time |is
eliminated by using the Map module, which contains an associative
memory structure: when presented with an input position, it

immediately fetches the state of the counter or wire at that
position, along with the state of up to four adjacent counters or
wires to either side.

The first Normalizer converts position in the drift chamber
into wunits of hodoscope <counter widths; its output is thus the
number of a hodoscope counter which should have fired if the drift
chamber hit 1is in-time, as well as some fraction bits indicating
where within the counter the particle passed. After all hits from
the appropriate Y hodoscope plane have arrived at the Map's write

-35-

port and been stored, the Map can accept 1input from the
Normalizer. It uses the integer part of the Normalizer output to
fetch the state of the requested counter plus one counter to
either side, and it puts this out along with the input bits. The
second Normalizer then makes a decision as to whether the drift
chamber hit should be kept, and it puts out the hit address along
with a bit indicating its decision. If the drift chamber hit is
near an edge of the central counter, the hit is also accepted if
the adjacent counter fired, but if the hit is away from an edge
then the central counter alone is considered.

(It is evident that the Normalizer is an wunusually flexible
module, and a few words on its design are in order. The
Normalizer consists of two 256-word x 16-bit tables whose outputs
are summed. The high-order 8 bits of an input word can be sent to
one table and the low-order 8 bits to the other, allowing any
function of the form
)

£ () + g (x

xhigh—order low-order

to be computed by preloading the tables appropriately. For
example, a Normalizer can be loaded to put out its input times a
constant. The Normalizer may be divided into "pages," each page_
to be used in a different case as determined by the input data, by
sending some bits from the input to both tables in common. The
partitioning of the input bits is determined by a jumper patch
programmed by the user.)

Note that the hodoscope data pass through a Normalizer prior
to reaching the write ports of the Maps. This Normalizer is used
to transform the hodoscope hit addresses into counter numbers, and
it also puts out bits indicating plane, which allow each Map to
decide which hits to accept. Thus one Map accepts hits from plane
Y2, another from Y3, and a third from Y1, and hits from the
remaining hodoscope planes are ignored.

4,2 Trackfinding Loop

After being masked with the hodoscopes, the drift chamber wire
addresses are stored 1in the Lists and counted by the Index
Generator. The Index Generator puts out index pairs (8 ©bits per
index) which «call forth from the Lists all possible track
hypotheses consisting of a hit in Y2 with a hit in Y3. The Page
Generator and List-Counters generate multiple passes around the
loop for each hypothesis. The Page Generator simply repeats each
index pair, once for target and once for dump. The List-Counters
pass the index pairs through and also store them 1internally for
potential wuse on subsequent passes. The passes are identified
using the Name bits of the processor bus.

On the first pass, the four Normalizers and two Adders
(Arithmetic Operators jumpered to perform addition) generate

-36-

predicted positions in the YtA and Y1B proportional chamber
planes, and the Maps and Binary Table accept or reject each track
hypothesis, requiring a hit consistent with the prediction in Y14
or Y1B, and a total of at 1least four out of the six chamber
planes. Outputs from the Binary Table pass through the Buffer to
the List-Counter's read port, and accepted track hypotheses are
re-issued by the List-Counter for the next pass. (The Buffer 1s
required in order to prevent Holds from propagating back around
the loop and stopping the data flow. It is a fast FIF0O buffer,
capable of performing both a read and a write on each cycle.)

On the second pass, those hypotheses accepted on the first
pass are masked with the Y1 hodoscope plane. On this pass, only
one of the two Maps is used, having been 1loaded both with Y1B
chamber hits and Y! hodoscope hits in two pages. The two hit
streams are merged using the Switch module (an Arithmetic Operator
jumpered to pass data through unmodified, switching back and forth
as needed from one input port to the other).

4.3 Transverse Momentum and Mass Calculation

Hypotheses accepted on the second pass are repeated by the
second List-Counter for calculation of P, and mass. On this pass
the wire address pairs of good tracks are written into a Block
Buffer, to be read out and written to tape along with the rest of
the event information; this allows the off-line analysis program
to monitor the correct functioning of the processor, and it may
also permit the array processor and the analysis program to find
tracks more quickly, since the y-view reconstruction need not be
repeated.

Actually only the y-component of momentum is computed (since
no x information is avallable to the processor), and we choose to
approximate (accurate to 20%)

Pt=Pyy m = p P

y1 y2 °

At the cost of bullding a more complex processor we could have
included information from the other chamber views and avoided
these approximations, but they are adequate for triggering
purposes. The set of four Normalizers and two Adders Is used once
again, this time to compute the quantities 8. (production angle in
the y-z plane) and 1/p, which, 1like posit?ons in station 1, are
linear combinations of positions at stations 2 and 3.

To compute p , these quantities must be divided. It 1is not
worthwhile to dXsign a divider module capable of cycling at 25 ns
Just for this one use, 30 we resort instead to subtraction of
logarithms. Since these quantities may be either positive or
negative, their absolute value must first be taken; this 1is
accomplished using Normalizers, and the signs are recorded in Name
bits. The Tables take logarithms to 8-bit accuracy (which 1is

-37-

adequate for our purpose), which are subtracted using an
Arithmetic Operator, and a third Table takes antilog to yleld 1p_,
again with an accuracy of 8 bits. y

Since the processor does not wuse all available chamber
information, it does not have the best rejection against
accidental tracks, so we must be prepared for events in which the
proc¢cessor finds many tracks, of whieh only one or two might
represent real high-pt particles. An algorithm for triggering on
high-mass events must therefore be able to deal with large numbers
of tracks, and to compute the mass of the most massive track pair
in each event. To accomplish this we first find the two tracks
with the most positive and most negative values of p_, using the
Min/Max modules, then add the absolute values of”the two p 's.
This 1s done separately for dump and target tracks, hence tKere
are four Min/Max modules and two Adders. The calculated p_ and
mass values are merged into one data stream using Switcnesy and
written Into a Block Buffer to be read out with the event, making
them available for off-line monitoring.

4.4 Trigger Generation

The ultimate result of the processor’'s decision i1s a command
issued on the Transport Bus, telling the Block Buffers and other
data sources either to read out the event or to skip it and reset
the readout system for the next event. This decision is based on
the reconstructed p, and mass values. It 138 undesirable to reject
low-p and low-masg events outright, however, since then any bias
whichythe processor might introduce into the data sample can never
be corrected. Instead, we prescale events by different factors:
events having high p_ or mass are "prescaled”" by 1, but only one
in sixteen (say) low!py and low-mass events are accepted.

This prescaling is performed by the Event Generator Source
(EGS), shown at the bottom of Figure 3. The EGS is a Transport
Bus module which receives a processor bus input and {ssues Read
and Skip commands on the Transport Bus. It also maintains an
event count, which it puts out on the Transport Bus when the event
is read out. Its input data stream 1s a sequence of prescale
values terminated by_.a Complete1§ord. Prescale values may be any
power of 2, from 2 through 2 ~. On receipt of Complete, it uses
the smallest prescale value of the sequence: if that value is 1,
it 1issues a Read command; if 2, it issues a Read if the low-order
bit of the event number is zero; if 4, if the two 1low-order bits
are zero, etc. In this way, fractions ranging from all to
1/32,768 of events can be selected. The prescale values are
determined from the calculated p_ and mass values according to the
preloading of the two Tables,

We have also implemented a feature allowing the processor to
be Dbypassed; for example, certain classes of study triggers which
have already been selected and prescaled by the second-level

-38-

trigger logic are accepted regardless of the processor's decision.
The lertmost data stream shown in Figure 3 comes from the Trigger
Bit Latch system and indicates which second-level triggers fired.
If a study trigger fired, the Table sends a prescale factor of 1
to the EGS, forcing the event to be accepted. This also provides
a simple way of disabling the processor entirely: the Table can be

loaded so that all events are forced through. Since the
processor's verdiet 13 still read out, this mode 1Is useful for
testing, and we ran the processor in this mode until we

established to our satisfaction that our algorithm was working.

5 Current Status

The processor 1s now debugged and working. At our typiecal
beam intensities the events have many background hits, causing the
processor to find many accidental tracks. Some typical events are
shown in Figure 4. An average of 10 or 20 tracks are found per
event. We are working on improving the accidental-track
rejection; options being considered include requiring five out of
six chambers per track, using drift time information, and (for
muon triggers) using muon proportional tube information.

I wish to thank my collaborators on E605 for their help, and
especially Bob Hsiung for his able work In assembling and
debugging the processor and its support software.

Postscript (5/14/84): At 1010 interactions per pulse and for our
typical mix of triggers, the processor reduces the event rate by a
factor of 2, with p and mass thresholds set at 6 and 8 GeV and
presea%e factors at 16Y The rejection improves to a factor of 5
at 107, (These relatively modest factors are due to the already
high selectivity of the second-level trigger.) Efforts to reduce
the sensitivity of the algorithm to accidentals and improve the
rejection are in progress.

REFERENCES:
1. W, Sippach, G. Benenson, B. Knapp, IEEE
Trans. Nucl. Seci., NS-27, 578 (1980); H. Cunitz,
Y. Hsiung, B. Knapp, W. Sippach, "Data Driven
Processing," in Proceedings of the International

Conference on Instrumentation for Colliding Beam Physics,
SLAC Report-250, June 1982.

2. J.P. Rutherfoord, "On-Line Filtering of High Energy
Physics Data With an Array Processor," this conference.

3. J.A. Crittenden, G. Benenson, H, Cunitz, Y.B. Hsiung,
D.M. Kaplan, W. Sippach, B. Stern, "A Data Acquisition
System for Elementary Particle Physies,"” to be published
in IEEE Trans. Nuecl. Seci.

-39-

PROCESSOR BUS FORMAT

24-bit Cable:
Data Name Control

X15 Xo N3 No CV HB

Control Bits:

Valid: here is a data word
Hold: couldn't accept that word
Complete: end of block

Block Reset: abort this block

TaoOm<

NOTE: H and B travel against the flow of data,
from receiving module to sending module.

Table 1

MUON
SM3 PROPORTIONAL

STATION 1, MAGNET gTATION 2 STATION 3 TUBE

SMO SM 12 MAGNET wh 4
it i
-@ iy i
TG i
MULTISTEP ELECTRON

PROPORTIONAL HADRON
WIRE CHAMBER CALORIMETERS

PLAN VIEW E-605

v
CERENKOV

SSQ"F’,' 7772 sTeeL KXY SHIELDING %] ABSORBER
TARGET [SM 12 MAGNET %
i 7 ma N 5 T I:l‘
g | ity o A
i B e S P = |
I////
1L 1 1L 1 L 1
0 0 20 30 40 50 Meters
ELEVATION SECTION E-605
-+~ DRIFT CHAMBER
————— PROPORTIONAL CHAMBER

----- COUNTER BANK
Figure 1

0?

44~

Processor Modules

Storage Sequence Function
List Binary Arithmetic
Indexer Operator
List Unary .
counter Indexer Normalizer
Page Binary
Buffer @ Generator @ Table
Unary
@ Map @ Table
Relation
Ordered Associator Cut Min/Max
Merge
KEY
} Read Port
& Write Port

Figure 2

-42-

TBL YA Y2 Y2
OM
68 @5—» &8
Dritt tme cut {2
Assaciation (A
N

® s { (M2
N

Event
Alignment

Data from

8 Readout System

@) T-8US

Q Torget /Dump
2/3 X4

Le

T“ BUS

@

Nome | Tdrget Dump

passt | O 1 YiA, VB
pass2| 2 3

[al
pass3d| 4 5 90. Pz‘ \ PY

89— T-8US

Read /Skip

EGS T-BUS

Figure 3:

Processor Schematic

-43-

—
' mr
! l
. / ‘ -
; L
~+ * |
T 1 7 |
L r‘ R | f LL) T T T) T] l
-
- = | A% e
RUN 1102 38 ‘ RUN 1192 «3
“lEvent 7 | UEVENT 1y & i
1SR ILL 2 | HPILL 2 \
EVONT 192 | Evcw 196 o |
- - \ 1
PR TRK 11 PR TAK 40 i
- : !
- e :
| |
1 :
-k -l l
L pit () l
MOM -110.09 ! ! !
T I -r
I i | b !
i
-t 1 -k
\ L
wp -F
= F Y-
- L ! [:::l t\J:g Lo - L I E: I l:] |]
) - - = " Txre " - - - p - - - " P - - - - -
- .
i
L T .
L 1 b
. e i :
- . [T T T
AL IR i
- - -
=BT ANt & g X7 X)
i
auN 1102 40) RUN 1102 o l
" [Event [TEvENT 13 |
lsp 1Ll l lseice 2 !
EVCNT E¥YCNT 198
-t .
PR TAK PR TR 88 j
T ‘ T : ‘
ks R
| t
1 MOM 181,58 \
- | e
% | \
i |
- - \
" g e @
r Qo F da
e e B
- - ». .. - - - -

-

n - - - - - - - -

- Y : "
Y-Rx1S v-axis

Figure 4: Four eyents are shown in the y-z plane, with z-axis

compressed a factor of 10 relative to y-axis. Tracks found by

the off-line analysis are drawn with long dashes, those by the
processor with short dashes.

-44-

—45-

A DATA DRIVEN PARALLEL PIPELINED HARDWARE RECONSTRUCTION PROCESSOR*

L. Borten, M. Church, E. Gottschalk, R. Hylton, B. Knapp, W. Sippach, B. Stern
Columbia University, Nevis Laboratories, Irvington, NY 10533

E. Hartouni, D. Jensen, M. Kreisler, M. Rabin, J. Strait
University of Massachusetts, Amherst, MA 01003

C. Avilez, W, Correa, J. Escalona, H. Morales, P. Salas, A. Zentella
University of Mexico Instituto de Fisica, 10000, Mexico DF, Mexico
C. Christian, G. Gutierrez, S. Holmes, R. HusonT, A. Wehmamn
Fermilab, Batavia, Illinois 60510

ABSTRACT

An overall view is presented of Brookhaven E766 and Fermilab E690, which
includes the construction and development of an on-line processor. The
primary goal is to investigate the diffractive production of heavy quarks by
studying exclusive multiparticle final states. The close relationship of the
detector and read-out system with the processor and the physics goals that
motivate this research program are discussed, In addition, we discuss the
functions of the processor and explain an example of a module that forms part
of the track fitter. We estimate we will reconstruct on-line 10° events/sec.

Introduction

By the end of the decade of the 60's it was expected that with the
availability of high-energy beams, an explosion of data produced in high-
energy collisions would lead to the systematic study (among other things) of
many particle final states, hoping to learn more about hadron dynamics.! With
the advent of the higher energy machines in the U.S. and Europe during the
decade of the 70's, a wealth of events in high-energy collisions appeared;
however, the exclusive multiparticle final states expected to provide more
insight into the interaction of high-energy particles could not be studied.
The problem was not only to produce those states, but to detect them and
properly present them for further analysis.

*Presented by C. Avilez, on sabbatical leave at Fermilab, Fellow of the John
Simon Guggenheim Memorial Foundation.

TCurrently on leave at Texas A&M.

—46-

In order to detect and produce the appropriate information that leads to
the full reconstruction of an exclusive reaction, the dead time of the
apparatus has to be minimized and its read-out fast enough to achieve the
proposed goals., Several levels of logical triggers have been found to be
insufficient to identify the events under discussion, and the necessity of on-
line processing is by now widely accepted.

With a highly segmented detector, fast read-out and on-line processing,
it is possible to study the details of the dynamics of hadron physics in
exclusive reactions.

E766 (BNL) and E690 (Fermilab)

The experimental high—energy physics program of the collaboration
University of Massachusetts (Amherst)/Columbia University (Nevis)/ University
of Mexico (IFUNAM)/Fermilab, 1s to explore the physics of the exclusive
multiparticle final states.

Our primary physics goal is the comprehensive study of hadronic spectro-
scopy and production mechanisms, eventually covering strange, charm, and
bottom particles at Tevatron energies. The construction of a multiparticle
detector capable of measuring moderately complex reations (up to 20 particles)
with high resolution and efficiency at moderately high rates is underway. A
crucial feature of the experiment is detailed on-line reconstruction of up to
105 events/second chosen from more than 10% interactions/second. With the
E690 spectrometer, this should allow the measurement of more than 10% fully
reconstructed charm pairs and as many as 102 bottom pairs per hour of Tevatron
beam.

The detector for this program is seen in Fig. 1, which also shows the
part of the detector already in operation at Brookhaven. To perform accurate
measurements over a wide range of particle types, angles, and momenta, the
detector components must fit and function together.

The detector in operation at BNL consists of six drift chambers totaling
11,500 signal wires in a low~field, wide-aperture magnet (7kG, 4 ftx8 ft).
Charged particle trajectories are efficiently reconstructed with momentum
resolution 8p/p < 1% (FWHM) from 200 MeV/c to 10 GeV/c. Mass resolutions for
K, and A9 are presently 8 and 2 MeV (FWHM), with further improvement
expected, Direct particle identification is provided by 102 time-of-flight
counters and a segmented-threshold Cherenkov counter (96 channels). We have
uniformly high acceptance for a wide range of topologies, particularly final
states containing heavy particles. We intend to record a large number of
events, fully reconstructed and identified as such, typically recording both
raw and reconstruction results.

One of the main endeavors of E766 is to produce a sample of ~ 10% ™ for
which the use of a real-time processor system is an absolute necessity. Our
program at BNL also includes the search for highly-inelastic baryon resonances
and further studies of hyperon polarization. In particular, we are interested
in understanding A® polarization in exclusive reactions, since virtually
nothing is known about the contribution of specific final states to this
phenomenon.

-47-

The detector and processor form a hierarchy of independent subsystems
linked to each other by high-speed buffers and 1linked to host computers
through the Nevis transport system.2 Transport system buffers between the
detector and the processor allow data acquisition to bypass the on-line
processor and allow data recorded on tape to be fed back to the processor.

The Hardware Processor

The processor is a way of dealing with very well-defined events, however
rare, in a high rate environment, where very large-~scale numerical computation
is expected., It can adapt in the most elastic and flexible way to the compu-
tational needs of a wide variety of situations encountered in high—-energy
physics experiments. In a somewhat restricted way, it has been tested in
Fermilab's E605,3 and its first large-scale applications are E766 and E690.

The processor is a data driven synchronous pipeline. It has distributed
memory and a modular structure with general interconnectability to match the
computational needs of a given project. The pipeline 1s realized in terms of
a parallel processor whose operands receive data when the data are present and
the destination is available. The synchronous aspect of the pipeline, in
conjuction with two control bits, allows alignment of the data, avoiding
juxtaposition of boundaries of blocks of information,

Data Processor For E766 and E690

A central feature of the processor 1is its extreme capability to match the
computational requirements of a modern high—energy physics experiment. The
problem we are interested in is the track reconstruction of all the particles
in a moderate multiplicity (7 to 20) final state. The fitted track parameters
provide us with charged particle momenta and trajectories which are used to
reconstruct interaction and decay vertices. The track reconstruction consists
of four stages: track finding, matcher, track fitter, and clean-up.

The track reconstruction by itself is most challenging and involves two
extreme situations: pattern recognition to find tracks, which requires
relatively little computation but a large number of combinatorial situations
(actually dealt with by loops), and the track fitting, with a smaller number
of decisions involved but requiring much more computation.

The track finding problem, which for straight lines has been discussed
extensively,3 is primarily solved with modules that involve bit parallel
structures in a sequential word process. Experiment #605 at Fermilab has used
the track finding in a single view of drift chamber with marginal constraints.
In E766 (and E690) we 1look for tracks of charged particles in a magnetic
field. 1In each view of the drift chamber, we obtain three wire numbers and
the deviation from a straight line to represent the track. In Fig. 2 we show

*
This is the data-driven principle that assures maximum hardware utilization,
minimizing the number of idle components at any time.

-48-

the algorithm to find tracks in a moderate magnetic field by a single view.
The results from different views are matched with strong constraints. For
instance, the single-view curvature parameter 1s independent of view,
providing a quick constraint. This pattern recognition, i.e., finding lines
in single views and matching them to form track candidates, uses only wire
addresses, while ignoring drift times.

We now concentrate on the other extreme, namely, the track fitter. In
this part of the processor, as the computation proceeds, more bits are added
to accurately represent the result of the calculation, changing thereby the
size of the word involved.

The coordinates that specify the track are non-linear functions of the
measured parameters. The process of fitting consists of finding the best set
of parameters by minimizing a x2. TFollowing Newton's method, a solution can
be found to the non-linear problem, and in fact a few iterations, if an
appropria(:e) starting point is available, i.e., a zeroth order set of para-
meters P\0/, The process of track finding provides us with this first
approximate parameterization. In an operational way one first calculates,

P = LA, K ¢+ Aoi, n=1,.., 65 1 = 1,000, 5
The wire numbers (Xi) are ten-bit words and the resulting five parameters (63))
are 12-bit long. This kind of operation is done in hardware by a module
called a sum multiplier which is explained below.

After having the zeroth order parameters we are interested in formigpg
higher order nonlinear products of them, producing a set of 11 parameters (P.,
j = 6, <ss, 11) to be used in a Taylor expansion beyond the linear terms.
Again, using a sum multiplier we predict wire coordinates

5 11
X3 = pf Ain Pn(u) + nZ6 Ain Pn(l)'
This produces 16-~bit wire coordinates, 10-bit integer wire number and a 6-bit
fraction. One may now get the difference of the predicted value from the
nearest measurement within a Map, and by using a sum multiplier again produce
a first correction to the zeroth order set of parameters. After a few itera-
tions the drift time may be included to obtain the best predicted value for
the coordinates within the measured precision of the experiment. See Fig. 3.

Comments on Modules; One Example of Bit Serial

The modules of the processor have three general requirements, namely,
that they perform simple operations, have simple communication comtrol, and if
needed, have small storage independent of the size of the net. In the
preceding talk, Dan Kaplan explained in more detail some features of the bit
parallel modules and their protocol. Here we would like to explain the
function of one of the most important modules of the track fitter, the sum
multiplier. In an extremely simplified form showing the essence of the idea
behind the design, let us do the following calculation

-49-

L aan,

where the X's are represented by three bits. The constants a_ can in
principle be described by all the bits we like, independent of the “"size" of
the X's., We may write, assuming n=1,2
LaX = alxl + aZXZ
= 0 »0 1 51 2 o2
a (xlz + X] 2%+ XP 2% +..0)
¢ 50 2 51 2 92
+a,(x) 2% + x5 20 + X5 2% +..0).

We now rearrange this expression and factor out all powers of 2

]

L a_ X
il

0
n'n (alx

0 0
1+ azxz) 2

1 1 1
+ (alx1 + azxz) 2

2 2 2
+ (alx1 + azxz) 24,

The expressions in parentheses can be calculated in advance, in terms of the
different possibilities of the weights of the binary expansion and loaded into
a look-up table., The two vertical arrows show the two words that, serially
fed into the module, provide the address to retrieve the precalculated
combinations from the look-up table. In Fig. 4 we schematically show the
structure of the sum multiplier.

The associative memory concept is extensively wused both in the bit
parallel and in the bit serial modules, in modules called Maps. Here the data
are retreived by value and provide us with a considerable speeding-up factor.
In the track finding problem, the use of a Map reduces an N3 problem to an N4
one, Using first and third chamber information to predict the position at the
intermediate one allows us to retrieve by value the experimental result. 1In
the least square process of the track fitting, we systematically have to com-—
pare results of evaluations with the experimental measurements in the first
iteration, or in subsequent ones, with the result of the previous step. A Map
module has two input ports, one to write on the memory of the module, the
other a read port that receives whatever value was predicted and has to be
tested for its validity. A third port of the module is just an output that
provides a "road” of values around the tested one. Provision is made to mask
the word at the read port to select fields of bits that are asked to be repre-
sented by the data written on memory. The Map itself does not "decide” if the
tested value passed the test or not, but by providing a road of possible
values around the predicted one, produces a word to be fed into a look—-up
table with precalculated results of the test as a function of the road.

Comments and Remarks

After recognlzing the complexity of the problems of event selection and
data analysis, we have set out to provide a general approach to large scale
computation. Our first large scale operation will be at Brookhaven in 1985.
This should provide an adequate demonstration of a more generally useful

—50~-

inexpensive approach to the larger computation problems of high—energy physics
experiments, as well as other fields.

References

lgee for instance, C. N. Yang, "Hypothesis of Limiting Fragmentation” in the
Third International Conference on High Energy Collisions (Gordon & Breach,
1969), p. 509.

23, A. Crittenden, G. Beneson, H, Cunitz, Y. B, Hsiung, D. M. Kaplan,
W. Sippach, and B, Sternm, "A Data Acquisition System for Elementary Particle
Physics,” to be published in IEEE Trans. Nucl. Sci.

35ee D. M. Kaplan, talk at this symposium. W. Sippach, G. Beneson, B. Knapp,
IEEE Trans. Nucl. Sci., NS§-27, 578 (1980); H. Cunitz, Y. Hsiung, B. Knapp,
W. Sippach, "Data Driven Processing,” in Proceedings of the International Con-—
ference on Instrumentation for Colliding Beam Physics, SLAC Report-250, June
1982.

~-51~

E766

.
"
w—
O
g
Ox
—

™, M,

0 10 20 30 40 50 FEET

Fig. 1. Schematic layout of E690 (FNAL). A-I are drift chambers; Ml and M2
are large aperture modest field analyzing magnets; C,, C,, and C, are
highly segmented threshold Cherenkov counters and ownstream a
subsystem of calorimeters. E766 1s the part of the detector
operating at Brookhaven National Laboratory.

O, L
(&) O Cé (®
X, Xq o Xg

Fig. 2. Moderate magnetic field track finder. Uses wire numbers of single
views of 6 drift chambers. X, and X are used to predict values at
either X, or X, (done at different cycles. This is why the straight
line finder X -X, requires a page generator module [P]). The
predicted value (X2 or X3) is used with x6 to predict a value for the
deviation from a straight line tested in a Map by Xs.

Fig.

Fig.

3.

4

-52-

12-bit {s°} 10-bit 8-bit 6-bit
wire road fraction AX
number
a

{Road}
{Tlme} {AX

{ara} {ax.}
5 (D8,
}

{Axnﬂ}

ﬂ
b

Track fitter. Schematic diagram. The symbols stand for sum multi-—
plier (£), buffer (B), adder (+), Table (Tz, Map (M), multiplier
(*). For every high order product of p 0) one introduces a
multiplier, In part a, (+) stands for all the multipliers needed to
produce the required higher order terms of the parameters. The same
applies to L.

LOOK
UP
TABLE :
+
"‘F

Address

SR

‘—.)‘ —

X — [R

%,

R — -
o —

Operation of the sum multiplier. Words are fed bit serially into a
register. The nth bits of all the input words provide an address
used to retrieve from a look—up table precalculated values of the
linear combination I a, Xg, where the Xg are the weights of the
binary representation of X .

-53-

QUESTIONS AND ANSWERS

(Editor's Note: The question and answer sessions for the talks by Kaplan and
Avilez were combined.)

Q: How much pay off do you get from the "refit” using the drift time
information, compared to computation time it takes?

P. Lebrun

A: We need ~ 100k to 200u resolution. A normal, usual size PWC cannot give
such a resolution. Therefore we do have to do this "refit,”

C. Avilez
Q: Needs for off-line analysis?
A. Brenner
A: Most experiments will require only minimal off-line analysis.
M. Kreisler, C. Avilez

Q: Considering that typical off-line reconstruction codes consist of many
pages of FORTRAN, how can you expect to build systems of that many modules?

M. Fischler
A: The mapping of FORTRAN in the most general sense into hardware modules is
not the way to examine the problem. Rather the question is whether omne can
reconstruct a large number of tracks from complex topologies in a finite
(i.e., small) number of modules? The answer to that is yes.

M. Kreisler
Q: How much does one of your modules cost?

M. Delfino
A: $100 to $300, depending on volume.

M. Kreisler

Q: How many experiments have the resources of talent to put together a data-
driven system that will "fully” reconstruct their data?

T. Nash

A: At present, very few although we expect that to change as this technology
is developed.

M. Kreisler

~54-

Comment : At E766, we currently write data limited by tape writing speed
yielding approximately 4 tapes/hour. Such tapes take ~ 4 CPU hours on a
Cyber. This would yleld a mass of data not easily passed in toto through an
off-line computer center. Thus the bulk of the data is filtered by the
processor and then taken to an off-line system. Experiments such as ours will
need computer time, of course, but not at the scale one would first guess by
the magnitude of our data stream.

M. Kreisler
Q: A pipeline can only compute as fast as its slowest element, For either
configuration, what is the efficiency of the pipeline for a typical event?

R. Fine

A: No answer

-55-

ON-LINE FILTERING OF HIGH ENERGY PHYSICS DATA
WITH AN ARRAY PROCESSOR

John P. Rutherfoord
University of Washington, Seattle WA, 98195

In a high data rate experiment (E605) at Fermilab we
are using a programmable Array Processor, an FPS100E, to
reject events using criteria which are either too
complicated for the existing hardware triggers or are not
anticipated with enough 1lead~time to build a special
hardware trigger. The advantages and limitations of this
approach are discussed.

Modern elementary particle physics experiments have a
number of levels of trigger decision. Typically the first
level trigger is very fast and simple and provides a high
rejection rate. Successive levels are usually slower and more
sophisticated and each filters out all but a fraction of events
presented to it until finally the rate is low enough that
surviving events can be written to magnetic tape. As magnetic
tape technology has improved and as physics experiments acquire
data over many years, it is possible to fill data tapes at a
rate much faster than off-line computers can analyze, It is
now increasingly important to make even more sophisticated
trigger decisions before data is written to tape. An
inexpensive Array Processor can perform filtering algorithms on
data at rates comparable to the speed with which that data can
be written to mag tape. An example of such an application is
described here.

Experiment E605 at Fermilab 1is a 1large, fixed target
experiment optimized to search for narrow structure in the
dilepton spectra at large invariant mass. The primary proton
beam intensity is a significant fraction of that available from
the accelerator. Because the processes of interest are a tiny
fraction of the total hadronic cross section, the challenge for
the experimenters is to reject the huge backgrounds. As 1is
typical in experiments of this kind, off-line analysis shows
that many background events survive all 1levels of hardware
trigger.

In this experiment an event is subjected to three levels
of hardware filters, the third of which is the Nevis Trigger
Processor described at this conference by Dan Kaplan. During
the accelerator spill the data from an event (7500 16-bit

-56-

words) surviving these filters is stored in a fast (150
nsec/l6-bit word) buffer memory with a capacity of 4 Mbyte. Up
to 4000 events can be stored during the 15 second accelerator
spill with 2% readout dead-time. Between spills the data can
be dumped onto mag tape. The full 4 Mbyte can be written in 16
seconds. As the current minimum time between spills is 50
seconds, this speed is more than adequate. In this way we can
£ill a 6250 BPI, 2400 ft. data tape in about 30 minutes.

Our current, first level off-line analysis program (not
yet optimized for speed) which runs on a Cyber 175 takes an
average of 100 msec. per event or ~3 hours of CPU time per
data tape.

Rather than write the data from the buffer memory directly
to tape, a Floating Point Systems FPS100E Array Processor DMA“s
the data, one event at a time, into one of two buffers in its
own data memory, performs a filtering algorithm on that event,
and, if it survives, DMA“s that event out to the on-line
computer”s memory and from there onto mag tape. Because there
are two data buffers in the Array Processor, the analysis on
one event overlaps in time the ggading-in and writing-out of
the event in the other buffer. The Array Processor”s DMA speed
was measured to be 4 microsec/l6-bit word. Thus it takes 8
seconds to read in 4000 events of 500 words each and another 8
seconds to write them all out again. (Usually only a fraction
are written out.) Because neither the Array Processor DMA speed
nor the mag tape drive challenge the natural bandwidth of the
on-line computer”s bus (a Unibus on a PDP 11/45), the full 4
Mbyte from the buffer memory can be passed through the Array
Processor and written to tape in the same 16 seconds as when
the Array Processor is removed from the chain.

The current filtering algorithm, programmed into the Array
Processor, looks for ¢two or more muons penetrating our
calorimeter and shielding and counting in two hodoscope planes
and in three planes of proportional tubes. The algorithm is
written in Fortran 1IV. Editing, compilation, 1linking, and
testing of algorithms are all done on a VAX. The load module
is transfered to the on-line computer on a floppy and
automatically loaded into the Array Processor”s program memory
at the beginning of a data acquisition run. The algorithm
takes about 1 msec. per event. On a VAX 11/780 with FPA this
same algorithm executes in 2 msec. and on the Fermilab Cyber
175 in about 250 microsec. With no degradation in the speed
with which data flows through the Array Processor, more
sophisticated algorithms could take up to 4 msec/event. Or 12
msec/event would still allow all events to be processed during
the 50 seconds between spills.

This low cost ($35K) Array Processor has a maximum program
memory Size of 4K 64-bit words. This is roughly equivalent to
10 to 20 pages of Fortran code. We are currently using a
little over 3k words for our routines. The program memory size
is the first limit we would hit if we were to try to expand our

-57-

application. Were we to program in the Array Processor”s
assembly language the same algorithm would require much 1less
memory and would run much faster (™ factor 4). Fortran IV is
not a good match to the architecture of the Array Processor but
it is the only higher level language supported by Floating
Point Systems. The programmer time required to write an
algorithm in the Array Processor”s assembly language (more
similar to microcode) compared to coding in Fortran 1V is
approximately an order of magnitude for an experienced
programmer.

Data Flow
[Latches, TD(i;s, ADC's _efc]

L Flow during
accelerator spill

| .

[[4 Mbyte Buffer Memory |

N

[FPSI00E Array Processor] | Flow between
accelerator spills

[On-line Computer Memory |

Mag
Tape

-58-
QUESTIONS AND ANSWERS

Q: 1Is it correct that the Array Processor part of the analysis is
only 1/3% of the full analysis?

M. Fischler

A: Yes

Q: Have you compared the results of the array processor with the
Cyber results?

L. Leipuner

Q: Why the choice of a FPS100 rather than, say, an Analogics 500
which can swallow data at a much faster rate (5-6 MHZ)?

R. Fine

A: No answer

Comment: Speed of data transfer for FPS100 to UNIBUS is limited
by UNIBUS speed not by speed of array processor. FPS100 itself could
transfer at ~ 4 x 106 words/second.

J. Amann

-59-

A CHARGED KAON TRIGGER USING THE M7

The E-400 Collaboration presented by Paul Lebrun
Fermi National Accelerator Laboratory¥*

Introduction

The goal of experiment E-400 is to accumulate a 1large sample of
hadroproduced charmed events. Since the most 1likely decay of a charmed
particle is via the emission of a kaon, a charged, high momentum kaon trigger
has been designed using a previously build fast processor (the M7 computer)!’?
for experiment E-401.° This report demonstrates the flexibility of such a
processor.

The Experiment

The experiment is running in the neutral-wide band beam at Fermilab; the
relevant parts of the spectrometer and the data acquisition system are shown
in Fig. 1. The 10% interaction length target consist of Tungsten, Beryllium
and active silicon and is followed by a vertex detector and a trigger counter.
The first analysis magnet, characterized by a transverse momentum kick of 400
MeV/c, 1is followed by 3 mnultiwire proportional chambers and the first
Cherenkov counter. The second analysis magnet (transverse momentum Kick of
600 MeV/c) followed by 2 MAPC's gives us good momentum resolution for central,
high momentum tracks. P3 has 2 mm wire spacing in all 3 views (x, non bend
view, u and v, characterized by a stereoangle of 11 degrees). P4 has 3 mm
wire spacing in the x view, 2 mm in the u and v view with the same
stereocangle. The counters Ct and C2 have a pion threshold set at 5.4 GeV and
10.8 Gev, respectively. Each of those Cherenkov counters has 34 cells, the
geometry for C1 and C2 is displayed in Fig. 2. On the downstream face of C2,
a secintillation counter hodoscope (CH2) matching the C2 cell geometry is
mounted, allowing Cherenkov related fast triggers.

A fast trigger is obtained by requiring a coincidence between the target
counter and the trigger counter located downstream of P4. The second level
trigger is obtained by requiring (i) a signal from the active target, (ii) the
MWPC hit multiplicity average over PO, P1, and P2 being at least Y4, average
over P3 and P4, 2; (iii) the total energy deposit in the lead glass array and
in the hadron calorimeter being greater then 100 GeV, allowing us to trigger
on the high energy component of the neutron spectrum. This second 1level
trigger achieves a factor of 4 in background rejection.

The M7 Trigger

The M7 is a small fast computer with an instruction set designed to match
the on-line pattern recognition problem of a high-energy physics experiment.
The processor is a five address, microprogrammed pipelined, ECL machine with
simultaneous memory access to four operands which 1load two parallel
multiplexers and an ALU.

~-60~

A charged kaon with momentum between 20 and 40 GeV will produce light in
C1 and not in C2 and hence will fire a fast electronic trigger consisting of
CH2 ¢1 C2. Unfortunately pions with momenta between 5.4 and 10.8 GeV will
also fire this fast electronic trigger. In order to discriminate against
these lower momentum tracks, the M7 processor provided a crude momentum
measurement using hit information from chamber P3 and P4. Coarse hit
information are defined as the "OR" signals from 8, 16, or 32 signal wires,
depending on the location of the wires in the chamber; the central region
being always the high density, fine grained region. This defines 32 active
"bands" per plane. The M7 search for a triplet (x, u and v) in P4 aligned
with an active Cherenkov cell, assumed the presumed track is issued from the
target, and search for a corresponding hit in P3x (x refers to the non bend
view). A triplet in P3 completes the candidate tracks, the track momentum can
be measured by virtue of the different spectrometer momentum dispersions
present at these two chambers. Because of the crudeness of this measurement,
only a minimum momentum cut of 18 GeV is applied to discriminate against pions
below the C2 threshold. Above 120 GeV, no momentum information is available.

The whole program was about 120 instructions long, the excecution time
was typically 50 to 200 us, depending on the complexity of the event, Prior
to data taking, the hardware has been checked on previously recorded data, by
sending the pseudo hit information issued from the PDP 11/45 to the M7
interfaces through CAMAC. The M7 gives 1it's answer through the Transfer
Memory modules (TM) to the 11/45, relevant tracks coordinates were compared,
the set up was found to be better than 99% efficient. During normal data
acquisition, the efficiency of the processor was constantly monitored by
comparing TM data block with off-line FORTRAN emulators.

The M7 kaon trigger rejects 2/3 of the events satisfying the second level
trigger while being T0% efficient at passing events with an analyzable kaon
track identified by C1 and C2 in the extensive offline analysis. The 30%
inefficiency is not due to hardware failure, but reflects problems inherent in
the greatly simplified Cherenkov algorithm employed by the M7, such as sharing
light of a given track amoung several Cherenkov cells or tracking confusion in
high multiplicity events. Fig. 2 illustrates the algorithm by showing a
typical event. Tracks 1locations are black dots, the circles represent the
Cherenkov light ring, shaded bands are the active MWPC bands in P4 inducing
the trigger. Finally, this trigger 1is fully progragmablgl allowing great
flexibility. Triggering on proton versus antiproton, K-, K™P, or KK is
presently being considered.

References

*¥Operated by Universities Research Association Inc. under contract with the
U.S. Department of Energy.

'The M7 - A Computer for On-line Track Finding, D. Harding et al., IEEE Trans.
Nucl. Sci., Vol. NS-30, No. 5 (1983).

2The M7 - A High Speed Digital Processor for Second Level Trigger Selection,
T. Droege et al., IEEE Trans. Nucl. Sei., Vol 25, No. 1, 698 (1978).

°Psi Photoproduction at at Mean Energy of 150 GeV, M. Binkley et al., Phys.
Rev. Lett., 50, 302 (1983).

Torget courter PO
\\
Si Torger_

P2
] [
Ml co| "2
NI t
MAM \.‘.\‘Dﬂ Hn

-61-

CA2- Scantikaton Counters

PB-P4 Myitiwra Proparfonsl Chombers

MI- M2 Bording Mognets
€O-C2 Maticed C” Counter
L.G. Lead Gloas Shower Counter
H.C. Hodron Calorimeter

Fig. 1. The E-400 trigger

elements and data acquisition.

| Y

c-1, RUN 26501 EVENT

Fig.

15

2.

c-2.

Typical event display.

RUN 26501,

EVENT

15

Q: 1)
2)
A: 1)
2)

—62-

QUESTIONS AND ANSWERS

How many tapes do you write?
How do you analyze your tapes?

A. Brenner
1 tape/12 minutes.

Off line..

Q: You said you write one 6250 BPI tape per 12 minutes. How many
tapes do you end up with after one "season" (i.e, year) of running?

M. Delfino

A: Approximately 1500 tapes.

-63-~

A TRIGGER PROCESSOR FOR A FERMILAB DI-MUON EXPERIMENT

John F. Greenhalgh
Princeton University
Princeton, N. J. 08544

A trigger processor is described which is currently
in use in Fermilab di-muon Experiment 615.

Introduction

Fermilab Experiment 615 is designed to study the characteristics of muon
pairs produced in the forward direction by negative pion beams incident upon a
tungsten target.l In the continuum region of mu-pair invariant masses between
the J/v and T resonances, the production occurs predominantly through quark-
antiquark annihilation (the Drell-Yan mechanism?2), an electromagnetic process
with extremely small cross section (Tess than 100 pb) compared to the total
mp cross section (~ 24 mb). Consequently, an experiment dedicated to
studying specific kinematic regions with good statistics, such as this one,
requires both a high intensity beam and a powerful means of rejecting unwanted
events at the trigger level.

Overview of Apparatus and Trigger

A schematic of the apparatus is shown in Fig. 1. A 7.3-m-long dump con-
sisting of BeQ, Be, and C absorbs most of the particles produced in the
target, except muons. The detection apparatus downstream is live through the
beam region in order to achieve good acceptance at Targe xp. The dump fills
the tapered gap of a dipole magnet which tends to focus the 1ow momentum
member of asymmetrically produced muon pairs, thereby affording good accept-
ance in the interesting angular variable cos® from -1 to +1,3 With its
transverse momentun kick of 3.2 GeV/c, this "selection" magnet is largely
responsible for the ability of the trigger processor to discriminate between
sought after high mass muon pairs and background events, simply on the basis
of the topology of the muon trajectories through the downstream apparatus.

Four scintillation counter hodoscope planes, C, D, E, and F, are used to

ANV

|

. iZ\7

38 X,22Y g C Hodoscope : MWPCs) 3

28 X,48 Y, 31U 9 Planes 5 yodoscope: E & F Hodoscopes :
X,U,V 44 x,48 Y,47U B8O X Scintillators

Each
5 meters - PLAN VIEW o

Analysis
Magnet Drift
Target ' Drift Chambers
A Hodoscope : Selection Magnet Chambers } {2 Planes X,U,V

36 X,20Y

ik 7 72| 4

4 Planes X\ v

H

o vodoscons > /277777777 | o S

{ meter

Figure 1. E615 apparatus in 250 GeV/c pion beam configuration

—64~

trigger the apparatus on muon pairs, and two others, A and B, to veto triggers
containing muons from beam pion decays (halo muons). The E and F banks,
situated behind one and two meters of steel, respectively, provide an
unambiguous identification of muons.

The trigger for the experiment is made in three successive stages. Under
normal data-taking conditions, only events satisfying all three levels of
logic are written to tape. (Actually, one in a thousand Level 1 triggers also
goes to tape for diagnostic purposes.) The first level of logic is designed
to select events with at least two distinct muons that are in time coincidence
with the accelerator rf signal and that have no beam halo particles among them.
The second level logic insists that every event have at least two tracks that
point back to the target in the non-bending (elevation) view. The Level 1 and
Level 2 circuitry by itself constitutes a fairly sophisticated trigger. None-
theless, a significant improvement in the trigger is achieved at the third
level.

The third stage of the trigger imposes the requirement that the muon
trajectories bear a resemblance to those of high mass pairs. Unlike some other
trigger processors,” no mathematical computation of an invariant mass is
actually made.5 Instead, two 15 bit words are constructed, each one describing
a trajectory through the C and D hodoscopes. In principle, these 30 bits could
furnish an address into a 230 bit memory, each location of which contains a 1
or 0 depending upon whether or not the candidate track pair is to be accepted
or rejected. This is the essence of the philosophy adopted for the trigger
processor described here, though the implementation does not actually use such
a memory.

Level 3 Trigger

The “raw data" used in making the Level 3 trigger consist entirely of the
latched signals from the C and D hodoscope X, Y, and U counters. Only those Y
counters which contributed to a Level 2 trigger participate in Level 3. A
three-fold coincidence of X, Y, and U counters (the result of which is also
latched) creates rectangular "pads" in each hodoscope, as shown in Fig. 2,
which depicts an actual event from the point of view of the third level
processor.

Given a set of struck pads, a
hardware "track pair finder" assigns
pairs of pads, one in the C hodoscope
and one in the D hodoscope, t0 a
candidate particle trajectory. Two such

p candidates are constructed, called « and
B. Ultimately, each track is described
by a 15 bit word. The lowest order §
bits specify the X coordinate of the
struck pad in the C hodoscope, the next
6 bits give the X coordinate of the
struck pad in the D hodoscope, and the
//i?:uuommvwn remaining 4 bits identify the Y
coordinate of the C hodoscope pad. The
Y coordinate of the struck pad in the D
hodoscope need not be encoded because
the track pair finder will associate a given C hodoscope pad with only those
pads in the D hososcope belonging to Y counters that are roughly on a line with
the target, in keeping with the Level 2 logic. Furthermore, the track pair

E615 EVENT DISPLAY DF PAD HITS iN C AND D HODOSCOPES
Figure 2. Detector as seen by Level 3

-65-

finder will not permit the « and B track pads to share a Y address in either
hodoscope, in conformity with Level 1 nonadjacency requirements.

As can be seen in Fig. 2, it may be possible to construct many candidate
track pairs for a given event {(though only the tracks actually reconstructed
using the wire chambers are shown in the figure). Accordingly, the track pair
finder not only performs an encoding function, but "loops" over all possible
pairs of candidate tracks, subject to the Level 1 and 2 trigger requirements.
Each pair is presented in turn to Fermilab ECL/CAMAC Memory Look-Up modules
(MLU's),® where a comparison is made with stored patterns. The track pair
finder also knows when to quit. That depends not only upon the outcome of each
comparison, but on the number of
L track pair candidates that have been

constructed and compared so far, for
a given event.

The MLU's are interconnected as
shown in Fig. 3, though it should be
emphasized that once the two words
describing a track pair candidate are
made available, the bits may be
manipulated in any fashion desired,
simply by re-cabling and re-loading
the MLU's., In this experiment it has

flmeeen Proven convenient to assign a charge

cya
ADDRESS
cy B
ADDAESS 4 MTS

txa ML
ADORESS >

cx B
ADDRESS s 8IS

o
ADORESS > MLy

ox B
ADDRESS e BITS

Q CHARBE { BiY .

YR
GE
{ECL2} [0 MOMQK. Ly

cx B o to each track, to determine whether
an::>> Beuance e 7T or not each track's curvature is
v compatible with a physically allowed
momentumn, and to determine whether or

not the pair of tracks has a topology
similar to that expected for high

(ECL2))
STACK
ECLA, d :
o mass di-muons.
P B S 2 uons
(ECLaA}

Buam. o.x. 1 81y

Charge is specified using a two-
dimensional matrix that has the C
hodoscope pad's X counter address

MEMORY LOOKUP FLOW CHART providing one index and the D
. hodoscope pad's X counter address

Figure 3. Memory look-up sequence providing the other index. The
6000 ——T—T—T T T T T T T T T T T I elements of the matrix used to load
E6I5 75 GeV/c T~ Run No.390 the appropriate MLU's are set
to 1 for positively charged tracks,
and to 0 for negatively charged
tracks.

A momentun selection ("good" or
"bad") is based on another matrix
Mean =4.85 { with the same indices, loaded with
ones in kinematically allowed regions
and zeroes elsewhere.

Invariant mass is strongly
correlated with the plan view track

TRACK PAIR CANDIDATE’S PAD ADDRESSES FROM TRACK PAIR FINDER
=
o
=
H
€
]
£
:

5000

T

On-Line Histogram]

S
(o]
8
T
1

NUMER OF EVENTS
n w
o o
8 _ 8
T T
1

4000+ . separation at the C hodoscope (ACX)
and the track separation at the D
= hodoscope (4DX). The high mass

A1 1 1 1 n 1 1 1 1 1 1
04 2 34586 7 89104 12134414516 region in the ACX vs. DX plane
NUMBER OF TRACK PAIRS FOUND PER EVENT varies according to the vertical
Figure 4. Typical track pair multiplicity separation of the tracks, so that a

-66-

nunber of two-dimensional arrays must be specified (one for every | &Y|) in
order to load a Mass MLU. Separate Mass MLU's are needed for track

pair candidates in which track « is assuned to have one charge and track 8
another, since the 16-bit-wide input to the MLU is exhausted by the ACX, X,
and [ACY | inputs.

The Trigger M.U at the end of the chain is easily programmed to set the
output "trigger bit" to 1 or 0 depending on the state of its seven input
bits. An "output ready" signal tells the track pair finder when the trigger
bit is valid so that it may decide whether to assemble the next track pair
candidate or quit. An internal counter may be set so that no more than 1, 2,
4, 8, 16, or 32 track pair candidates are constructed. (Two 32-word-deep
Memory Stack modules record, for diagnostic purposes, the 30 bit description
of each track pair candidate presented to the MLU's.) During data-taking,
the stack 1imit has been set to 16. Of course it is possible that no track
pair candidates at all can be constructed for a given event, or that all
possible track pair candidates are exhausted before the stack 1imit is
reached. In the first case the event is rejected. In the latter case the
event is rejected if none of the candidate pairs satisfied the Trigger MLU,
and accepted otherwise. We have chosen to reject events when the stack limit
is reached, regardless of the state of the trigger bit associated with the
candidates tested. A representative histogram of the number of track pairs
found per event is shown in Fig. 4. (The entires at 0 and 16 are associated
with the prescaled Level 1 trigger.)

Electronics Design, Construction, and Testing

Most of the trigger electronics was designed and constructed at
Princeton using ECL 10,000 series chips. The Level 1 and Level 2 circuits
were built using a Multiwire technique.? The track pair finder (5 boards)
and U counter-to-pad fanout modules (4 boards) were wired using the
insulation displacement technique.8 This permitted somewhat faster wiring
than the wire-wrap method, but at the price of a greater susceptibility to
bad contacts. Nevertheless, since having been debugged, the entire trigger
processor has operated with only two or three failures during the last nine
months, those failures having been single dropped bits in the MLU's. The
veto hodoscope logic was designed and built at the University of Chicago.
The only commercial electronic modules employed in the trigger are the
phototube discriminators (LeCroy 4416's), a few latch modules (for the A, B,
E, and F counters), and assorted NIM modules.

Operational Characteristics

The trigger processor has made possible a marked reduction in the number
of events written to tape per beam spill while significantly enriching the
sample of interesting events recorded on each tape.

Some typical rates per spill (~ 14 sec in duration) are tabulated below
for runs with a 75 GeV/c n~ beam (400 GeV/c protons) and a 250 GeV/c =~ beam
(800 GeV/c protons).

The ratio of Level 1 to Level 3 triggers varies between 20 and 50.

-67-

Typical Rates per Beam Spill

protons on primary target

%~ on experiment's target
hits per downstream hodoscope
Level 1 triggers

Level 2 triggers

Level 3 triggers

75 GeV/c 250 GeV/c
4.9 x 1012 3.6 x 1012
2.7 x 109 2.4 x 109

~ 108 ~108
2.4 x 10% 6.3 x 10*
1.6 x 10" 3.3 x 104
1390 1260

The dead-

time of the experiment varies between 30% and 40%, most of it attributable to

the on-line computer and the A/B veto rate.
Level 3 logic is only about 2.5 usec per Level 2 trigger.

The deadtime introduced by the
The minimum time

interval between the start of the Level 3 logic and the assertion of the
"trigger bit" is 570 nsec, about 370 nsec of which is spent in the sequence of

memory look-ups.

nsec passes before an abort is issued.

L 1 LI T T T T
T Wt X
250 Gev/c 7~
03t 4
I]
; ; Without Level 3 Triqgerj
w
e~ L
w
w o2t)) 4
o E With Level 3 Trigger %
= b j
=2
4 o 4
10 E =
i 3
L]
L] 1 i - A
00 40 20 3.0 40 560 60 70
MY LT INVARIANT MASS (GeV/c?)
Figure 5. Analyzed data from two runs

If no track pair candidates can be found, a minimun of 90

Another measure of the
effectiveness of the trigger
processor is displayed in Fig. 5,
which compares data taken with and
without the Level 3 trigger, at a
beam momentun of 250 GeV/c. The ufy-
invariant mass spectrum reveals a
suppression of events below the J/¢
relative to those above by more than
a factor of 15 when the lLevel 3
trigger is employed. Both data sets
have been normalized to 100,000
triggers written to tape. Minimal
event selection criteria were imposed
in the analysis of the data to make
the comparison a fair one.

Summary

A fast, ECL-based trigger
processor featuring a specialized,
hard-wired "track pair finder" and
modular, programmable memory 1ook-up
units has been implemented in a di-
muon experiment at Fermilab, and has
achieved better than an order of
magnitude reduction in trigger rate
and rejection of background events.

-68-

References

For brief descriptions of the experiment and its goals, see A. J. S. Smith,
"Production of u-Pairs in the Forward Direction: Fermilab Experiment 615,"
in Lepton Pair Production (Proceedings of the Moriond Workshop, Les Arcs,
Savoie, France, January 25-31, 1981), pp. 141-147; W. C. Louis, "Status of
Experiment 615 at Fermilab: Production of Muon Pairs in the Forward
Direction," in Proceedings of the Drell Yan Workshop, Fermilab, October 7-
8, 1982, pp. 271-277; W. C. Louis, "Status of Experiment 615 at Fermilab:
Production of Muon Pairs in the Forward Direction," in Gluons and Heavy
Flavours (Proceedings of the XVIIIth Recontre de Moriond, La Plagne,
Savoie, France, January 23-29, 1983), pp. 407-412.

S. D. Drell and T.-M. Yan, Phys. Rev. Llett. 25, 316 (1970).

cose* gives the polar angle of the uwt with respect to some suitable axis,
such as the beam direction, in the mu-pair c.m. frame.

See, for example, H. Areti et al., MNucl. Inst. Meth. 212, 135 (1983).
The basic scheme of this trigger processor is due to Kirk T. McDonald.

E. Barsotti et al., IEEE Trans. Nucl. Sci. NS-26, 686 (1979); ECL/CAMAC
Trigger Processor System documentation, Fermilab TM-821, 2nd ed.

Multiwire is a trade-mark of Kollmorgen Corp., Photocircuits Division, Glen
Cove, New York 11542.

Gold-plated pins supplied by Robinson-Nugent, Inc. were used with "kluge"
boards fabricated at the Univ. of Chicago.

-69-

A REVIEW OF TRIGGERS AND S%ECIAL COMPUTING HARDWARE
OR THE
FERMILAB FIXED-TARGET PROGRAM

Sergio Conetti

Institute of Particle Physics and McGill University
Montreal, P.Q., Canada, H3A 2T8

Introduction

The design and implementation of a "trigger™, that is the selection of
a particular process from the many ones induced by the interactions between
elementsry particles, have always been among the most crucial aspects of
particle physics experiments. n the case of fixed target experiments in
particular, the rate at which the reactions under study are produced,
rather than being limited by the accelerator's luminosity, is very often
determined by the achievable trigger rste and the consequent dead time
produced by the data acquisition system.

Thanks to technological advances in the field of micro-electronics,
new and powerful tools have recently become available to uggrade the
capabilities of the triggering systems. The community o particle
physicists has welcomed the advent “of the microprocessor which, together
with the ever-increasing availability of integrated circuits with a more
and more favourable cost Yerformance ratio, has allowed the implementation
of very sophisticated, multi-level schemes of event selection.

The first comprehensive coverage of the marria§e between micro-
electronics and particle hysics was given by the 981 CERN “Topical
Conference on the Application of MictOYtOceSSOIS to High Energy Physlcs”.
In his contribution to the Conference([l], Tom Nash, in addition™ to a more
detailed discussion of the required ger drmance and general properties of
"intelligent triggers” in the fixe target environment, reviewed the
activity in such a field connected with Fermilab experiments. In that
paper thirteen processin devices, employed in eleven different
experiments, were described: three years after the CERN Conference the
tagid growth in the field is clearly indicated by the presence of thirty
different processors, emfloyed in twenty-four fixed target experiments at
Fermilsb. A more detailed breakdown can be obtained using the Fermilab’s
Situation Report tables, where approved experiments are listed under the
categories: “"Experiments completed during the past year"”, "Experiments in
Brogtess or to e set-up within a year” and "Other approved experiments”.
hen the Summer '83 Situation Report is employed, and after excluding
purely bubble chamber or emulsion experiments, one recognizes that in the
three categories, respectively, 7 out of 15 (471), 6 out of 7 (86%) and 11
out of 17 %651) experiments employ one or more processing devices for the
online event selection. 1In the presence of so many different systems, and
before describinﬁ them in more detail, it 1is useful to introduce a
classification scheme into which the various devices can be accommodated.

Classification of Processors

Like numerous other attempts, in various scientific disciplines, to
find some underl in§ order in an ensemble of complex s¥stems, the scheme
gresented here will involve some arbitrariness and expeditious overlooking.

rying to force all of the existinﬁ units into a rigid gattern will cause
the appearance of hybrids, hermaphrodites, chimerae and other monsters.
These reservations notwithstanding, there are some definite advantages in
introducing a classification scheme, even if not fully satisfactory nor
necessarily unique, so we will proceed towards such a goal. As a first
step, grocessing devices will be grouped into Fixed Flow and Variable Flow:
a Fixed Flow processor will be one for which the sequence and total number
of processing steps is always the same, independent of the features of
individual events; for the second category, the processing flow will
obviously vary with different events. Fixed Flow processors will be
further sub-grouped into Lo§ica1 (FFL) and Arithmetical (FFA) while the
Variable Flow ones will be of the Data-driven (VFD) or Program driven SVFP)
%yYE.A more detailed description of the four major groups just intro
ollows,

uced

-70~-

Fixed Flow Logical. When an interaction takes place, the data most
T € able from a detector is in the form of bit
strings,obtained b¥ imposing a "binarising” threshold to analogue data ,
carrying information related to pattern of hits in wire chambers or
counters.An FFL processor would consist of hard-wired or programmable lo§ic
elements capable of examining the gatterns to decide upon the acceptability
of each event received.The operation could involve sequential steps or be
completel{ parallel. As the most extreme case for the ultimate processor,
one can think of achievin% a very fast (20-50 nsec) and arbitrarily sharp
event selection by presenting in parallel all the information recorded by a
suitable detector to a uge look-up memory: performing different
experiments would only require reprogramming the memory seeoe The only
drawback of such an apgroach is that, even for a relatively simple
detector, the number of its needed in the memory is of the same order as
the number of molecules in the galaxy. A more down-to-earth and commonl

employed category of devices is represented by the “shifters” for whic

speed of execution is traded off versus number of components. Such devices
make use of some shift register to sequentially examine partial sections
into which the complete bit pattern has been broken. Typical cycle (step)
times for FFLs are 20-50 nsec.

Fixed Flow Arithmetical. These devices involve the encoding often done

f wire/counter hits into coordinates an the fast
digitization of analogue data, Arithmetical (and logical) operations are
performed on the data as it cascades through the various stages of the
processor. In order to obey the requirement of fixed flow, some selection
criteria (e.g. largest, leftmost)is imposed in the case of multiple entries
,such as more than one hit in a detector plane, etc. In this way the
sequence of operations 1is completely Ere—determined and can be built into
the processor structure. Typical single cycle times are 50-100 nsec.

Variable Flow Data-driven. VFD processors are the obvious evolution of the
st a special case of the VFD?). For this type of
processor, an attempt is made to digitize, for every event to be processed,
all the relevant data and to perform the desired computations on all the
different combinations arising from multiple entries. To achieve this, the
rocessor must be capable of executing single or nested loops, conditional
iumps, etc. The logic of such a processor becomes more and more elaborate,
ut the Eotential for fast computations of complex algorithms is ver
large. Given the sophisticated structure, it 1is advisable to develop_suc
processors with a modular approach and with a well defined mechanical and
signal standard. As we will see two such systems have been independently
developed for fixed target experiments at Fermilab.Cycle times are usually
the same as for FFAs.

Variable Flow Program—-driven. In this category we include all the systems

) N e Central intelligence agency, “conventional”
computers, driven by a stored program. In most instances, the systems are
centered around one or more microprocessors, often deveIoped ad hoc to
optimise the performance with respect to the required application, yielding
some very unconventional and most interesting architectures. Typical cycle
times for such devices are in the hundreds of nanoseconds.

Processors at Fermilab

The 1large set of processors developed for the fixed target
experimental prosram at Fermilab is summarized in Table 1. The four maior
categories introduced in the previous section are well represented, with
some exgeriments exhibiting more than one processor in their set—ug. E-605
and E-705 in particular, channel the flow of incoming events through an
FFL-VFD-VFP sequence, so achieving a powerful multi-level trigger (it
should nevertheless be mentioned that E-690 aim is an equally effective
event selection through the exclusive use of a very sophisticated VFD
device). Performance figures describing the processing speed and rejection
power of each system are deliberately not included in the table: such
entries might lead to perform a comparison among different systems, which
is somewhat meaningless when a large set of oundary conditions is not
taken into account. In short, one could say that each processor was
designed to attain the speed and rejection power that were needed for the
particular application.

The functions performed by the various systems cover a wide spectrum,
reflecting the ample degree of differentation exhibited by fixed target
experiments. One particular application nevertheless stands out
unmistakably: as many as twelve experiments made use of their processors
to evaluate the invariant mass of a set of particles, described by their

-74-

Table I.
1) 2 3)
EXP FFLIFFA|VFD|VFP| REF |STATUS FUNCTION MAIN CHARACTERS
326 X C,2 C |dimuon mass Sumner ,Halling,Isaila
361 X 3 C |synch, rad. pattern Dworkin
400(687) X |¢G,24 R |high pt kaon Lebrun,Gainues,Droegge
516(691) X C,4 C |[missing mass Nash,Barsotti,Bracker
X [event reconstruction Martin.Sheparé.Lusce
537(705) X C,l4 C |dimuon mass Areti,Conetti
X C track finding Glass
605 X G,22 R |high p ,high mass Kaplan
X | G,26 event ‘reconstruction | Rutherfoord
609/683 X 4 C |multi-jet pattern Erwin,Nelson
X 27 D event reconstruction Thomson
612 X [C {track reconstruction | White
615 X G,17 R {diwmuon mass Greenhalgh,MacDonald
617/731 X 9 R K (6 photons) mass Gollins,Winstein
X ﬁ oton clusters Heller
621 XX 5 R mass Thompson
623 X c,i0 C ¢¢ (4K) mass Fenker ,Creen
665 X 71 D [high Q% muon Pitt,Kobrak
672 X 23 R |dimuon mass Crittenden,Smith
687 X1 X 19 D jhigh pt kaon Lebrun,Gaines
690 X G,20 D |event reconstruction | Knapp,Sippach,Avilez
691 X 15 D Jjhigh forward mass Tagged Photon Collab.
704 X 28 D A9 mass Birsa,Villari
X 3 high Py hoton Rameika,Wegner ,Lynch
705 XX 16 D {dimuon‘di-vy mass Conetti,Tzamarias
X 30 event reconstruction Haire ,Kuchela
715 X 8 C |trans.rad.pattern Leningrad
732 X 11 D | 20mass Sheaff
743 X 29 D |}vertex reconstr. Rome
NOTES

1)Bracketed numbers represent experiments performed by the
ain in the table with some additional system. Number
ify that the same processor was used in two experimencts.

same grou; that appe
separaged gy slusheg(

: the processor was described in the CE '81 Conference (ref., 1). G :

contribﬁted aper is contained in these Proceedings.
3) C : completed. R : running. D : development

ar
Ip]
a

-72-

measured momenta (or _energies) and directions. Be the sought-after final
state a di-muon, a XY, or any other, it can really be said that the advent
of processors offered’ the most effective solution to a problem that until
then could only be partially and insufficiently solved.

A descriﬂtion, necessarily very brief, of the individual systems
grouped into the four major categories follows.

Among the Fixed Flow Logical processors, the first two we encounter,
E-326 and E-36T, are of _the "SHifter" tyge. The ver{ effective di-muon
processor for E-326 has alreadg been described in the literature [1,2]: in
a set—up where the detector and the processor appear to be well integrated
parts of a_single body, counter hit patterns are identified and compared,
via a shift re§ister, to the gre-computed set associated with high mass
di-muong. E-36I[3] had a simpler requirement: particles associated with
the beta—-decay of A hyperons produced, in a Xenun chamber, a characteristic
pattern (fig.l) induced by the particles themselves pius a photon from
synchrotron radfation. A processor (fig. 2) was built to recognise the
presence of the correct number of AND and XOR coincidences, counted while
shifting the data from the Xenon chamber two planes.

Skipping the E-605 front end processor and the E-612 track finder
already presented in reference 1, we describe in more detail the E-609
calorimeter matrix [4]. The calorimeter was composed of 132 towers, each
one giving an output proportional to the energy deposited times the sine of
the tower polar angle. A trigger was formed when the sum of the energies
in a group of towers was above a threshold energ{. The sum was obtained by
using an analogue adder and a cross-point matrix (fig. 3).A given module
(fig. 4) performed 40 analogue sums in parallel (through the cross-point
matrix): specific trig§ers were programmed by connecting the desired
cross—-point resistors, allowing an easy reconfiguration of the system.

Still in the realm of calorimeter processors and somewhat similar in
scope, although ver{ different in actual realization of the system, are the
E-621 and E-705 cluster finders. Both these experiments process the
analogue data from_ an electro-mainetic glass calorimeter to recognise and
count clusters of energy deposition, 1likely associated with incoming
photons or electrons. The E-621 ECL processor [5] looks for neighbours on
two adjacent edges of each glass block hit (fig. 5): 1if none of the
neighbours is hit, then it is called a cluster edge. The total number of
identified clusters is available as the processor's output. The E-705
cluster finder [6] compares the energy deposition in every block of a
scintillating glass calorimeter with the one 1in 1its eight neighbours,
looking for "local maxima which are identified as cluster centers. The
total energy of each cluster (peak + neighbours) is weighed by its radial
position, to identify high photon candidates. A digital list of cluster
energies and positions is also prepared, to be analyzed by the next level
of triggering.

The new, hi§h energy, muon beam at the Fermilab Tevatron will be
utilized by E-665. The experimental requirement of recognisin muons
scattered with large Q2 will be satisfied by a processor [7], designed to
analyze the information from 4 banks of X-Y groportional tubes imbedded in
the spectrometer iron walls. Track finding will be done separately in each
of the two views, usin§ fast memories to reco§nise hit patterns appropriate
to scattered muons coming from the target. n each view, each wire in the
first chamber is the endpoint of one road. Each road is associated with a
4096 x 1 ECL memory, whose twelve address lines are connected to the
appropriate chamber wires. The memories will be downloaded with the
acceptable hit patterns, pre-computed through extensive Monte Carlo
simulations. Finally, we mention the cluster finder developed for E-715[8]
to recognise and count clusters in a system of proportional chambers
forming the active component of a transition radiation detector.

Similar to FFLs, Fixed Flow Arithmetical grocessors are usually
designed and hardwired haVving ITm mind & very specific application, so that
their configuration is experiment-dependent” and not easily transportable
from one set-uf to another. On the other side, since FFA processors, as
mentioned earlier, can always be considered as a special case of the VFD
ones, we will find in our list some FFA devices based on modules developed
for the VFD systems.

From Table 1, we first encounter E-617 and its follow-up (E-731), a
pair of CP violatio% experiments that require 1in their trigger, to
recognize the KO0-—93¢ decays for which all the photons are contained

-73 -

within the detector[9]}. To this goal, the information from an 800 blocks
lead glass calorimeter (fig. 6) s treated 1in a processor that combines
digital and analogue calculations to attain maximum speed and efficiency.
For every event, the quantities computed are

zE; (analogue sum), ZXiEi/ZE_i (analogue sums, digital division)

2 0] :] s .
and zri E1. . 2E1. (analogue sums, digital multiplication)
where E; is the energy deposition in the i-th block, and x;,r; its
transversal and radial coordinates. Suitable cuts on the above quantities
provide, in~ 150 nsec, the desired signal.

Another CP violation experiment, E-621, was already mentioned earlier
for its photon cluster finder, which is’ used in conjunction with _an
arithmetical processor to select K0--3 5" 17 1m0 decays in the presence of a
competing background [5)}. Still in the setting up stage, the experiment
features two processsors utilizing the information from two different
detectors (proportional chambers and counters) to evaluate the same
quantit¥. gsing tesgectively a set of look-up tables (the Lecroy version
erm

of the lab ECL-CAMAC system, see below), or a home-built subtract and
divide circuit, the two processors compute the quantity
(B -~ A)/ (B - A) , where A,B
left left right right left(right)

regresent the left (right)-most hit from the two planes of detector A and B
(fig. 7). Such quantity is related to the mass of the detected Vee decay.
Not too dissimilar in concept, but more complex because of the presence of
four candidate kaon tracks, the E-623 ¢¢ mass processor has agready been
described elsewhere [1,10].

The identification of yet another invariant mass, this time the Eo ,
is the aim of E-732.[l1] The exact formula for the mass evaluation, shown
in fig. 8, involves a sequence of arithmetical operations. The proposed
processor is hard-wired to diligentli go through the required set of
operations, making the largest possible use of parallel Ytocessing, as
detailed in fig. « Finally, the current plan of the E-691 collaboration
(father of the Fermilab ECL=GAMAC system), is to reconfigure their E-516
trigger processor into a simpler system suitable to satisfy the
requirements of the new experiment.

In addition to the rich choice of application dependent projects
described so far, a very important feature of the Fermilab fixed target
program is the presence, as mentioned earlier, of two very powerful general
purpose systems, representing the global approach to trigger processing
that is the distinctive character of Data-driven, Variable Flow devices.
The first of the two s¥stems, the Ferm = s dlFeady been
described in detail [1,12]. The first implementation for which it was
developed, the recoil trigger for E-516[131, was followed by the E-537
di-muon mass processor[lé?. The modules rom both of E~516 and E-537
processors are oin to be used again in a new round of Tevatron
experiments: E-691 will reconfigure the recoil processor to achieve a
forward mass evaluation[15], while E-705 will implement an improved version
of the basic di-muon processot}l6é. Another experiment, E-615, has already
run with a h{btid home-built/ ECL-CAMAC di-muon processor, described in
these Proceedings{17].

The ECL-CAMAC system has been very successful: one can foresee that
more and more applications of it will ~appear in the future, based on its
commercial version, now produced and marketed by Lecroy Research Systems.
The two most fundamenta bu11d1n§ blocks of the ECL-CAMAC system, the
Stack, used as a buffer and supplier of operands and intermediate results,
and the Memor{ Look-Up, the general purpose operator, have already been
produced by ecroy, _together with other general purpose logic and
arithmetic modules. It appears that all the elements exist to assemble
sophisticated tocessing systems similar to the ones developed in the
original ECL-CAgAC standard, although with some notable differences. An
important element of the Fermilab system was the Do Loop Indexer, a module
capable of requesting, as soon as they become available, all possible pair
combinations from two lists of elements which are filled concurrently with
the gair extraction process. Such ptogetty yielded a faster processing
capability as compared to the one given a "nested loop™ logic, where the
outer index cannot be advanced unti] 1 the elements belonging to the
inner index have become available. The Lecroy Corporation has decided[18]

-T74-

not to produce such a module, providing instead the Stack with
nested-loop” capabilities. Such a choice represents a very reasonable
trade—-off of otential processing speed (not always exploitable) versus
sKstem simplic t{. Another important feature of the commercial version
that will greatly facilitate its adoption is the packaging into modules
residing in standard CAMAC crates and obeying the C. C protocol. Various
§roups are already using or planning to use the Lecrog CL-CAMAC modules:
n addition to the already mentioned E-621, E-705 and E-687 will implement
respectively a di-photon addition to the di-muon trigger and a front end
processor to the M7 computeril9].

The second general system for VFD processors the Nevis Lab
data-driven Eipeline is described in these ProceedingszO] as well as in
earlier publ cationsle]. The approach is even more ambitious than the
ECL- one: in its ultimate configuration, the system is expected to
perform a complete reconstruction of all the beam interactions in . the
target, without introducingsany dead-time., A s¥stem of such a performance
is alread running at 10 > interactions/ sec. for Brookohaven experiment
766, while Fermilab E~605, as described in these Proceedings[22], 1is
utiiizing the same modules to look for high R particles and high mass pairs
in a low multiplicity environment. E-690, “Yas described in ref. 20, will
demand the ultimate performance from the Nevis Lab project.

So far all the systems in the VFD category have represented
implementations of the ECL-CAMAC or the Nevis efforts; there is one notable
excegtion, the E-672 di-muon mass rocessor[23]}, whose self- explanatory
block diagram is shown in fig. 9. n what turns out to be a very elegant
development, the designers have §iven up some of the speed attainable when
maximum concurrency iIs demanded, to realise instead a system which 1is
particularly compact and easy to commission. The E-672 algorithm for
evaluating di-muon masses is very similar to the one utilized by the E-537
ECL-CAMAC processor, so that a comparison of the two systems is meaningful.
Trading speed for simplicity, the E-672 system needs about 5 usec to
process the ideal event §on1y the 2 muon tracks presenti as compared to 1
usec for E-537. The E-672 system nevertheless is totally contained in 11/5
crates (versus ~v 5 crates for E-537) and required a total manpower of about
2 man/years, small figure when compared to the large effort involved in the
ECL—CAHAC system.

The last category, the Variable Flow, Program—driven computer-like
devices, has not had a strong Tepréséntation at Fermilab, especially when
compared with the CERN program. Until recently, the on 1 important
presence in the VFP category was the M7, a stored program device designed
to optimally perform track reconstruction algorithms. The device has
proved its value, having already been used in E—401[lg E-400 (ref. 24,
these Proceedingsf, with a projected utilization for E-6 7[25].

The E-605 project, presented at this Conference[26], consists of
hanging a fast processor onto a DEC UNIBUS, to analyze an filter events
between spills, a procedure similar to the one foreseen for E-683[27]. The
next two entries, E-704[28] and E-743[29], merely represent the intention
to transport to Fermila two microprocessor systems _currently in use at
CERN, so that the only ma;or new development is the E~705 project{30]. The
probiem facin§ this experiment is an expected trigger rate in excess of 200
events/sec, with ~~ 2000 words/event and a spill of more than 10 seconds.
In the presence of a pre-existing heavy dotation of CAMAC read-out modules
it was necessary to develop a s¥stem capable of reading out the CAMAC
crates in 1less than 1 msec nclusive of the several hundreds of
microseconds required for data éigitization. To this goal, a set of smart
crate controllers, built around a Motorola 6809 microprocessor, is bein
constructed: the controllers will be loaded with a 1list of CAMA
ogerations, that can be executed within a few microseconds after reception
o a trigger. The controllers daisK chained into a subset of parallel
data channels (fig. 10), will unload the data into a set of FIFO memories,
residing into a VME crate, deep enough to handle the worst case
instantaneous trigger rate. An array of Single Board Computers (based on
the 68000 microprocessor) will sit in the crate to sort, compress and
filter the events, and eventually to transmit them to a CAHAC memory for
conventional recording. The system, currently under construction, is
scheduled to run in 1985,

One final entry, E~-516, appears in the VFP column of table 1. Rather
than an on~line processor, the entry acknowledges the University of Toronto
effort in the construction of a system of eight IBM-168 emulators (168/E),
that were run to analyze a large fraction of the E-516 raw data tapes.

-75-

Conclusions

The impressive amount of processors of all types employed in a
majority of the current and future experiments proves that such devices
should now be considered as a standard tool available to the researchers.
In the presence of such a variety of developments, one still has the
feeling that there is not a “best szstem". For each particular case, the
choice will depend first of all on the requirements of the given experiment
and secondly on the experimenters' ambition and availability of manpower
and/or commercial hardware. There is no doubt however that, in order to
optimize the performance of any given system, the processor's structure and
requirements should be integrate at the earliest possible stages, in the
overall design of the exper mental set-up.

Apologies and Acknowledgements

I apologize for any omissions or misrepresentations which may have
resulted because of the rapid changes and often minimal documentation
characteristic of the material here covered. I would like to thank the
Organizers of this Conference for their invitation to prepare the present
review. Travel and living expenses at Fermilab and Guanajuato were covered
Ey ad grant from the Natural Sciences and Engineering Research Council of

anada.

References

1. T. Nash, Proceedings of the Topical Conference on the :Eplication of
Mifggpfgggfgors to High Energy Physics Experiments, CE 81-07,

§;7ﬂ?}%ég , M. Isaila and R, Sumner, IEEE Trans. Nucl. Sci. 29,

3. Je Dworkin: Universitﬁ of Michigan, Ph.D. thesis, February '83.

4, K.S. Nelson and A.R. Erwin, IEEE Trans. Nucl. Sci. 30, l&g (1983)

. R. Handler et al., Phys. Rev. D25, 635 (1982) and T. Devlin,

Rutgers University, private coW@unication.
R. Rameika, Fermilab, private communication.

2.

7. R . Pitt, Mass. Inst., of Tech., private communication.
8. T. Lach, Fermilab, private communication.
9. B. Winstein, University of Chicago, and G. Gollins, Princeton

University, private communication.
0. H.C. Fenker, D.R. Green, S. Hansen and T.F. Davenport, Fermilab
Pub. 82/62-EXP. (1982).
11. M. Sheaff, Universit¥ of Wisconsin, private communication.
12. E. Barsotti et al., IEEE Trans. Nucl. Sci. 26, 686,(1979).
13. J. Martin et al., Proceedings of the Togicat—éonference on
the Afplication of Microprocessors to High Energy Physics
Experiments, CERN 81-07, 164 (1981).
14. H. Areti et al., Nucl. Instr. and Meth. 212, 135 (1983).
15. J. Martin, University of Toronto, privat€ Communication.
16. S, Conetti, McGill University and §. Tzamarias, University
of Athens, E-705 internal note.
17. J. Greenhalgh, these Proc :edings.
18. L. Levitt, Lecroy Research Systems, private communication.
19. P. Lebrun, Fermilab, private communication.
20, C. Avilez, these Proceedings.
We Si?gacﬂ G. Benenson and B. Knaﬁp IEEE Trans. Nucl. Sci.
27, 5 (1980), and H. Cunitz, R. Hsiung, B. Knapp and
W. Sippach, Proceedings of the Conference on Instrumentation
for Colliding Beam Physics, SLAC-250, June 1982,
22. D. Kaplan, these Proceedings.
23. R. Crittenden, Indiana University, private communication.
. P. Lebrun, Fermilab, these Proceedings.
. P. Lebrun, Fermilab, private communication,
B J. Rutherfoord, these Proceedings.
. M. Thomson Unlversity of Wisconsin, private communication.
. A. Penzo, iNFN Trieste, private communication.
. S. Reucroft, CERN, private communication.
. S. Conetti, M. Haire and K. Kuchela, McGill University
internal note.

n P
00000B000000000. .0 00 X2
00000BO00000000. . .0 00 X1

a) A—Pn”
e P
008 000080000000. . O 00 X2
00g000000000080. . .O00B00 X1
b)A—Pe"v

Fig.l. E-361 synchrotron
radiation pattern.

=T
%

itk @

Fig.3. E-609 matrix

VWV
~

adder.
T
[T ITITIT
TITGII I IITIT
TR
TITTITTITTIITI]

CLUSTER
Sum

PION
; HITS Cpy

Fig.5. E-621 cluster finder.

Fig.2. Block diagram of the E-361
processor.

INPUT INPUT 100~
BUFFER 1-33 BUFFER 132

10X 66 0 X 66
I CROSSPOINT
MATRIX MATRIX
]
EEImIsI IMINImT
INPUT INPUT
BUFFER 34-66 ‘E‘Pm E‘“ BUFFER 67-93 |

Fig.4. Layout of the E-609
processor components.

ran |

¢

Y4 A A Y S S N A

Ry 5 6 s v 6 S o S 2 0 4 U G Y 6

Vo Ay o o Y Y

Fig.6. Glass block array of E-617.

-77-

Amlyzng—»
magnet ’
- 2 — -
Sw:::wo 9 A pup.6 = 1.96 [(R,+x02y +28) (R, +x: M 22~ 2a)] +{{(3h +y)-(F + yu)} 28 -25)])
Decay region é E E - Deolzi-20)-x,(22-20) {%al 2, - 20) - 2220))
Normetzation o NUMBER OF ESTMATED
frot O IME | oPERATION| SMULTANEQUS | CHiP SIZE [TIME
i] CALCULATIONS (nsect
I HEH 1] ADD B 8+8 50
interforerice RRH 2 |MULTIPLY 0 8x8 00
forgel I Bk 3 | SUBTRACT . 6+16 50
7 R 4 |MULTIPLY 3 2x12 100
/ tih H ADD 2 5 +16 50
V/ & | MULTIPLY Z 2x12 00
é 7_[COMPARE 1 16 +%6 50
1 ' £t2500 nsec
- 30 4lm . .
20m Om 6m " Fig.8. Algorithm for the E-732
Fig.7. E-621 layout. processor.
5 E672 DIMUON TRIGGER PRBCESSOR DATA FLOW
¢ h
g = X TRACK
] - HISTE
£ M2 i
° 8 LAeINT, { marenTuM | mass L Trie
< a
& nu z
£ §
3 k. Y TRACK
& w4
g == POINT
Fig.9. Block diagram of the E-672 processor.
SMART FiFo
CAMAC CRATES CRATE CONTROLLER MEMORIES SUPERVISOR
{VME-110}
T0
POP-11
> -
m & oo oo &1 oD 0 A\
=0 ° am ° |«—VME
) CRATE
SLAVES
(MK75602)
> +|_RIBBON
|” CABLES
oo &1 2 aD
— -

[8:18] &2 CIDI

EXPANDS FOR MORE CRATES

Fig.10. The E-705 data acquisition system.

-78-

QUESTIONS AND ANSWERS

Do you write raw data or calculated data on tape?
R. Poutissou

Both.

Lompuling

[Photograph of Guanajuato by Eduardo Rangel Cerrillo (Guayo) of Guanajuato.]

-79-

PARALLEL SUPERCOMPUTERS AND LATTICE GAUGE THEORIES

Anthony Terrano
Physics Department
Columbia University
New York, NY 10027

Numerical studies of lattice gauge theories are severely
limited by the power of the computers which can be brought to
bear upon them. This limitation has a number of consequences
First, the number of samples which can be taken in a given
calculation will be small. resulting in, at best, a large
statistical uncertainty. Indeed, with limited Tesources, 1t may
impractical to measure the autocorrelations of the quantity
being calculated with the result that the statistical errors in
a ctalculation are simply unknown. Secondly, the number of
different wvalues of the parameters in the theory which can be
investigated is limited, making a thorough study of systematic

effects difficult. Perhaps worst of all, there 1is little
possiblity of studying algorithms or alternate formulations of
the problem. In order to carry out & definitive study. we

should be able to spend 754 of our resources learning the nature
of the system and perfecting the procedures for studying it and
have the remaining 25% suffice to do a high statistics study.

0f course, this limit is not imposed by the computers
themselves, but by the Ffinite amount of money which we can
realistically hope to be able to spend. There are a variety of
approaches for relaxing this constraint One can try to find
“free time” on unused or partially used computers, or try to
increase the level of financial support for computational
physics. Norman Christ and I have pursued the approsch of
trying to increase2 the number of flcating point operations which
2ach dollar will buy. Surprisingly. there isn’t a lot of
difference between currently available computers when they are
rated by the number 0f Fflops per dollar: a Cray-l provides
about 10flops/%; a VAX somewhat less at 2flops/%; an IBM-PC
(with a floating point coprocesser chip addad) also about
10flops/$.

The starting place for a more powerful and cost efficient
machineg are the microprocessors which are generically refered to
as a “"VYAX on a chip". These computers will typically execute 1
million instructions per second and cost on the order of $100
However, to study lattice gauge theories we need millions of
floating point operations, not integer instructions, per second
The next building block are VLSI floating point arithmetic
chips. The first such wunits were made by TRW and include a
22+22 b1t adder with a cycle time of i25%ns. or 8BMFlops. These
chips use a special format consisting of & 1& bit significand
and a & bit exponent. A comparablile multiplier can be assembled
from a 1éxié bit integer multiplier coupled with an integer
adder for the exponents. An arithmetic unit built around these
two units could possibly perform 16& willion floating point
operations each second, at a price in the neighborhood of $500
These chips were the state of the art when we began our design
Since then. however. & chip s&t which performs Full 32 bit
arithmetic and runs at the same speed has become available for

-80~

about %1000 The final element is of course fast memory. which
as the density per cnip increases becomes more economical each
year. With these elements, the outlines of our overall strategy
become clear: we can build inexpensive wnits which will operate
in the 10Mflop Tange; we need to Find a way to bring
{indefinitely!’ many suth units to bear upon a single
calculation Our supercomputer will consiet of an array of
single board computer/array processors

Tg—gga?h, I will describe the architecture of the system
Each element of the array consists of a processor and memorTy
Howewver, it is useful to think of the system as an array of

memories Joined to one another by the processing elements
{(Figure 1. The memory nodes are mapped uniformly onto the Xy
plane of the probiem: each node 1is associated with a specific
rectangular region in the x~y plane, The regions cover the

entire plane and have the same size, shape, and orientation
Mote that each of the regions may include several points in thg
x~y plane of the lattice. The data associated with the lattice
point (x,4,z,t) is stored in the memory associated with the
region in the x—y plane containing the point (x,yl.

The intevconnactions provided between the elements of the

two—dimensional array are arranged to provide direct
communication between all nearest-neighbor pairs of memories

In lattice gauge theories, all calculations are built from
cperations involving only guantities associated with nearest
rieighbor sites in the Ffour—~dimensional physical lattice. These
elements will necessarily be stored either in the memory of 3
single node or in the memories of two adjacent nodes. In either

case, with the interconnections shown in Figure 1 there is a
untque processor with direct access to the pair of operands
Thus all three of the memories which are attached to a
particular processor must be included in that processor’s
address space.

Although each Memory is accessible to more than one
PTOCESSOT no contention will arise 1f all processors execute
the same program in lock—step. Since the calculations of
interest are spacially homogeneous, 1t is possible for each node
in the array of processors to be executing identical code.
However, only one processor need control the addressing of a
particular memory since that processor {(FP) can anticipate the
needs of & neighboring processor (Q) for data, provided a second

neighbor (R) will do the same for (P Thus all the
communication required between two nodes can be carried by
zixteen data lines In addition to +the lock-step operation

described above 1mn which data can be transferred between nodes.
a zecond asynchronous mode aliowing only local activity is

provided This is described below

Often 1n the problem of interest ong imposes "neriodic"
boundary conditions, effectively joining with links those planes
of sites lying on opposite poundaries. These conditions can bhe

realized by our array if the conmnections indicated in Figure 1
betwsen top and bottom and between left and right are provided.
Thus the cannections in the array form the surface of a
two-dimensional LOTUS, It should be noted that if the

~81-

processors are physically placed in a two~dimensional plane, the
inter-processor connections tequired to form this torus <can be
achieved with wires whose lengths need not grow as the number of
Processors increases, (In our case the maximum length Ttequired
is less than eight inches

IMPLEMENTATION

Let us now consider the implementation of this design. The
processing 2lement at each node of the array consists of an
Intel B0O2B&/287 microprocessor with a 16K x 14 bit program
memory and a microprogrammable fleoating peoint vector processor
Each node also contains 128BKB of data memory divided inteo two
independent. simultaneously addressable 32K «x 164 bit banks,
which can be accessed by both the ‘2864 and the vector processor.
and a switch to allow the desired pair of (local and/or remote)
memories to be addressed. All of the data paths are 16 bits
wide. In addition, each node is provided with an Intel Multibus
port to allow connection of additional local memory, accessable
by the ‘286. The operation of the array and the transfer of
data and code to and from the host computer 1is directed by a
simple central controller which contains a 1&4KB data buffer, and
provides the control signals and common cleock for the array
Mechanically, each node occupies a seperate board which is
provided with a standard Multibus edge connector The seperate
nedes are connected to each other and to the central controller
by vibbon cable. Figure 2 shows the architecture of a single
node.

a) Microprocessor, The Intel ‘286 microprocessor supervises all
the activity on the node It ran read from and write to all the
memory on the node as well as the data memories on two of the
ad jacent nodes. In addition te controlling the wvector
processor, the ‘28646 must perform all of the scalar processing
required to complete the calculation. The problem at hand
requires a scalar processor fast enough to execute at least one
instruction for every 4 to 5 floating point operations performed
by the vector processor in order to Toughly balance the scalar

and vector execution times. Further, the possibility of
inciuding additional memory at each node mandates a
multi-megabyte address space. The Intel 8028& microprocessor

with the 80287 coprocessor nicely meets this requirement.

Each ‘286 has its own independent program memory so that
the ‘286 can operate concurrently with the vector processor
which appears to it as a second coprocessor — a program Tunning
on the ‘2886 will stop on a "wait" instruction until the vector
processor completes its present program. Another control signal
is provided for the purpose of re-synchronizing the array. When
a period of asynchronuous operation, for example data-dependent
branching or node—dependent subroutines, has ended, the central
controlier is informed and conditions this control line. When
all nodes are done. the central controller sends the reset
signal, and all processors are restarted synchronously.

ks Vector Frocessor. The floating point vector processor is
pased on the TRW MPY-1é6HJ, 100ns 1é6x16 bit multiplier and the
TRW TDC 1022 100ns. 22 bit (16 bit significand and & bit

~-82-

exponent) floating point adder. The vector processor 1is
pipelined. with 12%ns stages, and is microprogrammed to perform
the matrix-matrix and matrix-vector multiplications described
abavea. A complex number is stored in six consecutive bytes
the first two bytes contain the 1é&-bit significand of the rveal
part. the third byte contains the é6-bit exponent of the real
part, the fourth byte contains the &-bit exponent of the
imaginary part, and the fifth and sixth bytes contain the 1lé-bit
significand of the imaginary part

The vector processor has two independent inputs, and a4 new
operand can be strobed into each one on every 12%ns clock pulse
Each 1nput *to the exponent adder has two 1&-bit latches
allowing a total of eight exponents to be stored temporarily
(Figure 37 The input latches of the TRW multiplier are also
separately controlled: by suitably ordering the complex
multiplication no additional temporary storage 1s needed for the
incoming significands. The outputs of the wmultiplier and
exponent adder attach directly to the (sole) input o©f the
floating point adder. Since matrix operations involve the
accumulation of a series of products, the adder can be Tun in
its accumulate mode and requires only one new operand on every
clock pulse Further., sirnce the adder requires two clock pulses
to complete an addition, it can accumulate both the real and
imaginary part of the sum simultaneously with out any external
storage. With this arrangement the vector processor can sum a
string of products of complex numbers at the maximum rate
allowed by the BMHz clock — 1é&6 million floating point additions
and multiplications each second

¢} Writeable control store. The operation of the vector
processor is controlled by a writeable control store (WCS) made
up of static RAM arranged in 4K 48-bit words which can be
accessed by the ‘284, The microcode provides the signals
necessary to control the arithmetic unit and latches shown in
Figure 4, as well as determining the addresses of the source and

destination operands. The ‘284 initially loads two 4-word
l4-bit latches which contain the base addresses Ffor the
operands. In each cycle, for each of the A and B memories, the

microcode chooses one of these lo—-bit base addresses and
supplies an 8-bit offset to be added to it to determine the

effective address of the operand. The additions are performed
by twe dedicated 16-bit adders. The operands are thus Tequired
to be less than 912 bytes longi there is no restriction on

their alignment

The microcode sequencer is simply a counter driven by the
system clock. This counter is started when the ‘286 writes to a
reserved 4KB range o0f addresses. The particular location
addressed provides a preset value for the counter, and hence the
starting address in the WCH for the microcode subToutine to be
executed. The vector processor is stopped when a microcode bit
resets the counter and releases the coprocessor busy signal from
the ‘284,

d) Memory. In order to run the vector processor at full speed,
twoe numbers must be obtained from memory every 123ns. To
accomplish this, the memory at each node is split into two
independent banks. The memories are made from 45ns static RAM,

-83-

which eliminates the need for further high speed registers to

feed the wvector processor. Either memory bank provides one
input to the vector processor on the szame node. The other bank
feeds the second input of the vector processor on that or on one
of the two adjacent nodes. Switching between banks is
accomplished at the same time as switching between nodes, and
the delay due to all switching is buried in the pipeline. There
is no delay for data coming from a neighboring node. Thus the

fast arithmetic is supplied by internode data transfer at a rate
of 1&4MB per second

e Switeh. The intercontection af the ‘286, the vector
processor, the local memory and the four neighboring nodes is
accomplished by the switch diagrammed in Figure 4. It is
composed of eight 8-bit transceivers, four D-type latches and
four latching multiplexers. The latches and propagation delays
introduced by these elements are incorporated into the pipeline
which makes up the vector processor

£) Multibus porﬁ. In order to increase the flexibility of our
individual nodes, each microprocessor—vector processor
combination is provided with its own, private Multibus. Thus

in addition to the memory built onto the board, the ‘284 has the
possibility of addressing additional, conventional bulk storage
attached to this Multibus. For example, & problem needing 32MB
of storage which would otherwise require @ full array of 256
nodes tould be tackled using a much smaller array of 16 nodes if
four standard 1/2 MB boards were connected to the Multibus of
each node. This port alseo allows the direct connection of
magnetic disk storage to some or all of the nodes in the array.
g) Controller. The transfer of data and code between the
array and the thost computer. in our case a ¥YAX 11/780. is
managed by the central contraoller. The input/output from the
array is performed in bucket brigade fashion, Two of the nodes
(through their Multibus port) can access buffer memories on the
central controller. one for input and the other for output
shown as wavy lines on Figure 1. When 1/0 1is initiated, each
processor copies a page of data from a standard I/0 buffer in
memory at one node R (or from the controller) to the appropriate
location imn another node P The processor also coples the data
into the I1/00 buffer area in P (or into the controller),
preparing for its transfer to node Q during the following cycle
Since our I/0 requirements are small. we are wusing a single
input and a single output port so that the transterred data must
thread its way through the entire array at a rate no larger than

16MB per second. Mowever, since each node is provided with a
Multibus port, the system can be rveconfigured to create
additional ports serving smaller subsections of the array Thus

the data transfer rTate is in fact limited only by the bandwidth
of the interface to the host computer

In addition to the 1/00 function, the central controller
provides some simple global communication and commands: (i) It
broadcasts a synchronous clock signal to all nodes of the arrTay.
(ii) It issues a synchronous reset signal which initiates the
one page /0 transfer described above, (iii) It initiates
synchronous program execution, also wusing the ‘28B8&6&’s reset

-84-

signal. (i1v)y It resynchrenizes the processors after they ' ve
executed differing subroutines (v) Finally it receives an
error and a finished signal from each node and transmits the
appropriate composite message to the host

RROGRAMIMING

Since high level languages are avalilable for the ‘286, we
expect to do essentielly the entire calculation using the array.,
from the generation of an ensemble of matrix configurations, to
the svaluation of the variows observables of interest. The host
computer wiil be used to generate the code, to move data to tape
periodically, and for the final fitting of the data and error
anaylsis The great majority of the calculations to be
perfarmed on the array can be carried out in the synchronous
SIMD mode and are being written in & combination of FORTRANBGA,
PLMBSE and ASMB6 The programs are being written, compiled and
iinked on the YAX using standard Intel utilities. The Tesulting
absolute object files are transfered to the array using a lopader
which rTesides partly on the VAX and partly in PROM on each node

We have written an assembler which translates simple
mnemonics fovr arithmetic operations using the wvector processor
inte microcode. Since the avithmetic unit hes a single. short
pipeline and a large number of uniformly addressable Tegisters,
effective use of the Ffull power of the machine does not require
highly wvectorized code. and it will be possible to write an
cptimiring compiler for it wsing FORTRAN or C ~ 1like syntax
With this compiler, the programmer will generate a set of
high—-speed subroutines which perform the bulk of the arithmetic
in a given calculation, and which are then called from a
controlling program written in @ conventional language

m
iz
1
o
=
3
z
{3
T

A single board has a nominal speed of 16Mflops. For Treal
programs, this limit will be reached only momentarily. A& more
practical measoure of its performance is given by running lattice
gauge theory Monte-Carlo programs. It will take the product of
two SU(3Y matrices 1n 20Qus, which corresponds %o a speed of
iOMFflaops; a 10-hit Metropolis update takes less than 1. 3ms at
present. These numbers can be compared with those for a Cray-I
and for a Cyber—-2085

MNominal SU(3) product

10-Metropolis

Cray-1I 1&0Melops 100MFflops 73us
Cyber—205 200M+lops 40us

The cost of producing & single board is less than $2500; the
cost for & system of 256 boards, including the necessary disks
and other equipment will be less than $B8COK. At a nominal speed
of 4GFlops. we will be able to provide more than S000flops/$.
more than 3 orders of magnitude better than commercially
avallable computers.

CONCLUSION
This problem, in common with a large number of interesting
problems 1n phyics, has a number of features which make it well

-85-

suited to solution by & special purpose computer. (i3} The
calculation 1is dominated by the multiplication of 3x3 complex
matrices associated with the 1links of the lattice and the
product of these matrices with three-dimensional complex vectors

defined at the lattice sites. These products can be efficiently
evaluated by a pipe~-lined, multiplier—adder. (ii} All of the
calculations are local. only matrices and vectors associated
with contiguous links and sites are to be combined. (1ii) The
problem is homogeneous: the same products of the variables
agssociated with the links and sites are to be carried out for
all the points in the lattice. (iv) Becavse statistical methods

must be employed the results are generally rnot expected to be
accurate to more than a few percent and great precision is not
requived in the arithmetic computations. By exploiting these
special features and by taking advantage of powerful,
comnercially available VLSI chips, we have designed a parallel
array of inexpensive single board cemputers which will perform 4
biilion Ffloating point operations each cecond. The device is
presently being constructed in the Physics Department of
Columbia University

TO FROM
CONTROLLER CONTROLLER

-86-~

TO
NEIGHBORING

MEMORIES
PROGRAM
MEMORY
s
MEMORY w MULTIBUS
BANK A] BO286/287
T 3
MEMORY c
BANK B H I weCs I
[
VECTOR
PROCESSCOR

|

——)

T0
NEIGHBORING

PRCCESSORS
Fig. 2
IN IN
—{caten]
“‘iLATCHI
EXPONENT
MULTIPLIER ADDER

—

sig exp

FLOATING
POINT
ADOER

ouT
Fig. 3

-87-

+X
|— ___________ T
i l
|
|
[{
{7+ || 286
i
|
o |
(MEMORY ! v '
(BANK A M | JvecTor
' ' PROC.
T]
= |
MEMORY | | | }
BANK B }
|
|
I
I |
|
S R N
-X -

~-88-

QUESTIONS AND ANSWERS

Q: The funding agencies are now trying to make new large scale

(Class VII) super-computers available to the research community. If
such a machine became available to you, or Caltech or others, would you
abandon these efforts and turn your efforts to calculating physics?

A. Brenner

A: No, it's still much more cost effective to do it this way and
we get a larger amount of computing done this way.

Q: I'm tremendously impressed with the progress you people have

made! Isn't it true that 3 or 4 years ago Norman Christ first appeared
at Nevis Labs to ask Bill Sippach about TTL and how to use a soldering
iron?

D. Kaplan

A: Yes. We cut our teeth on a small board we wired ourselves,
but this project is much more rationally designed.

Q: In addition to the re-education of funding agencies, I am
amused by the re-education of theorists. When a board comes back from
the assembler and it doesn't work, who debugs it? - you or Norm?

M. Kreisler

A: Most of the time, it's Norm. 1It's part of a deal we struck
when we started the project.

-89~

GIBBS - A Programming Environment and Workstation
for Scientists

The GIBBS Groupt

Cornpell University
Ithaca, N.Y. 14850

ABSTRACT

GIBBS provides a new framework for the development,
maintenance, and documentation of complex codes written in For-
tran or other high level languages for scientific applications. It
facilitates the creation of and implementation of highly modular
code without sacrificing efficiency. Programs are organized accord-
ing to the logic of the problem rather than the needs of the com-
puter, and are therefore much more readable and changeable than
programs written and documented in more conventional styles.

1. Introduction

Computing hardware is changing rapidly over time periods as short as a sin-
gle year. The difficulties encountered in adapting existing computer codes and
creating new ones are a major obstacle to the efficient utilization of this new.
hardware. Complex programs, written in Fortran, Pascal, C, etc., are vitally
important to science and engineering. They are however very difficult to read
and modify, even with liberal use of comment cards, indenting, top-down pro-
gramming, and the like. Consequently, researchers are hard pressed to find the
time to write, debug, adapt, or document large-scale computer programs. This
problem is particularly acute for students, who are generally required to complete
significant projects in relatively short periods of time. The GIBBS Project is an
attempt, conceived by Ken Wilson and involving Cornell's Computer Science,
Computer Services, and Physics departments, to deal with this problem.

The heart of the problem with programs written in conventional program-
ming languages lies in the organization of the program. This organization is

_— *

t The GIBBS Group includes D. Bergmark, A. Demers, D. Gries, P. Lepage, D. Moitra,
A. Neirynck, M. Nesheim, TK Srikanth, and K. Wilson. Cornell undergraduates partici-
pating in the project include C. Cady, and D. Freed. Additional information about
GIBBS can be obtained from D. Bergmark, Cornell Computer Services, G-02 Uris Hall,
Cornell University, Ithaca, N.Y, 14850.

*Presenter

-90-

generally dictated by what the computer should do next and not by what should
be explained next. As a. result, the central ideas embodied in the program
become completely scrambled, and the program can be understood, if at all, only
by constantly flipping back and forth among many pages of hard-to-read code.
This point is illustrated in Fig. 1 by a simple program for studying one-
dimensional diffusion. A scientist would begin describing this problem by writing
down the diffusion equation, and then describing initial and boundary conditions
for the equation. Only then would he get into the nitty-gritty details of discretiz-
ing the t and x derivatives, setting up data structures, and optimizing the code.
These last details must be addressed in the very first line of the Fortran code.
Furthermore elements of the same idea appear diffused throughout the entire
code, while at the same time any given line of code many involve several different
ideas. It is this complexity that makes even simple programs, let alone 60 pages
of such code, difficult to understand and modify. In addition, Fortran has a rigid
structure built on the ANSI character set. Thus the scientist, coding in Fortran,
is denied the use of his natural language - i.e., sophisticated mathematical nota-
tion combined with English, French, or whatever.

2. The GIBBS Project

The GIBBS Project has adopted a textbook analogy for program
specification. A problem is first broken down into a large number of simple
modules called ‘Chapters’. Like a good textbook, each chapter of a GIBBS pro-
gram deals with a single idea. Chapters might describe an equation, a numerical
method, an abstract data type, or perhaps an optimization targeted for a particu-
lar piece of hardware. Also in analogy with a textbook, the author is free to
order the presentation of the program according to the logic of the problem.
Typically, central equations appear first, followed by data type definitions and
restrictions, numerical algorithms, and optimization procedures. GIBBS helps the
author in establishing the interrelations between different chapters. Also, the
programmer is permitted full scientific notation in specifying his problem, ulti-
mately through the use of a graphics workstation.

The GIBBS style for writing programs is illustrated by Fig. 2. Following an
introductory chapter outlining the problem, Chapter 1 deals with a key equation
in numerical studies of the nuclear force. The equation is entered with a struc-
tured editor. Thus, for example, GIBBS knows that n +j is a subscript on V¥,
and that U, , either multiplies or operates on ¥ (it finds out which in Chapter 4).
The cross-references listed at the end could be generated by GIBBS; again
through the structured editor, the system understands that Chapter 5, for exam-
ple, is needed to understand the significance of K and r. Chapter 4 illustrates
the definition of a new data type - Gauge_Field, an array of complex numbers
labeled by two indices of type color (Chapter 7), one of type nearest_neighbor

-94-

Sclentist's Version Fortran Verslon

Diffusion equation:

dimension v{0:100),dv(99)

do 100 i=0,100
Boundary conditions:

100 v(i)=0
v=0for all { at z=0
v(50)=1
and z=10
delta=0.05

do 130 j=1,10000
Initial conditions:

do 110 i==1,99
v =0 when ¢ =0 for all
110 dv(i)=delta¥(v(i+ 1)+ v(i-1}-2%v(i))
z except z=>5 where v =1
do 120 i=1,99
120 v(i)=v(i)+dv(i)

Space mesh:
.

100 points with 6z =0.1

Time steps:

10000 steps with §t =0.0005

Optimization:

6z and 6t appear only in the

combination §¢ /622 = 0.05

Figure 1 - Two versions of a one-dimensional diffusion problem. The lines indicate

some of the correspondences between the two descriptions.

-92-

Chapter 1

The evaluation of &, represents the most time consuming step in the numerical analysis of hadron
structure using lattice QCD.

b, =K Y, (r+1,) Uy Yo in
8

For K and r: see Chapter 5 (Flavor)

For u and n and i: see Chapter 6 (Grid)

For 7,: see Chapter 10 (Dirac Matrices)

For U, ,: see Chapter 4 (Guage Field)

For &, and ¥, : see Chapter 2 (Fermion Fields)

Chapter 4 - Gauge Field

The gauge field is the mathematical representation of the gluon field that holds quarks together. For
each grid location end azis direction, the gluon field is represented by a color matrig,

type Gauge_Field = array(color, color, nearest_neighbor, grid) of type complex
variable U is type Gauge_Field

For color: see Chapter 7 (Color)
For nearest_neighbor: see Chapter 6 (Grid)
For grid: see Chapter 6 (Grid)

Chapter 8 - Grid

The theory is defined on a simple hypercubic grid of points, labeled by an integer 0...N-1 for each
of D directions.

type grid = array(axis) of type integer
restrict 0 < n, < N for all n of type grid and all 4 of type direction
n is type grid
define ‘loop on n ' to be
loop on np
loop on np_,;

foop on n

{ BODY OF LOOP }

Figure 2 - Sample chapters from a GIBBS program for lattice QCD.

-93-

(Chapter 6), and one of type grid (Chapter 6). The field U, , in Chapter 1 is of
type Gauge_Field, and, being a variable, it multiplies ¥ rather than operating on
it. The lattice grid upon which the theory is defined is specified in Chapter 8.
This chapter illustrates the definition of new data types, like type grid for the
lattice coordinates of a site, the introduction of restrictions on these data types,
and the definition of a new loop command specific to this problem.

3. The GIBBS Agenda

Although the GIBBS Project is still in its infancy, substantial progress
already has been made. Today GIBBS is a promising new technique for writing,
modifying, and documenting complex programs hand-coded in Fortran or similar
languages. Several GIBBS programs have been written for problems in a variety
of disciplines, including theoretical high energy physics, molecular dynamics, and
numerical analysis. Some of these programs have been successfully compiled into
Fortran and/or C by groups of Cornell undergraduates, functioning as a ‘human
GIBBS compiler.” This exercise demonstrates the potential for describing com-
plex computer programs in natural language, and provides important insights
into the problems and possibilities of the GIBBS approach. There is still much to
be done in specifying the nature of the GIBBS compiler. Input from researchers
outside the Project is welcomed - e.g., sample GIBBS programs. A manual
describing the GIBBS methodology is now available.t

A structured editor for GIBBS programs hopefully will be available in the
very near future. This prototype for the GIBBS editor runs on ordinary ASCII
terminals. It supports some high level mathematical notation (subscripts, ¥, [,
..), and understands the relations between parts of a chapter and between
different chapters. This makes it a useful tool for program documentation.
Farther into the future, it is hoped that the hand-generated Fortran of the
finished program can be incorporated into the editor, allowing cross referencing
between the GIBBS documentation and the source code.

Ultimately, GIBBS should provide facilities for interactive code generation in
Fortran or other target languages. A variety of systems, like Speakeasy or
Macsyma, have been developed in the past to allow the direct programming of
scientific problems. While elements from such systems will undoubtably be incor-
porated, GIBBS will deal with more complex problems - e.g.,, problems like
finite-difference approximations to nonlinear partial differential equations, or
Monte Carlo simulations of large statistical systems, where highly optimized For-
tran usually is required. The tremendous flexibility of GIBBS requires that code

t Information about GIBBS and tbe GIBBS Manual can be obtained from D. Berg-
mark, Cornell Computer Services, G-02 Uris Hall, Cornell University, Ithaca, N.Y. 14850.

-94-

generation be a collaborative effort between the compiler and the user. It is
hoped that GIBBS chapters can function as operators on other chapters and on
the Fortran code. Then a GIBBS program will become a series of very sophisti-
cated transformations that convert equations written in standard scientific nota-
tion into executable Fortran. This will complete the relegation of Fortran to the
role of a portable assembly language, thereby greatly enhancing the prospects for
large-scale computational science and engineering.

-95-

QUESTIONS AND ANSWERS

Q: How do you distinguish between a description of a problem (=)
and an algorithm (&) in GIBBS?

F. Beck

A: You can actually use those symbols if you like. You can
define such symbols as you go.

Q: A symbolic language for reconstruction algorithms is badly

needed. It would allow a) communication between algorithm writers
now almost non-existent; b) GIBBS support in this area which would be
of great value; and c¢) identification of algorithm kernels that can
be processed in specialized hardware subroutines or coprocessors.

T. Nash

A: Yes.

Q: How are you doing in connecting the GIBBS mathematical
equations and target parallel or vector machines?

A. Charlesworth

A: Trying to develop a high level notation for target machines.
Have tried array processor: RPS-164 eight FPS-100's, etc.

Follow-up: Should try a parallel array like the CAL-Tech Cosmic
Cube.

Q: I suspect that GIBBS might become too slow to run in a
reasonable time on any but a supercomputer. Can you comment? This is
why in MEXLAN I aim at something much less ambitious.

T. Brody

A: Structured editors at least already exist; with VLSI chips and
so on, things should be limited by the speed of the interactive user.

-96-

Q: Have you any thoughts on debugging issue of the "pre-compiler"?
M. Fischler

A: Yes. GIBBS chapters describing debugging tests could be
included in a complex code description. Hopefully GIBBS will support

some sort of interactive debugging of the sort discussed in earlier
talks.

-97-

The CMU Muiti-Micro Computational Engine
Michael J. Levine

Physics Department, Carnegie—Mellon University
Pittsburgh, Pennsylvania 15213

i. Introduction

The CMU Multi-Micro Computational Engine is the hardware result of a continuing
project within the High-Energy Physics group at CMU which aims to provide a very cost
effective vehicie for doing some large scale calculations in theoretical particie physics.
Below, we outline the modsl problem which has motivated this effort, the hardware of the
current engine, the programming environment in which we function, the current status of
the engine and our plans for the near future. Detailed information is available in a series .
of internal reports.

Hl. The Model Problem

This engine is composed of general purpose microprocessors, but it is structured to
be especiaily cost effective for at least one specific class of problems. We first describe
a physics problem from that class and then abstract from it certain characteristics which
are important from a hardware standpoint.

The anomalous magnetic moment of the electron, a_, is the most precisely measured
and caiculated quantity in physics. The order of magnifude of current experimental and
theoretical errors is 10~10. The dominant contributions to 4, are given by QED as a
power series in gy the coefficients of which are obtained by evaluating certain Feynman
graphs. Theoretical work is now being done on the contributions from 4-loop graphs and
a few 3-loop graphs. The usual Feynman graph techniques reduce these contributions to a
set of integrals, in up to 10 dimensions, of rational functions. Those integrals are being
done numerically.

Because we control infrared divergences and perform the ultraviolet subtractions
numerically, the integrands must be evaluated with high precision and large dynamic range.
There are about 50 integrals to be done. A typical integrand numerator contains 20k
terms. The denominators are of negligible complexity. We estimate that more than 10°
integrand evaluations will be required per integration. Because the many evaluations of the
integrand are independent of each other, all need not be done on the same machine.

From this, we may abstract several machine requirements. The intrinsic machine
arithmetic should be at least 'double precision’ and have a dynamic range of at ieast 10600,
The aggregate arithmetic speed of the machine must be at least 30 Mfiops/sec in order to
do the estimated 3*10'5 arithmetic operations in no more than a few years. Because of
the intrinsic decomposability of this type of problem, it is possible to use many processors
with an interprocessor bandwidth which is quite modest Only small amounts of memory
(1-3kB) are required for data storage for any single functional evaluation. Modest amounts
of memory, which might be shared between processors, are required for the code
necessary to evaluate an integrand (about 60k instructions).

lil. Hardware Outline

Our need for large amounts of high precision floating point arithmetic coupled with a
desire to minimize our electrical engineering efforts has led us to use the Intel 8087
Numerical Data Processor (NDP) as our basic arithmetic unit. The intrinsic 8087 arithmetic
is REAL*10 with 19 digit precision and 1010000 dynamic range. We might view the engine
as a mechanism for putting the arithmetic capabilities of a large number of 8087's at the
disposal of the user with as little overhead as is possible. In this picture, we have a
sequence of blocks [user, host, (controllers, computational modules, numerical processors)]

98-

interconnected by a set of communication links. The last 3 of these blocks constitute the
‘engine’. This view forms the basis for the following outline of the hardware.

The user communicates with the host, a VAX 11/780 running under VMS, over a
terminal line. The host communicates with the engine (specifically, with the controllers) over
a low speed interconnect composed of serial lines. The engine functions as a slave
processor to the VAX. Most of the control function and voluminous, nonarithmetic user
code is kept within the VAX. Most of the arithmetic is done within the engine. This
partitioning of function is done in a way which minimizes the required bandwidth between
VAX and engine.

Within the engine, each of the two controllers communicates with and has reset
control over a set of eight computational modules. The controllers and modules are single
board computers of our own design and construction. The controller—module link is a
parallel, master—slave, 16 bit wide bus structure with hardware handshaking. it has a
hardware speed of about 1 MB/s. Arbitration is done in software by the controiler which
is always bus master. Through this bus, the controller can receive from any module and
can transmit to any set of modules.

The single board computers used for the controllers and for the computational
modules are based upon the Intel 8086 chip family operating at 5 Mhz. They are of
standard design but are limited in scope. Each has a CPU section, 32 kB of ROM & static
RAM memory and paraliel (36 bits) & serial (2 ports) I/0. The computational moduies have,
in addition, a quad 8087 arithmetic section which we use as a ‘micro array processor.
The 8086 and four 8087's share the local, muitiplexed bus. Additional circuitry, controlied
by the CPU, determines which 8087(s) wili execute the next NDP instruction. It is possible
to use any single NDP in the usual manner.)

The problem specificity of the engine lies only in the size of the memories and in
the bandwidths and connectivity of the various interprocessor data paths.

V. Programming Outline

In normal use, there are programs running concurrently in the VAX and in each
processor of the engine. These programs consist of numerous code modules written in a
variety of languages. In function, the modules range from problem dependent user code to
I/O and other service routines which rarely change.

The problem dependent 'user level code on the VAX, in the computational modules
and for the ‘array processor’' is written in Fortran. We use cross language processors on
the VAX to generate all ‘86/'87 code. We have constructed a set of language processors
which convert Fortran arithmetic statements into special code for the array processors. In
production running, successive batch jobs on the VAX allocate the lines to the engine,
download code to and start execution on the engine and then exchange data with the
engine at intervals.

On the VAX, the user level code can initialize the engine and exchange data with the
computational modules by calling a set of service routines which are, themselves, written in
Fortran and which contain some calls to VMS System Services. Similarly, in the engine, the
user level Fortran code calls a 'set of service routines (which are written in PL/M) to
communicate with the VAX. Some of these service routines are in ROM and provide the
basic engine boot function. Together, these service routines provide a downloading
capability and a packet communications facility between the VAX and engine. This VAX-
module communications facility can do conversions between VAX and 8087 floating point
formats so that the user code in each environment can function in its native format.

The large arithmetic statements which specify the integrands are processed into '86
object modules which are linked and downioaded with the other ‘86 code. Subroutine calls
in the '86 user code invoke the array—processor to do multiple, parallel integrand
evaluations. Code for the array—processor is more compact than ordinary ‘87 code. This
reduces the code memory requirements by a factor of from 2 to 4. The array—-processor
execution code, which is not visible to the user, is written in '86 assembly language.

-99-

Synchronization between VAX and module programs is accomplished by waiting for
/0 completion. The VAX program writes input data to a module and then, or perhaps
later, issues a read on that module. The module, upon receiving input data, does its
computation (typically lasting 1-2 hours), sends the resuit to the waiting VAX program and
goes to wait for more input data from the VAX. The waiting VAX program does
postprocessing on the data from the module and then goes to write another set of input
data to the waiting module. In a typical job, this cycle is repeated, using all modules, over
a period lasting anywhere from a few hours to a week.

It is up to the user t0 decompose the problem into many subproblems and to
delegate each, in turn, to a computational module. For muitiple integrals and other highly
decomposable problems, this is a trivial exercise.

V. Current Status and Future Plans

The current version of the engine has been functional for nearly 10 months. 95%
of that time has been spent doing production running on 3-loop graphs. The remainder of
the time has been spent doing testing and implementing modifications. Preliminary testing
of modifications is done on a some solitary computational modules. Using a single 8087
per each of 16 modules provides an arithmetic capability equivalent to twice a VAX
11/780 in double precision. REAL®*10 cuts the speed by 20% compared to REAL%8. We
are currently upgrading each module to 4 8087's. Tests indicate that this will effectively
treble the strength of the engine.

By asking each module to do a subintegration rather than a single functional
evaluation between communications with the VAX, the ratio of I/O time to arithmetic time
can be made extremely small. In usual production running, the VAX spends less than 1% of
its resources looking after the engine.

A few percent of all running time is spent redoing old calculations as a test of
integrity and reliability. We have detected no aberrant behavior. Doing numerical
integrations with successively finer integration meshes provides a built in check on errors
and protection against them. A low error rate would simply slow the apparent rate of .
convergence; a high error rate would destroy convergence.

Modules which fail to respond to the VAX within a reasonable time are declared
dead for the remainder of the job. Their work is given to other modules. Such 'dropouts’
happen about once a month. They are largely attributable to severe electrical interference
or to the low grade sockets which we used in the first few boards. The overall mean
time to failure of the engine is considerably longer than that of the host

We are currently building the next, more compact, iteration of the computational
module. It will have more memory (128kB of dynamic RAM with parity) and no serial I/0.
We hope to make up to 512 of those modules during the next academic year. This would
give a useable full scale strength of approximately 40 Mflops/sec.

Vi. Acknowledgements

| wish to thank and acknowledge the help of T. Kikuchi and S. Friend as well as the
advice of many experimental colleagues at CMU. This work was supported in part by the
US. Dept of Energy under contract DE-AC02-76ER0306 and in part by material
contributions from Intel Corporation. We would like to thank the organizers of this
Symposium for their efforts.

-100-~

QUESTIONS AND ANSWERS

Q: Do you do program testing and debugging with a simulator on
the VAX?

T. Brody

A: No. We test FORTRAN source code on the VAX and then it has
always worked.

Q: How do you detect and handle arithmetic errors in 8087's?
J. Amann

A: 1Integral computations tend to be self-checking due to use of
various meshes -- if error is bad it won't converge. Also we
periodically run test cases. We find micro processor engine is as
reliable as VAX host.

-4104-

Algorithms for Concurrent Processors

Steve W. Otto

Physics Department
California Institute of Technology
Pasadena, Calif., 91125

ABSTRACT

1 describe the general techniques in the use of concurrent
processors for scientific problems. It is described how one usually
obtlains linear speedup with a computational power that is not only
proportional to the number of machines making up the processor
but has a proportionality constant that is near 1. Examples from
statistical mechanics, astrophysics, and high energy physics are
discussed. Before concluding, 1 describe the current state and
direction of the Caltech-JPL concurrent processor project.

Technological Motivation

The VL3I technology revolution is expected to lead to somewhat faster but,
mostly, much less expensive computers contained on a few chips [1]. The
expected increase in cost-effectiveness of these machines is quite impressive.
As an example, the 32 bit multiplier-adder chip set of Weitek provides approxi-
mately 5 million floating point operations per second ("Mflops™) of performance
(when used in a pipelined calculation) for a cost of about $1000. A similar sys-
tem for 64 bit arithmetic is probably not too far away. It is possible to exploit
this technology and build very high performance computers by combining very
many of these cost effective units into a single concurrent processor [2]. 1 will
term the basic (VLSI) building block a "node’ in the rest of the text; a node is
itself a small but complete computer of modest power. Concurrent processing

seems a more practical route to high performance than the design of a single

-402-

very fast machine. In fact, it is expected (or perhaps I should say, some of us
expect!) that one can build machines consisting of about 10,000 nodes with each
node being an individual computer capable of 10 Mflops. Such a design seems
practical five to ten years from now and offers the promise of machines that are
one thousand times as powerful as current supercomputers. Such "top of the
line" machines would be accompanied by smaller collections {of, say, about 100
individual nodes) which would have a total power of some thousand megaflops at
a cost of perhaps $100,000 (for the basic cpu and memory - I am ignoring such
essential peripherals as disks). This increased power will revolutionize the com-
putational approach to all scientific and engineering fields. For instance, one
will be able to solve such difficult and important problems as weather prediction

and the dynamics of quantum field theories.

The above, rather attractive, scenario is the driving force behind research
in parallel computing. The main stumbling block to the use of concurrent pro-
cessors is the difficulty of formulating algorithms and programs for them.
Indeed this leads some to doubt the utility of these machines. The goal of this
talk is to discuss the general techniques for using concurrent processors and
illustrate them with some simple examples. It is our belief that these machines
are fairly easy to use and are not specialized devices but rather can address the
vast majority of computationally intensive problems. I will mainly confine
myself to science and engineering flelds (as opposed to, say, artificial intelli-
gence) as in these cases the algorithms are well understood and so it is possible
to quantify the effectiveness of concurrent processors. However, we believe that

similar considerations apply to other applications [3].
This talk is divided into two parts. The first part will be a somewhat general
discussion of the use of concurrent processors for the solution of scientific prob-

lems. Secondly, I will describe what we are doing in our project, both in terms of

-103-

hardware and software.

General Features of the Problems

Before moving on to specific examples, let us identify some of the general
properties of computationally demanding problems. In Table 1, several exam-
ples are listed and, also shown, are some of their features which we have found
important in their implementation on a concurrent processor. In each case, one
must decompose the total problem into many parts -- one for each node. Typi-
cally, each problem is not demanding because of complexity of the algorithm in
a conceptual sense. Rather, there is a relatively simple procedure (e.g., com-
puting ¥®), which must be applied to a basic "unit” (e.g., the fleld) in a "world"
that consists of a huge number of such units. In finite difference problems, the
upit is a grid point in a three dimensional world. In a study of the evolution of

the universe, the unit is a galaxy and the world is the universe itself,

The first step in the decormposition of such a problem onto a concurrent
processor is to divide the world into subdomains in such a way that each node is
responsible for a single region. If we have N, nodes and a total of I units (for
example, grid-points) we find n=0/ N, adjacent units in each node. This type of
decomposition is only possible if D=N,, and we will see later that in fact D>>N,,
is desirable. This constraint is easy to satisfy; today, calculations with D»10°
are commonplace and in every case the number of degrees of freedom in state

of the art calculations is increasing with time!

There are, of course, exceptions where computationally intensive problems
cannot be so decomposed. As an example, consider the N body gravitational
problem for N=10 (the solar system), where we wish to integrate the 10 equa-
tions of motion for a very long time, T. This large parameter, T, cannot be as

easily decomposed and we can use, at most, 10 nodes for the problem.*

* On the other hand, for the actual example discussed, one usually wants to examine the
results of the integration for a variety of injtial conditions. The problem can then be decom-

posed on the product space - particles and initial conditions — and so make effective use of

-404-~

TABLE 1
APPLICATIONS AND FEATURES RELEVANT FOR CONCURRENT PROCESSING

Class of Examples: Unit and Natural Load Communication
Problems: World: Balance? Range: Topelogy:
Finite Diff. Geophysics grid point, Yes Short 3D Mesh
Finite Element Aerodynamics space (x,y.2)
P.D.E.
Statistical Lattice Gauge spacetime Yes Short 4D Mesh
(x.y.2.t)
Melting Configuration No Short 3D Mesh
space (x,y,z)
Coulomb Gas Particle Yes Long Ring
Number
Time Evolution N-body Gravity Particle Yes Long Ring
1/r Potential Number
Time Evolution Particulate space (X,y.z) No Short 3D Mesh
General Motion (sand,
Dynamics avalanches)
Fast Fourier Evolution of "Bit space” Yes Long Hyper
Transform universe, Cube
Fluid dynamics space (x.y,z)
Network Circuit Component, No Long logarithmic
Simulation Simulation circuit (sparse) graph
(e.g.. hypercube)
Neural network neuron,brain No Long
Isolated Ray tracing Event space Yes None Needed
(eraphics)
Data Analysis
Initial condition
study
Image Analysis of Pixel space Yes Long Hyper
Processing Satellite data cube
(or see FFT)
Artificial Chess Inference, Yes Short tree
Intelligence Decision tree
Event driven Industrial/ cars on a No Mainly logarithmic
simulation Economic/ freeway; short graph
(e.g., hypercube)
Military tanks on a
("war games") battlefield;

-105~

General Features of our Approach

There are many possible designs of concurrent processors differing pri-
marily in the number and nature of the nodes and their interconnection topol-
ogy. We will consider as target hardware for our discussion what are termed
ensemble or homogeneous machines by C. Seitz [4]. These are collections of
identical nodes -~ each a complete computer with its own arithmetic unit and
memory. Although this is not necessary for every application, we will assume
that each computer can execute its own instruction stream, i.e., that the target
hardware is MIMD (Multiple Instruction, Multiple Data). The nodes may even have
a more fine-grained leve!l of concurrency within them, such as pipelining. We will
allow the interconnection topology to be general and examine each problem to
find the "natural” connectivity. Of particular importance is the so-called hyper-
cube (more precisely, Boolean hypercube) topology -- N, =27 computers with the
connectivity of a cube in y dimensions. We will not assume that there is any
shared memory accessible by all nodes; the simpler distributed memory archi-

tecture seems sufficient for our applications.

It is convenient to characterize the effectiveness of a concurrent processor
by the speedup, S, defined so that the collection of N, ncdes runs, for the same
problem, S times faster than a single node. Furthermore, define the
ef ficiency &£ so that S =eN,. We wish to examine the effects that reduce the
performance of a concurrent processor and lower the efficiency from the nomi-
nally perfect value of unity. One is usually quite satisfied to find algorithms with
linear speedup - those with an efficiency ¢ that is independent of N, and of rea-

sonable size -- say £2.50 .

a large concurrent processor.

~-406-

There are at least two issues that need to be addressed in discussing the
efficiency. Firstly, the nodes must spend some time communicating with their
neighbors. This is minimized if the inter-node communication, demanded by the
algorithm, always proceeds by a "hard-wired" path. Note that communication in
ensemble machines can be viewed as a mail system where messages may be
sent between arbitrary nodes through intermediate nodes. Obvicusly, the
"wasted” communication time is minimized if the amount of such message for-
warding is small. In general, the "world" which is decomposed in a particular
problem has a certain topology which dictates the appropriate hardware con-
nectivity. The hypercube node connection is attractive because it includes the
ring and {many different) mesh topologies as subsets as well as being that
needed for the fast Fourier transform. Furthermore, the distance between arbi-
trary nodes grows only logarithmically with the total number of nodes. This
means that the forwarding overhead is modest for problems (such as circuit

simulation and “war-games") which have an irregular structure.

The second issue affecting performance is that of "load balancing”; one
needs to insure that each node has essentially identical computational loads.
The efficiency is typically reduced by a factor which is approximately the ratio
of the mean computing load per node to the maximum load per node. For sim-
ple partial differential equation based problems, identical loads are achieved by
assigning equal numbers of grid peints to each node. For this regular problem,
this corresponds to equal volumes of the "world” in each node. For homogene~
ous problems, it is generally easy to achieve balanced loads, but in some inho-
mogeneous cases, care is necessary. Consider a gravitational evolution, where
we assign equal number of stars {or other celestial bodies) to each node. If we
are working in a region where, say, binary stars are formed, then velocities will

tend to be high and we may need a reduced time step for this case. So, nodes

NOTE

Pages 107-11 missing from original.

-117-

f50) >
L.
{@ -
6
£

‘ -ﬁ@\
zﬁ- W
X- £

- £

-
IR =="

o0 \
RS ST =
zv / \\}A><)
. ¢

‘r° 2 'F;

Fig. 3a
e £
£ 4¢s)
4,(3)
fe>

)

Fig. 3b

N

A

A Y

Y

-118-

Fig. 3c

~-419-

Hub0: .05

Qmegal: 1

Expansion parameter: 2.079873

Number of particles: 4096

Filename:
partoutb4sc1dl6.12.40

Fig. 4a

-120-

HabO: .05

Omega0s |

Expansion parameter: 4,326456

Number of particles: 4096

Filename:
partout64/c1d16.12.160

Fig. 4b

-421-

is referred to [10] and references therein.

The Caltech-JPL Concurrent Processor Project

I would now like to describe what we have done and where we are headed in

our project at Caltech.

The Prototype Computer

We have built, as a collaboration between Physics (headed by G. Fox) and
Computer Science {(headed by C. Seitz) a 84 node hypercube computer. Each
node has 8 1/0 ports (channels) connecting it with its 6 neighbors, is based on
the Intel B0B8-B0OB?, has 128K bytes of RAM storage, and BK bytes ROM for boots,

memory test, and downloading of code throughout the hypercube. At 5Mhz, the
node is R4%—of a VAX 11/780 (C code to C code comparisons), so the cumulative

power of the computer is & B VAX 11/780s. In terms of Mflops, with the B0OB7s
running flat out, the machine achieves 50Kflops x 84 = 3.2Mflops (for 32 bit). In
actual usage (with the C cross-compiler) we typically get about 2 Mflops. The
total memory of this machine is 8 Mbytes. In terms of reliability, the bhardware
supports single bit error detection in memory (we see one every ~2 weeks) and
in software, checksums capable of detecting single bit errors ip communications

are kept (these are very rare and we have seen only a few).

The cost of a node, including parts, printed circuit board, and some of the
labor, is approximately $1000, making the entire machine cost about $80,000 (1
have added in the cost of some peripheral hardware). At the time we started,
the best off-the-shelf floating point performance to be had was the B0B8-8087.

This is now changing and ! will mention later our future plans.

Our collaboration has more recently grown to include the Jet Propulsion

Lab and we have been involved with them in producing 300 more nodes. These

-122-

are basically a tuned-up version of our original node (almost twice as fast, twice
the memory per node) and will be configured as a 27, a 25 and several 2°
machines. The nodes are currently in production and the first 3% node cabinet
will be ""delivered" at the end of May. These machines will provide the "capacity’
to serve the many potential users the project is attracting. In regards to this,
our basic philosophy has been to provide the incentive (i.e., some substantial
amount of computational power) to scientists and engineers to learn how to use
these parallel machines. To a large extent, this seems to be succeeding; many
groups at Caltech and JPL are learning about using a hypercubic, MIMD machine
for their particular applications. Contrary to some beliefs, we have not found
the programming of this MIMD machine extremely difficult. This is probably
best indicated by the large number of applications which are being developed to

run on the machines - these are listed in Table 2.

Future Machines

Our current machine should be regarded as an experimental proving
ground toward the construction of much larger and faster multiprocessor sys-
tems. In collaboration with JPL, we are currently designing our next generation
system, based upon one of the powerful 32 bit microprocessors coming out and
the high performance floating point units now available. By summer of 1985 we
expect to have a node capable of up to 4 Mflops in a pipelined calculation (for 32
bit; 2 Mflops for B4 bit), containing 1 Mbyte of memory, and costing approxi-
mately $6000. Furthermore, this node will contain 10 communication channels
and so will be configurable in up to a 2!° cube. Though this huge, monolithic
machine is attractive, an even better idea is, perhaps, to build a 2% version. One
of these would be capable of up to 250 Mflops, would have 64 Mbytes of memory,
and cost about $400K. A research group could afford to buy such a "desk top

Who

S. Otto,
P, Stolorz

R. Gupta,
S. Otto
A. Patel

S. Otto

M. Johnson

F. Fucito,
S. Solomon

J. Salmon

W. Athas

R. Faucette
C. Seitz
(CS)

S. Mattison
C. Seitz

G. Fox
A. Gee

P. Hipes,
A. Kupperman
(Chemistry)

P. Haft
B. Werner

D. Meier
(JPL)

S. Lewicki,
S. Otto
N. Warner

R. Clayton,

Scientific
Field

Lattice Gauge
Theory

2D, 3D Stat
Mech.

Cosmology

Computer
Science

any

Chemical
Reactions

Particulate

motion

Astrophysics

Geophysics

-423-

Application

SU(3) quark
potential

Real Space

Renormalization

for SU(R)
Finite Temp
SU(3) with
quarks

phases of

gases, liquids
vortices of
planar xy model
Large scale

structure of
universe

general

operating
system

Circuit
simulation

matrix eigen-
value package

Quantum Mech
of collisions

avalanches,
sand dunes

Black Hole
jet dynamics
galactic
dynamics

exploration

TABLE 2: CODES WRITTEN FOR THE HYPERCUBE

Algorithm

Monte Carlo

"

Double Monte
Carlo (Pseudo
Fermions)

Irregular
Monte Carlo

Monte Carlo

N Body - FFT

subspace
iteration

Matrix
inversion

time evolution
finite element

PDE
N Body - FFT

finite diff,

Decomposition

3D mesh

4 different
4D meshes

3D mesh

2D,3D mesh

2D mesh

3D mesh -
hypercube

2D

2D mesh

3D
3D, finite
elements

1D ring

2D, 3D

{Geophysics)

B. Hager
(Geophysics)

D. Jefferson
(JPL)

E. Felton
S. Karlin
S. Otto

Simulation

Optimization

-124-

geophysics

geodynamics

circuits,
networks

Traveling
Salesman
Problem

finite elements

Conjugate
gradient
inversion

Time Warp

Simulated
Annealing

%D, 3D

random

random

-425-

Cray"!

Conclusions

In this talk we have tried to show that a large class of computationally
demanding problems can be done efficiently on a concurrent processor. As for
the interconnection topology, it seems that the hypercube is fairly general - it
includes the ring and meshes, matches the FFT and is a logarithmic graph, mak-
ing it suitable for the inherently long distance algorithms such as circuit simula-
tion.

In the past, the subject of parallel algorithms has been a somewhat esoteric
pursuit, known to a few computer scientists. It has been mainly a theoretical
subject, for the simple reason that few appropriate machines existed. VLSI
technology is rapidly changing this situation, for it will soon be possible to chea-
ply build machines of very high processing capability. With this motivation, we
believe that scientists will learn to use the parallel algorithms already known
and no doubt invent better ones. This will not only delineate the basic principles
of decomposition but help the development of tools (languages and compilers) to

make concurrent processors (almost!) as easy to use as sequential machines.

References

[1] J. Matisoo, C. Seitz, "Engineering Limits on Computer Performance”, Phy-
sics Today, May, 1984

[2] L.A. Conway, C.A. Mead, '"Introduction to VLSI Systems”, Addison-Wesley,
1980, chapter B; and C. Seitz, "Ensemble Architectures for VLSI: a Survey
and Taxonomy", Proceedings of the MIT Conference on Advanced Research

in VLS], Artech Books, 1982;

-126-

[38] A general reference for parallel algorithms is: H.T. Kung, "The Structure of
Parallel Algorithms"”, Advances in Computers, vol 19, p. 685, Academic Press,
1980; see also, G.C. Fox, S.W. Otto, "Algorithms for Concurrent Processors"”,
Physics Today, May, 1984.

[4] C. Seitz, "Experiments with VLSI Ensemble Machines", Journal of VLSI and

Computer Systems, vol 1, no. 3 (1984).
[8] G.C. Fox, Caltech preprints, CALT-68-939 and CALT-68-986 (1983)
[8] E. Brooks I1I, et. al, Nucl. Phys. B220 [FSB], p. 383 (1983)

E. Brooks IIi, et. al.,"Nearest Neighbor Concurrent Processor", Caltech pre-
print, CALT-6B-867 (1981)

[7] J.D. Stack, Phys. Rev. D27, p. 412 (1983)
N. Isgur, G. Karl, Physics Today, November 1983
[8] E. Brooks III, et. al., Caltech preprint, CALT-68-1112 (1984)
S. Otto, J. Stack, Caltech preprint, CALT-68-1113 (1984)
[9] "The Fast Fourier Transform”, E. O. Bingham, (Prentice-Hall,1974)

[10] "Paraliel Computers”, R. W. Hockney, C. R. Jesshope, (Adam Hilger, 1981)

-427-

QUESTIONS AND ANSWERS

Q: 1) How do you measure efficiency on the system?

2) How have you handled the problem of random number generation in
your lattice gauge calculation, particularly with respect to passing
the random number generation procedure and the total random number
space required?

C. Maples
A: 1) 1In the case of FFT as much of the problem was run on one
node and compared with the 64 processor machine. Some problems could
not be completely run on a single node but the scaling was
straightforward.

2) We use different seeds for each processor. Because of the
complex nature of the calculation and the utilization of random

numbers, repeating or overlapping random number cycles are acceptable
since the values will be utilized differently.

Q: At what goint do you encounter interconnection problems when
scaling up 2¢ hypercube of processors?

D. Kaplan

A: One-dimensional arrangement of processors works up to 4000
processors. Two~dimensional up to 32,000 processors.

Q: What processor will you use in your generation 2 machine to
get 4 mega flops?

I. Gaines

A: National 32032 Floating Point: Weitek

Q: Do you have reliability problems?
M.J. Levine
A: 1) Parity errors occur about 1/2 weeks.

2) Node failure ~1/3 months. We flush the process and
restart (after fixing any hard errors).

;;}‘le‘in S U C e ey - 3 ' @ .
Multlprocessor Pro;ects

—

P Ead

e P -

[Chalchiuhtlicue, "Jade Skirt," Goddess of Water. Codex Borbonicus, p. 5.
Screenfold manuscript, panel 39 X 39.5 cm. Mexico City. Preconquest or Early
Colonial.]

-129-

Problems in Parallel Processing

Daniel D. Gajski
Jih-Kwon Peir

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1. Introduction

In this paper we will consider some essential issues in multiprocessor architectures. Pre-
vious work in this field considered taxonomies based on instruction and data streams [Flyn72],
instruction and execution streams and types [Kuck78], or different models of computation and
their implementations [Trel82). We will not try to produce another taxonomy based on archi-
tectural features. Instead, we will discuss requirements needed to solve problems on multipro-
cessors without describing any particular architecture in detail. Nevertheless, we will discuss
how each of the requirements is implemented in certain presently available or proposed
machines.

2. Architecture Evolution

In this section we will consider three different types of architectures in their evolution-
ary order.

Von Neumann architecture is shown in Figure 1. It consists of a memory, a proces-
sor, and a bus between them. Since data and instructions are stored in the memory, and the
processor controls and performs the computation, that is, it generates addresses for data and
instructions, fetches them and computes on data, the bus is the most frequently used part of
the system. To avoid this potential bottleneck, the designers of von Neumann architecture add
a small fast local storage, general register, local memory, or cache to the processor. It is used
to save local data and instructions under the assumption that they will be accessed more fre-
quently by the processor. In what follows we will always assume that a processor may contain
such a local storage.

T -430-

Vector machine (Figure 2) introduced vector instructions in case when the same
operation was performed on many sets of operands. This way only one instruction fetch is exe-
cuted for many data. If a program contains only vector instructions, then the ratio between
fetched instructions and data will be very small and the bus load will drop significantly for
large vectors. Furthermore, vector machines usually increase performance by pipelining opera-
tions in the processor. Since memory read and write cannot be pipelined, interleaved memory
organization must be used. Such an organization allows a vector of data to be read simultane-
ously from the same location in all memory banks and then sent to the processor over a
transmission pipe. Although vector machines such as Cyber-205, Cray-1, and Fujitsu VP-200
are highest performance machines today, they are burdened with several problems. First,
structured data that are not vectors of stride-1 are difficult to handle because of memory
conflicts. Secondly, programs do not consist only of vector instructions. Thirdly, the market
demand for increased performance cannot be satisfied effectively anymore by increased level of
pipelining (more stages in the pipeline) or by faster circuit technology (reduced clock speed).

Multiprocessor architecture uses several identical processors to compute on one
problem. This approach introduces three new requirements that have not been encountered
before. First, each problem must be partitioned into tasks; secondly, each task must be
scheduled for execution on one or more processors; and thirdly, synchronization of control and
data flow must be performed during execution.

With respect to passing data between two tasks, two types of multiprocessors can be
indicated. In the shared-memory model (Figure 3a), data are in preallocated locations in
the shared memory where it can be accessed by each processor and operated upon without
interruptions from other processors. In the message passing model, (Figure 3b) there is no
global shared memory in the system. Each processor has an associated local memory and that
data is passed from the producing processor to the consuming processor through the connec-
tion network. Both models require a general purpose connection network. The advantage of
the message-passing model is that data is passed only once through the connection network
while two passes (write and read) are needed for the shared-memory model unless the data is
in the local storage. Yet another advantage of message-passage model is that for data-driven
computation, data is passed through the network at generation time and not when it is
needed. Thus, longer delays through the network can be tolerated in case when data is not
used immediately after its generation. For demand-driven computation, data is fetched when
needed and long delays through the network must be tolerated at every fetch.

Since connection networks are expensive only small networks are built as crossbars
[Farm84]. Usually, a limited access network such as shuffle-exchange in Cedar [GLKS84],
Banyan in TRAC [Brow84] or Boolean-cube in Cosmic Cube machine [Seit84], is built. For
WSI technology it is reasonable to restrict connection network to the nearest neighber connec-
tions [AbGa84]. As long as each processor on wafer operates asynchronously from other pro-
cessors and can access all other processors through the network, the WSI implementation is a
general-purpose multiprocessor shown in Figure 3. If we limit each processor to execution of
the same instruction at the same time and all processors to operate in a lock-step manner, the

-134-

systolic-array model [Kung82] is obtained. Each processor in systolic array performs simple
arithmetic operations such as addition and multiplication and has few registers for storing
data. A larger main memory outside the systolic array supplies data which moves across the
systolic array as it gets operated upon. Data is skewed in space and time according to the
shape and type of systolic array. This limits each systolic array essentially to one algorithm.
When different algorithms are used, systolic arrays of different types must be combined. Regu-
larity is lost and extra delay processors must be added for adjusting skewed data generation
and consumption of two arrays (Figure 12 in [Kung82]). Furthermore, each systolic array of
size n can only solve problems of size n or smaller. Larger problems must be partitioned, not a
trivial task, into slice of size n and executed serially. Because of different topologies required
by different algorithms, systolic arrays are not general purpose engines, but may serve as
hardware accelerators for frequently used algorithms.

To overcome the problems of fixed connectivity, Snyder [Snyd82] introduced a pro-
grammable systolic array in which each processor is surrendered by switches which allow
embedding of different topologies into the same physical array. The switches are set by an
operating system before each phase of the algorithm. Because of synchronous lock-step opera-
tion and lack of memory in each processor it is very difficult to program such an array, partic-
ularly when two algorithms must share the same array or when slightly different computation
must be performed on the boundaries.

Since systolic model and its derivitives are used for special-purpose computation, we
will not consider them further in this paper.

3. Parallel Model of Computation

The model of computation is represented by a control graph in which nodes represent
one or more transformations or movements of data and arcs represent order in which nodes
are executed. Arcs rise from data dependencies when data produced by one node is used by its
successor, or from control dependencies when an order of execution is specified by the user
through a language with limited or no capacity to express parallelism.

In the serial model of computation, usually used with single processor, nodes are
serially ordered (Figure 4), each node representing one machine instruction. In this case a sim-
ple program counter is sufficient in keeping track of the next executable instruction.

A parallel model of computation, characterized by a general directed graph, must
be used for a multiprocessor. Three basic problems can be indentified in the parallel model:

(1) Partitioning problem: Partition a program into tasks, where each task is
represented by a node in a graph. Such partition must be optimal with respect to performance
or some other measure of ‘quality’.

-132-

(2) Scheduling problem: Assign each node to one or more processors for execution.

(3) Synchronization problem: Determine all executable nodes in the graph and mark
them for execution.

There are two sequencing methods in the parallel model of computation. In a data-
driven execution the graph is executed in the direction pointed by arcs, that is, a node is exe-
cutable when all the data needed for its execution are available. This is implemented by send-
ing tokens down arcs. When tokens are available on all input arcs to a node, the node is exe-
cutable. In the dataflow model of Treleven [Trel82], tokens carry data with them and no preal-
located storage is needed for data. In Treleven's control flow model, tokens carry pointers to
storage location where data can be found. (The anology is passing parameters by value and
reference.) The former model is suitable for expression evaluation as well as those problems
involving single data items. The later model is necessary for structured data, such as matrices,
which may be only partially transformed by each node during the course of computation. It
would be really inefficient to carry the entire matrix around if we want to change only one ele-
ment or perhaps one row of it. Thus any general-purpose architecture must include tokens
with reference to data structures, since tokens that carry values are not efficient. An example
is I-structures in tagged token architecture of Arvind [ArTh80).

The demand driven execution processes the control graph in the opposite direction
from data-driven. First, the result is demanded, which in turn requires evaluation of its argu-
ments and so on. This process continues until constants are encountered in which case a value
is returned to the demanding node. While data-driven execution is redundant, the demand-
driven is not; that is, only those nodes whose values are needed in the final result are com-
puted. In data-driven execution, for example, both then and else parts of a conditional state-
ment are computed whenever the data are available, with one part of them being selected
later. This allows parallel execution of the condition, the then part, and the else part. This
redundant computation may increase the execution time. For example, if computation of the
condition part takes 10 time units while 20 and 100 time units are needed for the then and else
parts, then the entire statement will take 100 time units in the best possible case. On the
other hand, if the condition is evaluated first followed by then or else parts, then execution
time could be either 30 or 110 time units depending on which part was selected. We see that
considerable gain in performance can be obtained if the then part is chosen in the above state-
ment. So, in many dataflow model such as Arvind's U-interpreter, the conditional statement
is executed in the demand-driven mode while the rest of the graph is data-driven. However, a
data-driven model is still less efficient, since arguments for both then and else parts are
evaluated in parallel, although only one set will be used later.

4. Partitioning

The partitioning of a problem into many tasks and their execution on a multiprocessor
has a dual purpose: first, increasing the performance or execution speed of a single program;

-133-

and secondly, increasing the efficiency or the throughput of the machine in a multiprogram-
ming environment. The partitioning can be performed by the user during algorithm design. In
this case the user needs a language such as OCCAM [Wils83], that will adequately define
separate tasks and communication of data between them. Furthermore, the partitioning can
be performed by a compiler such as Paraphase [PaKL80], and BULLDOG [FiOD84}, or by the
machine at run time such as IBM 360/91, and CDC 6600.

So far we have been equating a node in the graph with a task, but we never defined
what a task is. Usually it is assumed that each node in the graph represents one machine
instruction. However, it can be as small as an arithmetic operation such as addition or multi-
plication. This fine granularity of parallelism is exploited by dataflow machines. The crude
granularity is obtained when we combine more than one arithmetic operation into each node.
In this case, each node may represent a vector instruction or an iteration of a loop. On an even
higher level, we may consider each node to be a saubroutine or the whole program. A task
(node) is a unit of scheduling, which can be executed on ore or more processors.

Nevertheless, there is a general relationship between granularity and performance. Fig-
ure 8a shows a fine granularity graph with 7 nodes and 9 arcs. A time penalty for scheduling
of each node and for synchronization of each arc must be added to the execution time of the
program represented by the graph. However, if we merge nodes 2 and 3, 4 and 5, and 6 and 7,
we will obtain the graph shown in Figure 6b for which a much smaller time perality must be
paid. On the other hand, all the parallelism available in the original graph will not be
exploited. When we merge nodes 8 and 7 into new node Z, for example, we force sequential
execution on nodes 5 and 6 since node Y is executed after node Z. Thus, as we merge or fuse
more and more nodes together, we pay less in synchronization and scheduling overhead but
more and more parallelism may be wasted.

The amount of parallelism wasted for random structures such as those orignated from
expression evaluation is much higher than for regular structures such as those orignated from
linear algebra. For example, addition of two vectors of size 100 can be scheduled on 10 proces-
sors in such a way that each processor generates the sum of every 10th element of the resul-
tant vector. The synchronization is performed only once at the end after each processor exe-
cutes all 10 additions. Scheduling and synchronization overhead is much higher if we consider
each addition separately. This relation is shown qualitatively in Figure 7.

Every multiprocessor architecture attempts to exploit as much parallelism as possible
at the lowest possible overhead. Proponents of dataflow architecture [Denn80], [Arla83],
[WaGu82] believe that each problem can be transformed into expression evaluation with negli-
gible scheduling and synchronization overhead and thus have chosen fine granularity as the
main principle of their machines. On the other hand, proponents of crude granularity dataflow
[GLKS84], [{GaRo84], [HwSu83] believe that the solution to most of the important problems in
science and engineering can be solved with structured data and operations on them and have
chosen crude granularity as an underlying principle of their architectures. This way they hope

~134-

to overcome the overhead problem associated with fine granularity.

An obvious solution to the overhead problem is to hide it or, in other words, overlap it
with execution, called instruction pipelining. If such a machine has approximately 10 stages in
the execution pipeline, then the number of nodes executable in parallel must be 10 times the
number of usable processors in the machine. If we have 5 processors then 50 nodes must be
executable in parallel at every moment to keep all the processors fully utilized. In other words,
a program will run only at 10% of it maximal speed if 100% efficiency of the multiprocessor is
required. This relationship is shown in Figure 8, where a program profile with respect to
pumber of parallel operations is shown. There are areas of high parallelism interleaved with
areas in which only few operations can be executed in parallel. This kind of profile is the result
of partitioning a large problem such as 2-D or 3-D simulations into smaller subproblems and
then using one processor to solve each subproblem. The areas of low parallelism come from
updating the points on the boundary of the subproblem (complexity O(n)) before computing
the points inside (complexity O(n?)). The architect must select a small number of processors
for high efficiency. As the number of processors increases, the performance increases and
efficiency drops. Therefore, to obtain high performance, we must tolerate some degree of
inefficiency which can be minimized by not paying unnecessary scheduling and synchronization
overhead for computation on regular structures.

5. Hierarchical Control

A task was defined in the previous section as a computation represented by a node in
the control graph and scheduled as a unit. Partitioning problem deals with what comes into
each node and can be divided into two subproblems. Parallelism detection determines all
possible parallelism on the smallest level. Clustering combines several operations into tasks.
Although tasks are indivisible from a scheduling point of view, they can be executed by several
processors. A process is an indivisible unit with respect to processor allocation; that is, each
process is executed on only one processor and each task consists of one or more processes.
Processes can be combined into higher level structures. A vector of processes is an ordered set
of non-interacting processes such as a DO loop in which no data is passed between iterations.
In a recurrence of processes each i-th process supplies some data to (i+ 1)-th process. In a
two-sided recurrence i-th process produces data for and consumes data from both (i-1)}-th and
(i+ 1)-th processes. Obviously, these ideas can be extended to higher dimensions.

At scheduling time a vector of processes can be allocated to n processors with the j-th
processor (j < n) working on the j-th, (j+ n)th, (j+ 2n)-th, ... processes, for example. Obvi-
ously other scheduling algorithms can be applied. On the other hand, one task can be just a
random collection of interacting processes and still be assignable to more than one processor if
the architecture provides a mechanism for it. Thus, four levels of control may exist on a mul-
tiprocessor architecture: job, task, process, and snstruction. Very few machines have all these
levels of control. In a batch system, jobs are running serially while in a time-sharing

~135-

environment, they are running in parallel. We will omit job level control in the following dis-
cussion. Each job consists of one or more tasks and each task consists of one or more processes
while a process may have one or more instructions. A serial or parallel model of control can be
used on each level.

A serial single level control, in which each node is single machine instruction, can be
found in all von Neumann architectures such as VAX-11 or Motorola 68000. In this case, the
entire program is a single process executed serially. Some data flow machines, such as the
single-ring Manchester machine [WaGu82|, have a parallel single level control in which each
node of the control graph is a single machine instruction. In this case, there are no tasks and
processes.

Cray-1 may be considered to have a serial-parallel control. As in von Neumann archi-
tecture each node is a single machine instruction. However, each vector instruction can be
considered to be a vector of processes which is scheduled on x processors, where x is the
number of pipeline stages in the functional unit. When vector instructions are considered, a
x-stage pipeline is just a cost-reducing engineering trick to replace x independent processors.
The NYU Ultracomputer has a parallel-serial control. Each node is a sequence of instructions
called task specified by the programmer at the algorithm time. At runtime, the operating sys-
tem will put all the active tasks in a queue in the shared memory. Whenever a processor
becomes idle, it will get a new task from the top of the queue. Each task is executed serially in
a processor. In NYU machine, task and process are the same and represent a node in the con-
trol graph.

The tagged token dataflow architecture proposed by Arvind [ArGo82] has a parallel-
parallel two-level control in which the whole program graph is clustered into tasks called code
blocks, each of which is another dataflow graph. Code blocks can be executed in parallel on the
same or different set of processors, called a physical domain. There is no process in this archi-
tecture. However, each instruction inside a code block is allocated to a processor at compile
time based on its iteration and statement number. Each processor contains a matching unit, a
fetching unit, a program memory, one ALU, and a data memory (I-structure). Dataflow graph
in each processor is executed in pipelined fashion which allows an increase in performance
equivalent to the number of pipeline stages as long as there are sufficient number of executable
nodes. It is not obvious what is gained by using dataflow model on a single processor that is
more complex and costlier than a von Neumann machine of similar performance [Arla83).

The HEP machine has a parallel-parallel-serial control. Programmers specify tasks and
processes inside a job. Tasks can be running in parallel in the same or different processors
called PEMs, each task being allocated to only one PEM. Each PEM contains a task queue, a
process queue, and several pipelined functional units each of which has 8 stages except for the
division pipe. When a task is initiated in the HEP, a PEM is selected and the task status
word (TSW) is stored into the task queue, while the initial process for this task is loaded into
the process queue. Process can be created by another process of the same or different task.

-136-~

All tasks in a PEM will be executed in a round-robin fashion. When a PEM executes a task, it
will select a process from the task and send the current instruction of that process to one of
the functional units. Afterwards, the PEM will switch to the next task in the task queue, If
there are less than 8 active tasks in a PEM, several processes from the same task can be exe-
cuted in parallel. When an instruction execution is finished, the process will be put back in
the process queue and will wait for the next turn. The instruction execution inside a process
is performed serially.

Cedar [GLKS84] also has a parallel-parallel-serial control. Tasks are represented by a
node in 2 macro-dataflow graph and can be executed in parallel on different clusters of proces-
sors. Each task is a high-level structure of processes which is executed in parallel on several
processors. Each process is executed serially on a standard vor Neumann processor.

8. Scheduling

Scheduling is a function that associates one or more processor with each task in order
to achieve high performance of a single program or high utilization of processors in a multipro-
gramming environment.

Scheduling can be domne statically or dynamically. In static scheduling tasks are allo-
cated to processors during the algorithm design by the user or at compile time by the com-
piler. The OCCAM language [Wils83] allows programmers to specify the instruction execution
sequence, the channel of communication, and the execution unit. On the other hand,
BULLDOG compiler [Fish83], after applying the trace scheduling technique to determine all
the traces (tasks), performs register allocation and binds operations to specific functional units
at compile time. The advantage is that scheduling cost is paid only once if the program is run
many times with different data. Secondly, there is no run time overhead. The disadvantage of
static scheduling is possible inefficiency in gussing the run-time profile of each task. For this
reason, BULLDOG runs each program with a set of data in order to determine more accu-
rately run time parameters.

Dynamic scheduling is done at run time by the machine. It offers better utilization of
processors at the price of additional time needed for scheduling. The scheduling algorithm can
be distributed or centralized. The NYU Ultracomputer [GGKM83) uses a distributed algorithm
in which all tasks are in a queue in the shared memory and each processor takes the first task
from the queue and executes it. The task queue is not a bottleneck since Ultracomputer uses
its special synchronization instruction called Fetch&Add, which allows simultaneous access
from all processors to the same memory location without performance degradation. Such a dis-
tributed algorithm allows architectural scalability at low cost with high scheduling-overhead
penalty because of the global memory access through the network. On the other hand,
Arvind's dataflow machine uses a centralized scheduler called ‘manager’ to schedule each code
block to a physical domain.

-437-~

The HEP machine uses a self-scheduling technique to balance the execution time of
processes in a task. This method is very useful when the number of totally independent
processes in a task, such as iterations in a DOALL loop, is significantly exceeds the number of
processes allowable in a PEM; moreover, the execution time of each process may be varying
widely because of the unpredictable delay of memory access through the network. Self-
scheduling allows each process to acquire the next iteration dynamically when it finishes the
previous one.

Some machines have more than one level of execution control. Different control levels
may use different scheduling schemes. For instance, Cedar and Arvind’s dataflow machine use
dynamic scheduling for tasks, while processes and instructions are bound statically at compile
time.

Different dynamic scheduling schemes such as Random Choice (RC), First Come First
Serve (FCFS), Least Service Time First (LSTF), etc. can be used [HwSu83]. In case when a
task is scheduled on more than one processor, a more sophisticated processor-allocation stra-
tegy is needed. In Cedar, for example, maximal number of processors needed by a task is
determined at compile time. When the number of available processors at run time is not ade-
quate, the scheduler can either wast or fold the task on a smaller number of processors. Simula-
tion by Yew and Xu have shown that folding the task will provide a batter performance and
processor utilization [YeXu84].

7. Synchronization

When executing a program in parallel, we need to synchronize the execution from time
to time. Synchronization can be done either at control level or at data level and can be imple-
mented either through shared-variable or through message-passing methods.

In the Control-level synchronization, a program counter is used to synchronize a
sequential execution, while in parallel execution of a control graph, synchronization is done by
allowing a node to execute only when all its predecessors have finished. All the sequential
uniprocessors such as VAX-11 and Motorola 68000, use the program counter method while
dataflow machines, such as Dennis’s and Arvind’s, use control synchronization for executing
the flow graph.

The Data-level synchronization is used whenever synchronization is needed inside a

node. It is very effective when a node represents operation on large structured data. For
n

example, the computation of Y, (a,+ 5,)#c; is executed in two steps: vector addition followed
1=l

by vector multiplication. However, the vector multiplication may start before vector addition

is finished as long as we assume that consumer multiplication will not overrun producer addi-

tion. In Cray-1, this is called chaining and synchronization is accomplished through

-138-

synchronous operation (central clock) of two functional units: adder and multiplier. When vec-
tor instructions are replaced by general processes that cannot be executed in lock-step manner,
a different mechanism must be used.

Different data synchronization primitives exist in different machines. Smith introduced
a Full/Empty bit in each memory location in the HEP [Smit78]. Each register or memory
word can be used to synchronize two processes in a producer-consumer fashion. This method
is very elegant for ‘single assignment’ languages. However, for language that allow the reas-
signment of a variable, single Full/Empty bit can only synchronize alternating reads and
writes to the same location. Arvind applied this synchronization method to the I-structure of
his dataflow machine.

The primary purpose of all data synchronization schemes is to provide an efficient way
of preserving a proper order of memory references. The Fetch&Add instruction denoted by
F&A (V,e) in the NYU Ultracomputer performs an indivisible operations of fetching the
integer variable V and replacing it by V+e [GGKMS83]. It allows simultaneous operations on
the same memory location by combining requests through switching elements in the connec-
tion network. This permits highly concurrent execution of operating system primitives, such as
management of a parallel queue. However, the Fetch&Add is a commutative instruction and
can not perserve the order in which memory is referenced.

Zhu & Yew introduced a synchronization scheme for Cedar [ZhYe84]). They define a
key field for each synchronization variable and use that key as a counter. Each synchronizing
instruction will test the key and perform a memory read or write only if the tested condition is
satisfied. After this operation, the key is incremented or decremented in order to allow the
next operation on the same variable. The counter method of Zhu & Yew is very difficult to
preserve the reference order when the counter is updated by two or more overlaping sequences
of memory operations. For example, if each processor computes one grid point (Figure 9), then
each grid value such as A is read twice by B and C before a new value can be written into A.
This is repeated on each r iteration. If processor computing C is delayed by one iteration,
then processor computing B will decrement the counter of A twice and allow updating of A
out of order. Two errors are made: B gets an old value of A twice while C will compute with a
new value of A. A Bit-map synchronization method [Peir83] solves this problem by treating
the key field as multiple Full/Empty bits. Each memory operations is associated with one bit
in the key. By testing and seting the bits in the key, a proper order can be preserved in this
and similar examples.

8. Memory Access

As we mentioned in section 2, each multiprocessor must include a connection network
which introduces unpredictable delay in accessing data stored in the shared or distributed
memory. Furthermore, since access to certain memory can be blocked temporarily, the arrival

-139-

order may be different from the order in which data were requested.

Memory latency problem can be tolerated by using a data-driven, message-passing
method so that data will be fetched at the generation time instead of the demand time. All the
dataflow machines use this method. Machines such as Cray-1, fetch vector data in a pipeline
fashion. After an initial set-up delay, data arrive to the processor at pipeline time. A latency
problem still exists when accessing non-vectorized data. High-performance von Neumann pro-
cessors, such as IBM 360/91, use runtime instruction lookahead to solve this latency
bottleneck. However, this introduces an extra complexity in the control unit. The HEP and
the NYU Ultracomputer have multiple processes in each processor and perform context
switching while one process waits for the data from memory. An extra set of register files is
needed for each active process to avoid overhead of saving registers. The Structure Memory
Access Architecture [PIDa83] introduced a fetch and an execution processors in each conven-
tional processor. Address generation, data fetch, and operation execution can be overlapped to
increase the performance. However, a data dependence problem is not easy to solve between
these fetch and execution processors.

9. Summary

In this paper, we identified the issues in solving a problem on a multiprocessor
machine. We discussed how to decompose such a problem, schedule and execute it using
many processors. We reviewed several commercial and proposed machines and discussed
approaches they use to accomplish this.

10. References

[AbGa84] S. Abraham, and D. Gajski, “A Communication Algorithm for a Wafer Scale Integrated Multiproces-
sor,”” Conf. on Parallel Processing, Bellaire, MI, 1984.

[ArGo82] Arvind, and K. P. Gostelow, *“The U-interpreter,” IEEE Computer, Vol.15, No.2, 1982, pp. 42-49.

[Arla83] Arvind and R. A. Iannucci, “A Critique of Multiprocessing von Neumann Style,” 10th Symp. on
Computer Architecture, Stocholm, 1983, pp. 426-436.

[ArTh80] Arvind, and R.E. Thomas, “I-structure: An Efficient Data Type for Functional Language,” Tech.
Rep. TM-178, Lab. for Computer Science, MIT, Cambridge, Mass., Sep 1980.

[Brows4] J. C. Brown, “TRAC: An Environment for Parallel Computing,” COMPCON, Spring, 1984, pp.
294-298.
[Denn80] J. B. Dennis, “Dataflow Supercomputer,” IEEE Computer, Vol. 13, No. 11, 1980, pp. 48-56.

[Farm84] P.M. Farmwald, “The S-1 Mark IIA Supercomputer,” in High-Speed Computations (J. S. Kowalik
ed.), Springer-Verlag, 1984.

[FiOD84] J. A. Fisher, and J. J. O’Donnell, “VLIW Machines: Multiprocessors We Can Acturally Program,”
COMPCON, Spring, 1984, pp 299-305.

[Fish83] J. A. Fisher, “Very Long Instruction Word Architectures and the ELI 512, 10th Symp. on Comp.

[Flyn72)

[Fox 84]
[GaRo84]

[GGKMBS3)

[GLKS83]
[HwSu83]

[Kuch78]

[Kung82]
[PaKL80]

{Peir83)

[PIDa83]
[PSSP84)
[Seit84]
[Smit78]
[Snyds2]
[Trel82)
[YeXu84}
[WaGu82|
[Wils83]

[ZhYe84]

-140-

Arch., Stocholm, June 83, pp 140-150.

M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans. Computers, Vol
C-21, No 9, 1972, pp. 948-960.

G. C. Fox, “Concurrent Processing for Scientific Calculations,” COMPCON, Spring, 1984, pp. 70-73.
D. Gannon, and J.V. Rosendale, ‘“‘Parallel Architectures for Interative Methods on Adaptive, Block
Structured Grids,” Elliptic Problems solvers (G. Barkoff, Ed.), to appear.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, M. Snir, “The NYU Ultra-
computer,”’ IEEE Trans. Computers, Vol. C-32, No. 2, 1983, pp. 175-189.

D. Gajski, D. Lawrie, D. Kuck, and A. Sameh, *Cedar,” COMPCON, Spring, 1984, pp. 306-309.

K. Huang, and S. P. Su, “Priority Scheduling in Event-driven Dataflow Computers,” TR-EE 83-38,
School of Elec. Eng., Purdue University, Dec. 1983.

D. J. Kuck, “The Structure of Computers and Computations: Volume One,”” John Wiley & Sons Inc.,
New York, 1978.

H. T. Kung, “Why Systolic Architectures?,” IEEE Computer, Vol.15, No. 1, 1982, pp. 37-46.

D. A Padua, D. J. Kuck, and D. L. Lawrie, “High Speed Multiprocessor and Compilation Tech-
niques,” JEEE Trans. Computers, Vol. C-29, No.9, 1980, pp. 763-778.

J-K Peir, **An Efficient Synchronization Method for Multiprocessor Systems,” Cedar Document No.
27, Lab. for Advanced Supercomputers, Dept. of Computer Science, Univ. of Illinois at Urbana-
Champaign, Dec. 1983

A. R. Pleskun, and E. S. Davidson, “Structured Memory Access Architecture,” Conf. on Parallel Pro-
cessing, Aug. pp. 461-471.

Y. N. Patt, R. G. Sheldon, M. Shebanow, C. Ponder, and W. Hwu, “A Comparison of Several Evolv-
ing Supercomputer Architectures,” 4th Jermsalem Conf. on Information Technology, May 1984.

C. L. Seitz, ‘‘Experiments with VLSI Ensemble Machines,” J. of VLSI and Computer Systems, Vol.
1, No. 3, 1984.

B. J. Smith, “A Pipelined Shared Resource MIMD Computer,”’ Conf. on Parallel Processing, 1978,
pp. 6-8.

L. Snyder, “Introduction to the Configurable, Hoghly Paralle]l Computer,” IEEE Computer, Vol. 15,
No. 1, 1982, pp. 47-56.

P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, “Data-Driven and Demand-Driven Com-
puter Architecture,”” ACM Computing Surveys, Vol. 14, No. 1, 1982, pp. 93-143.

P. C. Yew, and Q. X. Xu, “Simulations and Analysis for a Multiprocessor System with Multipro-
gramming,” 1st Conf. on Computers and Applications, Peking, China, June 1984.

I. Watson, and J. Guad, “A Practical Dataflow Computer,”’ IEEE Computer, Vol. 15, No. 2, 1982,
pp- 51-567.

P. Wilson, ‘“OCCAM Architecture Eases System Design - Part 1. Computer Design, Nov.1983, pp.
107-115.

C-Q Zhu and P-C Yew, “A Synchronization Scheme and Its Applications for Large Scale Multipro-
cessor Systems,” Conf. on Distributed Computing Systems, San Francisco, May, 1984, pp. 486-491.

eteq

~144-~

CACHE

Locae. T

memMorT | P

e

a
i REGISTERS

Figure 1. Von Neumann Model

B BE

iP | PIPELING

Figure 2. Vector-Machine Model

S WITCH

S W I TcH

éé}é}

(£ ¥

thy

Figure 3. Multiprocessor Model: (a) Shared Memory; (b) Message Passing

Figure 4. Serial Model of Computation

a b ¢ d A B ¢
)
%% @H“t

by

TLE

Shared
Hemory

I,

Figure 5. Parallel Model of Computation:
(a) Data-driven; (b) Control-driven

-142-

symc. neloue
X" ';‘;fl(c‘/u res
sched
cost - ————_ wasted

r,mcurrencg

\

overkead
4

re; r
s uctures

gran« lﬂl’l‘g
b Rataflow wecton wacro off
(b

Figure 6. Control Graph: Figure 7. Concurrency and Overhead Plots

(a) Fine Granularity; (b) Crude Granularity

DO r =1, TIMES

ime DOi=1,N
; DOj=1,N
A(i,5) = ((A(i+1,3) + A(i,i+1)) / 2.
ENDO
ENDO
ENDO
(/8]
P P~ B ® —ren
: PR VR R
l . 'é—— & e B - - —am
A 5 I(___ IC TA T
| é ' para llelessue t T TG_T """
; é E .(—’G—l—.‘———.—--.-
H i i ! H | [}
P"OC“ no, Fl‘D;:. no. Pl‘x>- no. i i i g
pear. d?me Por "y" e par. c/?roe
b
Figure 8. Program Profile with Respeat to Parallelism Figure 9. A Finite Difference Problem:

(a) Source Code; (b) Data Passing

-143-

QUESTIONS AND ANSWERS

Q: Can your CEDAR structure handle list-processing problems
more-or-less efficiently?

T. Brody

A: Present processor is not a LISP machine. 1If we replace it
with a LISP processor and figure how to decompose LISP programs, I
believe it will run efficiently.

Q: What are the kind of computational problems which are well
suited to the architecture of CEDAR?

R. Brower

A: We believe that a large spectrum of problems are suited for

CEDAR, since CEDAR provides fast access to shared memory, good process
synchronization, static and dynamic scheduling, restructuring compiler
and macro data flow model of computation.

Q: How much overhead do you expect for fetching data and load
module to a particular cluster?

K. Miura

A: Such overhead is inevitable in any multi processor
architecture. Multi-programming may solve such problems for CEDAR.

-444-

Q: Can one avoid creating new languages and rather define a set
of extensions to an existing language (FORTRAN) for partitioning,
scheduling, etc.?

T. Nash

A: When I say "new languages" I mean mostly extensions to
existing languages to support scheduling, synchronization, etec.

Q: Experience, though limited, indicates that not a large number

of extensions are needed to control parallel or multi-processor
operations from FORTRAN. But the specific nature of this extension is
currently somewhat dependent on the specific architectural structure.
Therefore, specifying a completely general set of FORTRAN.extension for
parallel systems is probably presently impractical - but it is
tantalizingly close.

C. Maples

A: 1 agree.

Q: Wwhen will CEDAR be operational and which physics and
engineering problems will you attack with it to demonstrate the
effectiveness of the approach?

M.J. Levine

A: CEDAR may be operational in 1986 or 1987 if someone would
support it. We really have not done enough work, yet, looking into
applications.

-145-~

EXPERIENCE WITH SCIENTIFIC APPLICATIIONS ON THE MIDAS
MULTIPROCESSOR SYSTEM*

Creve Maples
Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

Introduction**

Most experts agree that the speed of standard or ‘serial” computers is
approaching fundamental physical limitations imposed by signal propagation (the
speed of light) and heat dissipation. This is evidenced by the fact that the fastest
modern serial computers are only 2 to 3 times faster than the CDC 7600 intro-
duced in 1968. Although it is possible to increase present serial processing speeds
by a factor of 10 to 50, such increases will require new technological advances
(gallium arsenide, Josephson junction, ete.) and will probably be relatively expensive.

The Cray-1 computer, introduced in 1976, attempted to circumvent these
obstacles by performing various identical operations in parallel (vector processing).
Suppose, for example, a problem required that two sets of 50 numbers be added, by
pairs, and the 50 results were, respectively, to be muitiplied by a third set of
values. A vector machine would use 50 separate addition units and multiplication
units and perform the entire operation in two steps rather than 100. For the
portion of a problem that can be organized in such a manner, this technique yields
substantial increases in speed over the traditional serial machine. If, however, it is
necessary to examine the result of each addition, for example to determine an
appropriate normalization factor, the performance of the vector processor would
diminish considerably. Software effort in both the United States and Japan is being
directed towards the development of compilers which attempt to reorganize
programs in order to attain more effective utilization of vector machines. The
extent, however, to which problems are amenable to this approach varies
considerably and a great many important physical problems appear to be essentially
non-vectorizable. The advances in micro-electronics during the past decade have
made new approaches to computing feasible. This involves using mulitiple comput-
ers, or processing elements, collectively on the same problem. Unlike the vector
approach, such processors are not constrained to perform the same operations at
the same time and, may, for example, be working on different facets of a
calculation simultaneously. Whatever speed individual serial computers ultimately
achieve, it is clear that multiprocessor machines could potentially extend this speed
by factors of hundreds or thousands. Although a number of manufacturers now
provide systems which incorporate, or can be expanded to include, several
processors, such systems are designed primarily to run separate problems and not to
work collectively on the same program. Some new systems (such as Denelcor’s
HEP, CDC’s Cyber Plus, Cray’s X-MP, and ELXSI’s System 6400) are beginning to
offer coordinated processing capability. The potential power of multiprocessing
computers, however, still remains virtually unexplored within the commercial

*This work supported by Director, Office of Energy Research, Div. of Nuclear
Physics, Office of High Energy and Nuclear Physics and Nuclear Science of the
Basic Energy Science Program, U.S. Dept. of Energy, Contract No. DE-AD3-
765F0098.

**Some of the material in this presentation has been extracted from papers
appearing in the proceedings of the 13th International Conference on Parallel
Computing (1984).

-146-

marketplace. This is primarily due to the difficulty in architecturally organizing
many independent processors so that they may work productively towards the same
goal. The main problem areas in this respect are in multiprocessor control,
coordination, and inter-processor communication.

Although many designs for such multiprocessor systems exist, few have actually
been constructed. The reason for this is both the expense invelved in constructing
such a system and the fact that many proposed designs are directed at specific
classes of problems and hence may not be commercially viable. The new industrial
consortium, the Micro-electronic and Computer Corporation, currently involving over
a dozen corporations, is vitally concerned with the lack of development in this
area. A recent MCC report stated that "To date, attempts to improve
performance through highly parallel structures have been relatively disappointing.
We believe the major reason for this lack of progress is the high real and personnel
cost to build and evaluate parallel structures," This fact, coupled with newly
expanding computer applications in both business and personal computing, make
high-risk, high-priced ventures appear unnecessary.

Contention and problem decomposition are two areas which can pose significant
difficulties in the successful design and application of multiprocessor systems.
Contention between processors for memory (or bus) access can drastically affect
the performance of a system. As an example of this, Digital Equipment
Corporation”s announcement of the shared memory, two processor VAX 11/782 (Feb.
1, 1982) indicated that system would only provide between 60 to 80% speedup over
the single processor system. This loss of performance was due to contention even
though the two processors were not intended to work on the same problem.

The use of global memory versus hierarchial, partitioned, or local memgry is
the subject of considerabl? discussion. Some projects, such as the S1 System™ and
NYU’s Ultra Computer,” believe that a general computer must permit any
processor to access any memory at any time. Although this is extremely desirable,
it leads to problems of contention and conflict, where two or more processors want
to access the same location simultaneously. Conflict can occur if even one of the
processor accesses is a write operation. The situation rapidly deteriorates as the
number of processors increases. A simulation of the expected performance of the
S1 system on the hydrodynamic test code SIMPLE is shown in Table 1. An 8
processor system is expected to perform at 48% efficiency. The equivalent of 2
processors is expected to be lost due to global mgmary conflicts and one due to
interprocessor line transfers. The authors conclude” that there "is little to gain by
running this Eroblem on more than 8 processors.” Other projects, such as the
Cosmic Cube,” avoid this problem by not having any global memory. In this case,

Table 1.
Simulated Performance of S1 on SIMPLE®

No. Processors | Speedup | Efficiency
1 1.00 1.00
2 1.77 0.89
4 2.93 0.73
6 3.58 0.58
8 3.84 0.48

°T. S. Axelrod, et al.,
Lawrence Livermore Laboratory, Livermore, CA®

-147-

Table 2.
Ware's Model of Multiprocessors

] Relative Speedup (Efficiency)
no. processors (P):) 5 16 150
Z serial code (o)
1% 0.99 | 7.5(0.93 14.0 0.87; 50 (0.50
5% 0.95 | 6.0 (0.74 9.1 (0.57 17 (0.17
107 0.91 | 4.7 {0.59 6.4 0.40; 9 (0.09
20 % 0.83 | 3.3(0.42 4.0 (0.25 5 (0.05
1

S(P) = ar (1o P - speedup

E = S(P)/ P = efficiency

however, significant amounts of interprocessor communication can severely degrade
the system”s performance.

The efficient decomposition of a problem can, independently of the
multiprocessor structure, be crucial to the performance of the system. This can be
seen in the Ware Model for parallel systems. In this simple model, it is assumed
that either one processor or all processors are operating, and that all effects of
interprocessor communication can be neglected. In Table 2 alpha represents that
fraction of code (in terms of time) that cannot be executed in paraliel. Then
Table 2 illustrates the effect of this parameter on performance as the number of
processors increases. A very small amount (1%) of serial computation obviously has
little effect on the efficiency of systems with only a few processors. In a 100
processor system, however, 1% of serial code would lead to a 50% performance
efficiency, or the loss of 50 processor equivalents. This illustrates the necessity of
developing highly parallel problem decompositions in order to be able to utilize
multiprocesors extensibly. Table 2 also illustrates that performance on a few
processor system is relatively insenistive to the amount of serial code. This is
important since many tests are currently being carried out in 2 to 4 processor
environments. Such tests need to realize very high performance efficiencies (better
than about 98%) if the approaches are to be successfully extended.

The results of some actual multiprocessor tests are shown in Table 3 for the 2
processor CRAY X-MP and four processor ELXSI System 6400, The test results
were reported by Melvin Scott of Sandia National Laboratory.” The code SPEED
consists of 5 independent kernals exerpted from Sandia’s mathematical library and
from large user codes. It is designed to measure the ability of the machine to

Table 3.
Speedup Factors on CRAY X-MP and ELXSI 6400°

MNumber of Processors
2 3 4

XMP | 1995 | - 5
SPEED | gixsi | 1.994 | 274 | 3.03

XMP | 1.556 | -
BENNEU | mixst | 1995 | 285 -

SUPQRT X-MP 1.735 - -

Cbde Machine

‘Melvin Scott, Applied Mathematics Division,
Sandia National Laboratories, Albuquerque, NM®

-148-

perform floating point calculations. BENNEU is part of a particle-in-cell code. It
was used for testing because it required the separate tasks to share common
memory. The program SUPPORT is a large code which solves two-point boundary-
value problems using methods of superposition and orthonormalization. These tests
illustrate all the effects of contention and code on efficiency. As expected,
efficiency drops rapidly as the number of processors increases. The difference in
relative performance between the X-MP and ELXSI on BENNEU is most probably
due to the architectural structure of shared memory. Unfortunately no information
could be obtained that indicates specifically the causes of the performance loss.

System_ Overview

Focusing the power of many independent processors so that they may be
effectively applied to single problems or applications is not easy and is the subject
of a great deal of current research, The MIDAS systemn, under development at the
University of California’s Lawrence Berkeley Laboratory, is based on the concurrent
operation of muitiple asynchronous processors. The control architecture is a
hierarchy of computer processors, organized in a general tree-structure (as
illustrated in Figure 1) gnfl integrated with independent ‘intelligent” mass storage
and interactive systems.”’’ Within the present 3-level system, multiple processing
elements are organized into clusters, each of which is controlled by an auxiliary
computer. Every cluster combines central processing units from commercial
computers with independently dgveloped specialized processors and a specially
designed communications system. Multiple clusters are in turn controlled by a
computer referred to as the Primary. The three processing levels, therefore,
consist of a Primary Computer, Secondary Computers, and Multiple Processor
Arrays. Interprocessor communication can be handled in a variety of ways which

PRIMARY COMPUTER
Multi-User; Altocates Resources: Links the Interactive
and Analysis Operation; Controls the Secondary,
Interactive, and Mass Storage Systems

SECONDARY COMPUTERS—l

Handles ket s Suhdivid,

¥ Pr Pr

and Data Flow: Maintains Communication with Primary.

&

MULTI-PROCESSOR ARRAYS (MPA)
Multiple CPU's and Specialized Processors Handle Input,
Data Selection/Corr. Ci ion, and Output in Each Array.
Al Operations are Conducted Asynchronously and in Parallel

Figure 1 MIDAS processor organization showing the three levels of operation and
control.

-449-

will be outlined in the following material, The discussion will primarily focus on
the operation and performance of a single subsystem at the second and third levels.

A. Processor Organization

Processors within the MIDAS architecture are organized into groups or clusters
called Multi-Processor Arrays (MPA), Each MPA consists of a variety of
independent processors, multiple busses, a high-speed switching network, and a set
of independent switchable memory blocks. At present the processors include an
Input Processor, and Output Processor, an array of independent CPUs, and a set of
units called Zero Processors (ZP). An MPA is, in turn, controlled and monitored by
a commercial mini-computer called a Secondary. This two-level processing
structure is referred to as a Distributed Subsystem and forms the basic processing
unit of the system. A single subsystem containing 11 independent processors is
illustrated in Figure 2. From a control perspective, this architectural organizaéion
is similar to that proposed by the Cedar project at the University of Illinois.” In
the Cedar design a cluster of 8 to 16 processors is controlled by a single cluster
control unit (and multiple clusters, by a global control unit). The two designs,
however, have significant differences with respect to communication, control, and
the type of processors utilized.

The Multiprocessor Array on MIDAS, shown as part of Figure 2, currently
consists of eight general purpose CPUs referred to as Programmable Arithmetic
Modules (PAMs). Each of these units is, in fact, a standard commercial CPU with
dedicated memory, capable of bhandling scientific calculations in general, and

FEoUENCE = g 1] []] ;:gggssoa
o I H L s
[

JUSTE FN e lpaM 3 h pam 4 PAM 5 PAM 6 PAM 7

=r
E 1ol
=

=
SHARED MEMORY

optroller

BULK SECONDARY

MEMORY | COMPUTER '
TO PRIMARY #

Figure 2. A Distributed Subsystem containing eleven independent processors.

-450-

floating point operations and Fortran codes in particular. For the initial
development the ModComp 7870 CPUs were selected. These processors support 64-
bit floating-point hardware, pipelined operation, and up to 4 Mbytes of local
memory. The CPUs are, for comparison, roughly 15% slower than the DEC VAX
11/780. Ultimately a single MPA is expected to contain between 24 and 32 of
these independent processors, each of which is perhaps four times the speed of the
present units.

The design facilitates the easy integration of specialized processing elements.
Two such elements, the Input and Output Processors are shown in Figure 2. These
are specialized pipelined devices designed to handle information flow into and out
of the cluster. They operate independently at a 200 nsec. clock cycle on two
separate, external, 20 Mbytes/sec. [/O-busses (32-bit data, 8-bit control). These
processors may, depending on their programming, select or reject information
(filtering); expand or compress data (format); manipulate data (mask, shift, etc.); or
route specified information as required by other processors in the cluster. Due to
the pipelined structure, these operations are all performed at bus speeds. The need
for specialized handling of I/O operations is also recognized in the Cedar
architecture. That design, however, includes a separate processor cluster which is
specialized for 1/O operations instead of, as in case of MIDAS, utilizing special-
purpose I/O processors within each cluster.

The Secondary CPU is responsible for supervising the operation of a
Multiprocessor Array. Each has dedicated disc drives and can, therefore, compile,
assemble, and link programs. To facilitate supervisory functions, the console-
control functions of all the standard CPUs (in the MPA) are interfaced into the
Secondary, as shown in Figure 3. This provides it with the complete capability to
monitor and control third level processors. It can run, halt, resume, or single-step
each PAM independently or collectively, and can monitor or modify selected
registers or memory locations. Examples of effectively utilizing this capability will
be discussed in the section on Performance.

The function of the Secondary is both varied and problem dependent. It can
directly control processing at the third level of the system, function as an
intermediary between the Primary Computer and the third level, and/or directly
participate in the calculation itself. A Secondary could, for example, co-ordinate
its computation with third-level processing in a master-slave relationship, using
these processors to perform needed calculations as appropriate, and in parallel. In
this mode it can obtain and act on results as they become available and perform or
delegate further processing, as required, wuntil the problem is completed.
Alternatively, it may only be necessary for the Secondary to set up a problem for
actual execution entirely on the third level. A data analysis problem is an example
of the latter mode of operation. Initially the task would execute serially in the
Secondary to perform the setup and initialization of the probiem (e.g., calibration,
etc.). Thereafter independent data events would be analysed in parallel at the
third level. In such cases the Secondary might, during processing, be employed to
monitor and/or control the overall performance kinetics within the third level, and
to handle any abnormal conditions which might occur (informing the Primary
Computer, if necessary). Additionally, it may dynamically allocate processor
functions as the requirements of the executing problem change.

The top level, and overall master, of the system is a Primary Computer whose
main function is to handle system control and user communication. It implements
instructions in a job control language which permits the user to define the problem

-4154-

requirements and to allocate necessary resources. Interactive control of a task’s
execution is also provided at this level since the Primary can access the
instantaneous results of the calculations ongoing at the lower levels.

B. Memory Configuration

Currently four classes of memory are included in the Distributed Subsystem
design shown in Figure 2. These include local memory, switched memory, shared
(or global) memory, and bulk memory. Each of these has different attributes and
collectively can be employed both to minimize contention and to facilitate
interprocessor communication. The utilization of these memories will be discussed
in the section on Multiprocessor operation. {Local memories, as indicated in Figures
1 and 2, are dedicated to a single processor and are not directly accessible by
other units. Figure 4 illustrates the schematic layout of memory from the
perspective of a processor (or program). The Secondary also possesses its own local
memory. In addition, however, it has access to both the global shared memory and
the bulk memory units which will be discussed.

Each of the sixteen independent switchable Memory Blocks, shown in Figures 2
and 3, has a dedicated memory bus and may contain up to 256 Kbytes of memory.
A 5 x 16 crossbar switch allows any memory module to be dynamically attached to
any of the five processor busses shown. Since information transfer between a
memory module and a CPU (PAM) is considerably faster than the cycle time of the
CPU, it was possible to time-multiplex 8 independent memory-CPU connections on
the same bus with essentially no degradation of access time. Time-multiplexing
these connections was an implementation, not an architectural, decision.
Functionally the multiplexed unit operates as a 12 x 16 crossbar switch. Any
Memory Block may thus be attached to any processor at any time. Switching a
memory module between available processors requires about 50 nsec. Once a
processor-memory connection occurs, there is no functional distinction between the
switched memory and the processor’s local dedicated memory. The memory module
is accessed by standard load and store instructions, rather than by I/O commands.
Thus from a programmer’s point of view, the switched memory is simply a
particular common block. This use of bank-switched memory units in

AQORESS | g LiaHTs CENTRAL
PROCESSING UNIT
\\rreLing
18 DATA LIGHTS vinTuAL wars
16 DATA SWITCHES EXTENDED
S ARITHMETIC UNIT
92-0IT INTEGEN HARDWARE
12 REQISTER SELECT 84-BIT FLOATING POIRT
TETATUE] 11 CONTROL & STATUS CPU MEMORY
HUN/HALT I 200 0, 126 K8
N (EXPANIABLE TO 2 M8)
INTERRUPTY N

COMPLETED SeLECT

NEXT 8TACK

CONDUCTOR PAM CONTROLLER

TIME SLICER

SELECY

MULTI-BUS
BWITCH

OPERATION OF A
PROGRAMMABLE ARITHMETIC MODULE

Figure 3. Schematic representation of the control and monitoring interconnections
between the Secondary CPU and a third level PAM.

-152-

multiprocessor configurations is similar to the 5-1 Multiprocessor architecture under
development at Lawrence Livermore Laboratory.” The present S-1 design employs
16 memory banks and 16 processors, and any processor may access any memory at
any time. Unlike the MIDAS design, the 5-1 processors use these common memory
banks both for program operation and data storage, although access is enhanced by
using individual cache memories. Simultaneous memory access conflicts, which can
result from this scheme, are identified by special hardware circuits.

MIDAS also provides a global, or cluster-wide, shared-memory unit (Figure 2).
Access to this memory is given on the basis of a demand queue. For store
operations longer than a single word, a processor may lock out other processors
until all memory updates are completed. Since heavy utilization of the global
shared memory can slow the parallel operation of the processors, it should be used
judiciously. The serious consequences of memory contention problems which can
arise from over-dependence on shared memory was discussed in the Introduction.
The programs currently running on MIDAS (and described in the section on
Performance) have thus far not required the use of global memory.

An independent bulk memory unit, with a 32 Mbyte capacity, is also available
for data storage. CPU (PAM) access to this unit is indirect in that information
must be transferred via the switchable memory modules. This mode of accessing
bulk memory is quite efficient with respect to CPU utilization since a PAM
continues operation immediately after releasing a memory module, and is not forced
to wait until the data transfer to bulk memory is complete. The bulk memory has
dual ports and can be utilized either in a standard DMA transfer or in an address-
incrementing (+1) mode.

C. Communication

A Distributed Subsystem is connected to the rest of the processing environment
by four separate data paths, as shown in Figure 2, Two independent busses, as
indicated previously, are used to handle high-speed data flow into and out of the
Multiprocessor Array. The remaining links connect the Secondary to the Primary
Computer and to a global switching network. This switching network is controlled
by the Primary and serves to interconnect clusters and the global mass storage
system. Between the two levels of the subsystem, separate communication channels
connect all processing elements of the MPA with the Secondary Computer.

Communication between units within an MPA may be handled in a variety of
ways. Information may be broadcast to all processors via the shared memory.

/ GLOBAL MEMORY

SWITCHED |,

MEMORY =, A B
LOCAL

MEMORY

PROCESSOR | #1 #2

Figure 4. Memory layout from the perspective of a processor or program.

-453-

Specific processor communication (particularly control information or imperative
commands) may be sent via the Secondary. Finally high-speed communication can
be obtained by utilizing controlled access to the switched Memory Blocks. This
communications mechanism can take the form of either circuit switched or packet
switched operation and will be discussed.

A standard technique for handling interprocessor communication is by utilizing
a common memory that all CPUs (third level in this case) have equal priority
access to. Typically there is some queuing discipline manifested in hardware and/or
software that ensures memory coherence. What this usually implies is that CPU A
may not alter the contents of a memory location that CPU B is in the process of
reading. Under these conditions, the system is termed tightly coupled. Such
systems may exhibit severe degradation of performance in the event of a high rate
of requests from all CPUs to common memory. Attempts to alleviate this problem
through intermediate private cache memories must first solve the difficult cache
coherency problem, and thereafter may still retain 2 degradation of performance as
cache misses increase with total memory requests.” Problems that wish to employ
this mode of communication must be decomposed in such a manner that this
bottleneck does n?t represent the kinetic step of the solution. Mechanisms such as
replace and add® can be employed to minimize conflict and to ensure load
balancing.

D. Specialized Processors

MIDAS offers the user the ability to employ specialized hardware processors
which can assume functions of code that would otherwise need to be executed in
the CPUs. The ability of the Input Processor to preprocess the incoming data
stream provides a simple example of this capability. In many analysis problems,
for instance, this information may consist of compressed data containing only non-
zero values. Reconstructing such compressed data is typically accomplished by
using descriptive information contained within the data. In standard programs this
information must first be decoded and then the data expanded into an array in its
original form. In MIDAS, however, the expansion algorithm may, if well defined,
be executed at bus speeds by the Input Processor and the equivalent code deleted
from the program. In this example the reconstructed information would be placed
directly in a switchable memory block at appropriate locations. The time required
to complete analysis on a given body of information would thus be shortened by
that fraction of the time previously associated with executing the deleted code.
Analogously, sorting, filtering, shifting, masking, and similar operations may be
programmatically handled in parallel on separate processors operating at high
speeds.

This example illustrates an important feature of the MIDAS design - that
specialized hardware processors may easily be accommodated within a more general
computing structure. Such devices can effectively be accessed, if required, as
program subroutines. Utilization of these processors is thus flexible and codes may
be both simplified and speeded up by their use. They may be independently
programmed and their application controlled or defined by a threading sequence,
which may be as complex or as simple as the particular problem demands. The
future inclusion of additional hardware processors (such as baolean logic units, array
processors, track reconstruction processors, and other specialized devices), coupled
with the ability to dynamically redefine the threading sequence on data-dependent
conditions, provides exceptional performance potential.

-154-

Multiprocessor Control

The distribution of a problem among processing elements is currently handled
by specific constructs w'itﬁ'lin the program and by interaction with the user (via job
control structures, etc.). In order to achieve an efficient and flexible operational
environment and to permit fauit-tolerant erfer recovery, a functionally distributed
operating system structure was developed. System functions were distributed
among specialized hardware devices (including microprocessar control units) as well
as to the software in different processors. Since there are frequently several ways
to delegate specific system responsibilities, often at the discretion of the user, a
high degree of flexibility is maintained and a certain degree of fail-safe operation
made possible.

The switched memory provides an example of distributed functions and
multiprocessor control. The Secondary Computer is responsible for overseeing the
operation and utilization of the switched memory (including the handling of
failures). It, however, is too slow to directly control the high-speed, asynchronous
memory switching required in the MPA. The actual switching of memory modules
is handled by a special hardware device termed the Conductor. The Conductor is
functionally controlled (and even programmed) by the Secondary. It can, when
requested, supply the Secondary with detailed information on system activity.

A. Macroscopic Data Flow

Each memory module is equipped with both zeroing hardware and a directory
indicating the processor sequence or destination (Fig. 2). Thus when a module is
released by a processor, the directory pointer is incremented and the memory is
switched to the next class of processor specified. If all processing elements of the
required class are busy, the memory will remain unattached until one becomes
available., The ability of each Memory Block to carry with it an independent
processing sequence permits the Multiprocessor Array to function in what might be
described as a “macroscopic data flow” made of operation (for a discussion of data
flow, see, for example, Ref. 12).

When MIDAS operates in this manner, system software prohibits a memory
module from being simultaneously accessed by more than one processor. A
processor, therefore, has exclusive access to the attached memory until it
relinquishes the module (or until the supervisory CPU forces a relinguish). This
avoids conflicts and processor contention problems. In this approach, a particular
Memory Block is transferred from one type of processing element to another in a
manner and at a speed dictated by the information it contains. Note that in this
mode of operation, Memory Blocks are switched to the first available processor of
the type required, not in general to a particular processing element. This is
important since the number and classes of processors available may vary
dynamically. Reassignment of processor function during problem execution may be
carried out either by the Secondary or by a processor itself and facilitates load
balancing on the system.

The exact manner in which this cluster of processors and memory blocks co-
ordinate their activity is flexible and may be defined through a user-specified
threading sequence. The following limited example of a data analysis problem
serves to illustrate one such sequence and some of the capabilities of the various
processors. Execution of a data analysis program would begin in a Secondary

-155-

Computer. During this setup phase the program obtains the basic descriptive
information on the problem (from the user or elsewhere), performs any requisite
initialization, and establishes all calibration information needed for subsequent
analysis. Up to this point execution of the code is serial. After completing
initialization, in this example, exact binary copies of the program (as it exists in
memory) are downloaded into each CPU in the Multiprocessor Array. Execution of
the program on these CPUs then proceeds both asynchronously and in paraliel.

The functions of input and output operations for the Multiprocessor Array are
assumed by the Input and Output Processors respectively. Information is carried by
switchable memory blocks. Zeroing memory in any data stack may be carried out
by special hardware Zero Processors, A threading sequence determines the
processor order in which a memory block is switched through the system. In this
example, a user specified threading sequence of Zero Processor, Input Formatter,
CPUs, and Output Formatter designates that all memory blocks will be connected
in a cyclic manner to each of these processor classes (in this example all CPUs are
assumed to be identical). Thus each block would first be attached to a Zero
Processor to be cleared, and then switched to the Input Formatter.

The Input processor is designed to receive external data whose description,
characteristics, and origin are specified initially at the job control level. This
processor may simply store this data directly into attached memory blocks or,
alternatively, process the data in a specified fashion prior to storage. The filled
block would, as defined by the threading sequence, then be attached to any
available CPU requesting data. After connection the memory block appears to the
CPU (and resident programs) as directly addressable memory, thus permitting
instant access without any of the attendant dead time that input or output usually
implies (a memory block switch requires about 50 ns).

After completing the calculations, an analysis code typically stores the results
back into its current memory block and the program requests more data. This
memory block (with results) would, as specified by the threading sequence, then be
attached to the Output Formatter. This processor may block or unblock
information, as required, and transmit the results to to a variety of user (or code)
specified output devices. On completion of this final process, the entire threading
sequence is repeated. All processors in the sequence are, of course, aperating
independently and in parallel. The actual memory block/processor cycle and co-
ordination is controlled by hardware and supervised by a microprocessor called the
Conductor.

B. Circuit and Packet Switched Operation

Operation of the system can also take the form of a circuit-switched network
in which interprocessor connections can be made or broken as necessary to
accomodate exchanges of information. In this environment the switched memories
play a static role in that they serve as communication pipelines. The processors
play the active role and switch between specific Memory Blocks to establish
(buffered) communication channels. In ‘data-flow’ operation, the system software
prohibits multiple processors from simultaneously attaching to the same memory.
Exactly the opposite is true in this case, since any number of processors may be
attached to the same Memory Block. Access to the memory is controlled by
system routines which select and partition the memory according to the global
interconnection requirements requested. A dedicated region of a particular Memory
Block is established to handle communication between two specific processors. This

-156-

region is, in turn, divided into two parts to separate read and write operations -
the write area for processor A is the read area for processor B and vice versa.
Utilizing this mechanism, it is possible to create most connection topologies.
Partitioning a Memory Block inta four regions (8 parts) permits four processors to
be connected in a square lattice (with a minimum communication bandwidth of 5
Mbytes/sec). Six such Blocks E°”ld then be used to form a cubic topology such as
employed in the Cosmic Cube.

The memory partitioning is, of course, transparent to the user. A connection
topology is supplied to the Secondary. System handlers which utilize this topology
are then loaded with the problem. If a processor wishes to communicate with
another, the sender’s ID, the receiver’s ID, and whether the operation is a read or
write, is supplied in a call to the system routines. These routines determine the
appropriate Memary Block, the address within the block, and, if necessary, request
a system interconnect to the block. In this mode of operation Memory Blocks
themselves are thus invisible to the user. The system support for the mode of
operation is, at present, not complete.

The system can also be utilized in a packet-switched mode of operation. In
this case the Memory Blocks are used to carry information between processors and,
more importantly, between processor classes. After placing information in an
attached memory, the processor would store the destination code in the memory
sequence directory associated with the Memory Block (Figure 2). A system call
would release the memory which would be directed by the system hardware to the
first available processor of the class specified. If none were available, the block
would remain queued until satisfied. If all processors are different classes, then
information can be directed to a specific processor and two way exchanges are
possible.

Single Cluster Performance

The original development of the MIDAS project began in the fall of 1979. A
prototype was operational in January 1982 which consisted of 4 CPUs, 8 memory
modules, input and output processors, a bulk memory unit, and the high-speed
switching hardware (Conductor). This system was used to test the basic switching
network, the communication system and the control capabilities. A single complete
cluster, similar to the configuration shown in Figure 2, was completed in February
1983. This system has been used for performance studies, software development
(system, language, and application), and to investigate the application of real
problems to a multiprocessor structure. Although some modifications, of the
original programs were required to operate in a parallel environment, these
changes generally were not extensive.

To date a variety of codes have been run on the MIDAS system, with
requirements varying in characteristic from I/O intensive to CPU intensive. In the
following we describe two general classes of problems which serve to illustrate
important areas of programming for this system, The first is a scientific data
analysis program. This example illustrates the programmed wuse of the bank
switched memories for problems that have high 1/O requirements and how the
inclusion of hardware processors within the threading sequence may enhance solution
performance. The second area deals more with a class of problems that may be
loosely grouped under the heading of Monte Carlo codes. These examples will
serve to show how coordinated calculation between the Secondary and the third
levels may be achieved.

-157-

A. Analysis Problems

One class of problem examined involved scientific data analysis. These
problems are usually characterized by requiring frequent input of information,
utilizing moderately heavy integer and floating point calculation, and requiring
access to large global arrays. Interprocessor communication requirements are nil
and output requirements may vary from little to significant. Typical results of one
such test are shown in Table 4. This illustrates how the problem execution time
and external I/O requirements vary with the number of processors. If processor
contention is negligible and each processor is able to contribute its complete
capability towards the solution of the problem, the relative speed would simply
equal the number of CPUs employed. As indicated, the speed increases observed in
the problem tracked exactly with the number of CPUs used in MIDAS. This result
was, with one exception, obtained in all the analysis prablems examined.

The single exceptiﬁ) consisted of a gamma-ray analysis program written in a
language called EVAL.”™ This program primarily sorted large volumes of data and
required only logical and integer operations. The test results for this problem are
given in Table 5. Using more than 6 PAM units failed to produce any significant
increase in performance. Analysis of this situation indicated that the commercial
disc controller used in the test was not able to supply information fast enough to
keep up with MIDAS’s processing capability. This controller was unable to sustain
a continuous data transfer rate of greater than 640 Kbytes/sec, and six processors
were sufficient to completely handle this rate of information transfer.

The error bar indicated in Table 5 represents the uncertainty (or lack of
reproducibility) of the execution time due to random factors (e.g., disc latency,
head position, etc.) in the measurement, These factors become more important as
the amount of disc I/O increases. The fact that relative speeds are slightly
greater than n, the number of processors, is not considered statistically significant
although it does suggest that the pipelined 1/O processors in MIDAS may become
mare efficient as the rate of data transfer increases. Possible restrictions in
handling highly I/O-intensive problems were anticipated, and will be alleviated when
the construction of a specially designed Multiported Programmable Controller is
completed. This unit is part of the planned parallel Mass Storage Subsystem. The
controller features 3 independent channels of look-ahead, dual-track buffering and is

Table 4
MIDAS Phase 2 - Relative Performance
Problem: Average CPU and I/O Mix

Time Relative 1I/0 Rate
(sec.) Speed (KB/sec.)

1 PAM 372 (0 34

2 PAMs 186 2.0 69

3 PAMs 124 3.0 104

4 PAMs 93 4.0 139

5 PAMs 74 5.0 174

6 PAMs 62 6.0 209

7 PAMs 53 7.0 243

8 PAMs 46 8.0 277

~158-

expected to sustain transfer rates of over a Mbyte/sec. per drive.

One Fortran analysis program, typically requiring about an hour of CDC 7600
CPU time per 1600 BPI tape of data, was adapted to the MIDAS system. This
code was ui%d to perform the initial analysis of data collected by the LBL/GSI
Plastic Ball. The program analyzes up to 3000 parameters which are measured
every time a relevant event occurs within the spherical system. This analysis
essentially includes the reconstruction of the physical occurrence, involving the
determination of particle identities, energies and spatial co-ordinates within the
ball. It is heavily dependent on floating point calculations and was used to
benchmark the current MIDAS system. Details of Fortran extensions implemented
on the MIDAS system and the softwai‘ﬁ modifications necessary to adapt this
program have been discussed elsewhere. Three tests were conducted with this
program. In the first case the code was converted with minimal changes, and
specialized processors were not used. Under these conditions MIDAS executed the
program at 70% the speed of the CDC 7600. (The CDC execution times measured
only CPU seconds and excluded both system overhead and I/O time; the MIDAS
times were total processing time, including I/O.) This code was then modified
slightly (about 10 Fortran lines) to utilize the hardware zeroing processors and
buffering capabilities of the architecture. This modified code executed at 87% the
speed of the CDC 7600. The final modification involved using the Input Processor
to carry out the formatting and expansion operations (on the initial compressed
data) that originally was performed in the program. This function is done in
parallel with the CPU operations, and the corresponding code was deleted in the
program. lnder these conditions, MIDAS will perform about 16% faster than the
CDC 7600. In each of these cases the relative MIDAS speedup equaled the number
of CPUs utilized.

B. Monte Carlo Simulation Problems

There has, in recent years, been considerable discussion as to whether Monte
Carlo programs could be efficiently converted to parallel operation on SIMD or
vector architectures. The Monte Carlo approach is a technique, not a program, and
whether a program utilizing this technique is amenable to SIMD (or MIMD)
decomposition depends primarily on the application itself and how the technique is

Table 5
MIDAS Phase 2 - Relative Performance
Problem: 1/O Intensive

Time Relative I/O Rate
(sec.) Speed (KB/sec.)
1 PAM 130) 99
2 PAMs 61.4 2.1 210
3 PAMs 41.2 3.1 314
4 PAMs 30.6 4.2 420
5 PAMs 25.5 5.1 510
6 PAMs 21.0 +0.5 6.2 +0.2 620
7 PAMs (20.3 6.4 640)*
8 PAMs (20.3 6.4 640)*

*Performance limited by commercial disc controlier

~-159-

employed. It is usually true, however, that Monte Carlo techniques tend not to run
efficiently on vector processors.

Several Monte Carlo programs were investigated and adapted for the MIDAS
system. The results for three such problems will be briefly examined. The first
used Monte Carlo techniques to study reactions in a many-body system. The
distinctive aspect of this problem was that calculation produced relatively frequent
bursts of information at random intervals which had to be stored on disc. In an
asynchronous environment, frequent random output requests from the different
processors could lead to instantaneous bus contention or delays. This difficulty was
avoided in MIDAS by utilizing the switched Memory Blocks to derandomize the
requests. The actual output was handled by the Output Processor from completed
Memory Blocks, and in parallel with CPU activity. The CPUs simply switched to
an empty block and continued operation. Test results showed the problem executed
with 100% efficiency on the single cluster system (8-fold speed up for 8
processors). Since each cluster contains its own independent I/Q busses and Output
Processors, the architecture would be extensible for this problem.

The second case involved a simulation of the decay of equilibrium and non-
equilibrium dinuclear systems. In contrast, this problem involved essentially no 1/O
activity., A distinctive feature was that it required frequent random access to
large arrays. Although the problem itself was easy to decompose into independent
parallel code, the requirement that all processors have full access to a single global
memory could not be partitioned - either in terms of time or locality. This is due
to the nature of the Monte Carlo technique itself and meant that each processor
would frequently, at random intervals, need to address and update random memory
locations. Classic problems of memory contention and conflict arise when more
than one processor simultaneously attempt to access or update the same locatio
Indeed the intelligent "fetch-and-add" capability of NYU’s Ultracomputer project
was specifically designed to avoid such conflicts.

These problems were avoided in MIDAS by using the Bulk Memory unit (Figure
1) to store the global arrays. Contention was resolved by using the switched
memory in each processor to buffer multiple address requests, and conflict was
eliminated by using the Output Processor to serialize the actual memory operations.
Since this is a 20 Mbyte/sec. pipelined processor, it is capable of simultaneously
reading a 32-bit word of information from a switched Memory Block, processing
information (e.g., routing, reformatting, calculating address offsets, etc., if
required), and outputting a word of information, every 200 nsec. Information in the
bulk memory unit can be updated efficiently since this device has a read-modify-
write cycle. Thus in the MIDAS implementation of this problem, contention was
avoided, CPUs were never delayed waiting for pending requests, and the system was
again able to operate at 100% efficiency and delivered an 8-fold speed up with 8
processors.

The third problem of this type calculated the eigenvalues of many electron
systems by utilizing a Monte Carlo approach to the solution of the time-dependent
Schrodinger equation. The problem had essentially no 1/O requirements and could
be decomposed so that memory accesses could be localized to each processor. This
problem required neither the switched memories nor any of the specialized auxiliary
processors, It was decomposed into a master/slave configuration with the
Secondary Computer as master. All communication was carried out between the
master and respective slave units,, Details of the implementation of this problem
have been described elsewhere. It is mentioned here because the initial

-160-

implementation of the problem required periodic synchronization of all parallel units
by the master. With this condition, test results indicated the system performed at
95% efficiency with eight processors (or a speedup equivalent to 7.6 processors).

A test case of the calculation was performed for H,, an important transition
complex whose eigenvalue determines the rate of free” radical exchange irlsthe
reaction H + H, -> H2 + H. On a VAX-780 this calculation took 434 hours of
CPU time to regch an“error bar on the eigenvalue of 0.0004 hartrees - a level of
confidence that is needed to make thermodynamic estimates on rates. The same
calculation, implemented as indicated above on MIDAS, using 8 CPUs on the third
level, took 67 hours to reach the same statistical significance, a factor of 6.5
times faster. This speedup is consistent with previously benchmarked estimates of
the speed of individual MIDAS processors (ModComp 7860) versus the VAX-780, i.e.,
the 7860 is about 85% the speed of the 780 for this code. A similar calculation
for the N, molecule, which is currently in progress, is estimated to require
approximatély 1000 hours of MIDAS time to reach needed statistics. The addition
of more memory to the processors {currently in progress) should permit the problem
to be handled in such a way that only one global synchronization will be necessary.
In this case the efficiency should be essentially 100%.

Future Directions

Test results indicate that the 1/O capability of a single cluster can support
more than the present 8 processors. The number of processors can easily be
doubled or tripled by duplicating the current time-multiplexed handler on the two
unused busses (Figure 2). New and faster CPUs will also be used to replace the
current processors. The addition of other special-purpose processors, including array
processors, is also under investigation. These devices can perform specific
calculations, or algorithms, which are not amenable to parallel approaches (either
vector or multiprocessor). Such processors can easily be incorporated on a vacant
memory bus (Figure 2) and accessed through a switched memory from code in a
manner analogous to a hardware subroutine.

The performance discussed thus far has been for a single cluster. Plans are
underway to develop the 3-level structure which will be able to accomodate
between 5 and 10 multiprocessor subsystems (as illustrated in Figure 5). By
controlling the second-level switching network, the Primary can then use muitiple
clusters on individual problems in a similar fashion to the way a Secondary uses
multiple processors. The subsystems could either be working on independent
problems or different aspects of the same problem, depending on the setup
conditions specified by the Primary, and like individual processors within a
subsystem, they can be flexibly employed in any parallel or pipelined configuration.
A full three level system could support up to 270 processors. Using more than
about 10 subsystems might require adding a fourth level to the system. The Phase
3 effort will, in addition, require the development of a multi-bussed, parallel-
processor mass storage environment and a high-speed, interactive system.

Summary

The objective of research on the MIDAS project is to demonstrate the viability
of a multiprocessor approach to computing and to develop a general purpose,
extensible architecture which can be used to address the growing computational
requirements of the scientific community. To be successful in this endeavor,
however, requires more than simply designing, or even constructing, new hardware
structures, To achieve high performance on future systems will require software

-161-

approaches which can exploit parallel architectures as fully as possible. A critical
issue, therefore, is to understand the functional requirements of a large class of
applications. The requirements must be critically examined and, in many cases,
new approaches to old algorithms investigated. For highly parallel systems to be
effectively utilized, they must be flexible and adaptable to specific application
requirements, In particular, they will probably need a variety of control and
communication me