
-69-

DR; ARVIND
Massachusetts Institute of Technology

Among many machine projects at MIT, including the

"Connection machine" Jack Schwartz alluded to, are two major

data-flow projects. I am going to review one of them, The

Tagged-Token Data-Flow Machine. The goal of my project, simply

stated, is to design a general-purpose parallel computer in which

all processors will cooperate to solve one problem. Clearly we

are interested in big problems, and the question of "What is

general purpose computing? II has to be understood in that

context. If an application does not have any parallelism, we are

no magicians and therefore we can't invent it. However, many

applications have plenty of parallelism and one can build a

useful machine to E!xploi t parallelism in a large class of

applications. Table J[lists some characteristics of typical

applications which have massive amounts of parallelism.

Table I. Parallel Applications and their Characteristics.

Number Crunching, e.g.,
-Scientific Computing
-High performance
-Simple data structure - arrays

Symbol Manipulation, e.g.,
-AI type applications-algebraic simplifier
-Complex data structure
-Higher order functions
-Structure of the program itself is important

Concurrent Real time Computing, e.g.,
-Process control - Missile defense system
-Number of asynchronous inputs
-Adhoc hardware structures
-No' coherent functional view

-70-

In the area of symbol manipulation also, there are lots of

programs with parallelism except that these programs are not as

well understood as scientific computing. One reason is that

algorithms in AI programs are not so stable. AI Programs tend to

be far more complex then scientific programs. I understand

Professor Wilson's concern that in scientific computing the

equations are spread allover the program. In AI programs, often

there are no equations: the program is the sole document of the

algorithms used and the programmer's intentions.

While it may be hard to substantiate, I believe that if

there is a large program which runs for long periods of time then

it must have parallelism. I think it is impossible to write a

100,000 line Fortran program which runs for 2 days and which is

devoid of parallelism. So I am proceeding from the assumption

that if you have a large program you must have parallelism, even

though you may not know about it. The third class of

applications (see Table I) that I am interested in, is concurrent

real-time computing, that is, complex process control. In a

chemical refinery, one may find 1,000 one-board computers doing

calculations in various parts of the system. Generally people

don't view process control systems as application programs

because they don't have a good model of parallel computing.

I have to do a little bit of preaching here. First of all,

Fortran as a computer language won't do for parallel computing.

This is not because the scientific programs cannot be written

well in Fortran. Actually Fortran is expressive enough for these

applications because most of the scientific computing involves no

more than simple do-loops, and arrays and matrices as data

-71-

structures. The problem is that by the time an algorithm has

been coded in Fortran, lots of parallelism has been obscured.

Compiler designers have to work very hard to uncover parallelism

that the Fortran programmer has obscured inadvertently. The

theory of compilers for parallel machines may be well understood,

but such compilers face many practical problems in optimizing a

large (say, 50,000 line) code because of interprocedural and

global data flow analysis. We should allow the scientific

programmer to express the problem in such a way that the code

retains whatever parallelism there is in the first place. The

issue is not whether people "think parallel" but rather if they

have tools languagE:!s and compilers which do not make the code

unnecessarily sequential.

On the hardware side, I don't believe that mUlti-processing

based on commercial processors can work. To employ many

processors on one problem requires a fundamental change in the

architecture of the processor itself regardless of what is done

with the switching networks and memory structures. This change

is already taking place in very high performance units. For

example, in the Cray-l one finds that the concept of Program

Counter (PC) is rather fuzzy. It's not as "focused" as the PC in

a Motorola 68000 microprocessor where one knows precisely which

instruction is being executed. Instructions can often be

executed out of order to increase performance in a

high-performance system. By suitable use of interlocks a machine

designer can make this shuffling of instructions transparent to

the user. The negative effect of large memory latency on

performance can be avoided only by changing the sequential nature

-72-

of the processors. My point is that we must accept and confront

the fundamental limitations of single PC based machines so that

processor designs would not appear to be a collection of

"hardware hacks" implemented to achieve high performance.

I am going to propose a radical solution: change languages

to func~ional-!~ngu~ges and the basis of the architecture

underlying the hardware to data-flow. I believe change in both

language and architecture is required because that's the only way

to get the best performance out of machines. Fortran is ideally

suited for conventional Von Neuman computers. Nobody has been

able to displace Fortran because the match is so perfect.

Anytime something fancy is done to Fortran it's compilation

becomes inefficient. Anytime changes are made in the

architecture, changes which can't be exploited by a Fortran

compiler, we either pay in terms of increased programming effort

or underutilized hardware. The symbiosis of language and

architecture has to be maintained, and I think this will happen

with functional languages and data-flow architectures.

Here is a thirty-second explanation of functional languages

and data-flow (see Fig. 1). Functional languages are really much

closer to the way scientists and engineers think about problems.

I have a harder time with computer scientists because they

already know programming. If someone dosn't know programming

they are much better off starting with functional languages,

because basically one has to know only primitive or base

functions like plus, minus, test-for-zero, and rules for

combining functions. Rules for combining functions are simple

function composition, conditional composition and recursion.

-73-

Composition of functions is something that engineers and

scientists understand very well. To take the trivial example

shown in Fig. 1, the program, f(g(a,b),h(a» may be written as

Le t x = g (a, b) ;
- y = 1'1 (a);
in f(x,y).

It almost looks like an imperative program where first x is

computed, then y is computed, and then x and yare substituted in

f. However, note that if one thinks in terms of functions, one

doesn't ask absurdly simple questions like can g and 1'1 be done in

parallel. Of course they can be done in parallel since they are

functions, and functions don't effect each other. The value of

sin(x) does not get affected by the evaluation of cos (x)l Those

are the kind of beautiful properties functional languages have.

They are also easie:r to program in and eventually they will be

more efficient to exe!cute than imperative languages. Today,

functional languages are compiled on sequential machines and the

compiled code is inefficient because the underlying architecture

is not well suited to the task. It should be noted that this

problem is analogous to the problem of Fortran compilers which

generate very inefficient code for data-flow machines.

Figure 1 shows the connection between functional languages

and data:-flow graphs. It is easy to view the composition of

functions in terms of data-flow graphs. Each box in the graph

represents a function which can be a plus, minus, fast Fourier

transform or even a linear equation solver. Boxes are connected

by lines which represent data-dependencies among functions. The

excution of these programs can be thought of in terms of arrival

of data along thesle lines at a box, the box being enabled and

-74-

then "firing" or executing. Finally data is produced as results

and is forwarded to other boxes. The natural consequence of

viewing things in this manner is that any operator that is

enabled can be fired. So the default i.s parallelism here, the

execution is constrained only by the data dependencies. Note in

Fig. 1, f cannot fire until h has finished execution: however,

after g has output something, it can accept the next round of

data and start computing with it. So given a stream of data, g,

hand f may all fire simultaneously.

Next, lets consider the possibility of queuing tokens on the

arcs of a data-flow growth. Let's label each token with its

destination instruction address and its position in the queue.

As shown in Fig. 2, the ith token as well as the i + 1st token

may be in the queue at the same time. Why am I doing all this?

Because I would also like to exploit, what I call, temporal

parallelism in programs. If there are enough processors and

several sets of tokens on input arcs, I should be able to perform

several firings of the same function simultaneously. This is the

kind of parallelism my machine would exploit. The basic rule in

the abstract machine is that whenever two tokens have the same

label they get together, the instruction specified in the label

is fetched, and the operation specified in the instruction is

performed. Thus, as stated earlier, you should think of a token

as carrying a name (a tag) and some data.

-75-

f (0 (a, b), h (a >.)

a

f

Fig. 1. Functional languages and data-flow. Here g and h can be
executed in parallel; execution of £ and g may also overlap.

1
I
I

p

I • .~

L • .~
f

"

I 2..
r

It :

s:

s·L +

S·

Fig. 2. The U-interpreter. A scheme for tagging tokens. Each
distinct execution o:f an operator is given a unique (activity)
name, each token carries a destination activity name.

-76-

What kind of machine will execute in this manner? Figure 3

shows an architecture consisting of N identical Processing

Elements (PE's). It doesn't matter, as far as the functionality

of the machine is concerned, how the processors are connected.

The interconnection network may affect the performance but is not

reflected in the programming model. We assume that every

processing element is capable of sending tokens to any other

processing element. Figure 4 shows the internal structure of a

processing element and is important to understand because it's

very different from a conventional Von Neumann computer. A token

carrying a tag and data arrives at the processing element. The

first thing the token encounters is the Waiting-Matching section

which is initially empty. Remember our abstract machine has the

very simple rule that when two tokens have the same label they

must get together. If the token finds its partner in the

Waiting-Matching Section it goes to the Instruction Fetch

section, otherwise it "waits" in the Waiting-Matching Section.

The Instruction-Fetch Section has a program memory associated

with it.

-77-

-E/
I

I \
NxN ,,

PE PACKET
,

I

COMMUNICATION

• NETWORK •
• •
• •

--G
Fig. 3. An oVE~rview of the proposed archi tecture.

":78-

<d = I , opcode , data) <d =0 , tag, data)

Waiting

Matching

~ag ,datal' data~

- structure
Storage

Instruction
Fetch

Program
Memory

d=O
<tag, data)

oy

<d=1 ,opcode, data)

Fig. 4. One processing element.

-79-

The instruction at the! address indicated by the tag in the packet

is fetched. The fetched instruction says for instance, a-ha I am

an addition operation. After this the operator and the operands

are passed to the ALU. Notice the difference from a conventional

computer where after the instruction has been fetched, the

operands indicated by the instructions are fetched from the

memory. Only then something is done with the operands in the

ALU. In our processor, instruction fetch is done after the

operands have arrivE!d to find out what is to be done with the

operands. You can have any type of Arithmetic Logic Unit here.

The ALU produces data as well as tags for the data. Finally the

processor outputs the results packet. This is how one Processing

Element which is a complete computer in itself, works.

Now, if two such devices are available how will we make use

of them? Well, a very simple strategy can be followed. One can

say all the tokens with even tags remain on the left-hand

processor and all the tokens which have odd tags should go to the

right-hand processor. (Of course, more sophisticated schemes

than this can be im.agined.) This will automatically divide the

work, roughly equally, among two PE's. Many different strategies

for distributing work are supported by our machine. The

important point is that no central authority is involved in

distributing work. The Output Section only deals with the input

tag and data, and a copy of the program to generate a new tag,

and hence, the number of the number of the destination processor.

The data structure storage in this machine has something

similar to the HEP cClmputeri there are extra bits assiciated with

each word of the memory. As shown in Fig. 5, these bits indicate

-80-

whether a word is empty or full. If a "read" is attempted on an

empty word, the I-structure storage controller remembers the

destination (i.e., the tag) where the data should be forwarded

whenever it is stored in the word. The "store" operation causes

the status of the word to be changed to "full," and in case there

are deferred reads, the data to be sent to the destination of the

deferred read operations. This type of storage, I think, is

essential for high performance multiprocessor machines to avoid

the so-called "read-before-write" problem.

Now, I will describe the communication system. Every PE is

provided a 4x4 or 8x8 switching element and switching elements

are connected to each other in any reasonable topology (see

Fig. 6). A switching element receives a token (a packet) with a

destination address on any of its input parts. Packets arrive

asynchronously at the input parts and, hence, several packets may

arrive simultaneously at a switching element. The switch looks

up the destination address in a table which is kept inside the

switch. The table essentially tells which output ports will take

the packet closer to its final destination. If any of these

output ports is free the packet is forwarded, otherwise it is

held in a buffer in the switch. Basically the communication

system is a store and forward packet communication network of

very flexible topology.

....] [B B B E·
XO ~ Store (Xo ,Q , v)

....~ 11 (,,) B B B E·
XO

cell is free

value is written in the cell

or more reads are performed

cell IS declared free

Fig. 5. I-structure storage.

Fig. 6. Communication system.
elements.

An interconnection of switching

Next, I want to describe what we are building. We started

out four years ago thinking, rather naively, in terms of custom

VLSI chips. We hoped that our PE would fit in a single chip.

This dream did not last long but we still hoped that the PE would

fit at least on one board. It took another year to realize that

the amount of custom hardware we would have to build to fit the

PE on one board will involve seven custom chips of M68000

complexity. A hardware project of that magnitude is just too

risky. That is to say, we would never have been able to find out

if our archi tecturE~ was defect i ve or if the hardware was flaky.

It's clear to us that: we are in the business of testing an

architectural idea and therefore it is necessary to take a fairly

conservative approac:!h to constructing hardware. Even the

ultimate speed of the machine is not of real importance to us

except to the extent that it should be fast enough to run some

real user code. Ii: doesn't have to be as fast as a Cray-l, but

it has to be fast enc)ugh so that an application programmer who

spends time programming the machine does not feel that his time

has been wasted. In this way a programmer will get a taste of

the future, at leas·t as far as programming is concerned, and can

take comfort in the fact that the next version of the machine may

be faster than any s,equent ial computer.

Thus, at some point we gave up the idea of building a real

machine and decided to simulate as well as emulate the

architecture. Since we had simulated an earlier version of the

machine and were aware of the effort required, we were not

thrilled about simulation initially. The push towards simulation

came from IBM people. They said look if you guys really want us

-84-

to believe the potential of your architecture, you have to

simulate the machine in a fair amount of detail. A cooperative

effort with IBM Yorktown is underway now. We have received the

gift of an IBM 4341 with 16 megabytes of physical storage for

simulation experiments. We are running the same simulation

program at Yorktown and MIT, and we hope to start running

experiments on the simulator in the fall. This system is already

about 250 pages of Pascal Code and it may grow by another 100 or

150 pages when the code to monitor the performance of the

data-flow machine is included. My guess is that it will take

about 24 CPU hours on the IBM 4341 to execute about 20 million

data-flow instruction. Twenty million instructions do not

represent a large time on a supercomputer, but prop~rly designed

simulation experiments should increase our understand~ng of the

dynamic behavior of data-flow programs.

In order to execute even more instructions per experiment we

are building a Multiprocessor Emulation Facility (MEF). The

facility, funded by DARPA, will consist of 64 Lisp Machines

connected together by a high bandwith packet communication

network. The Lisp machines are of the Symbolic 3600 variety.

Most of you are probably not familiar with these machines. Well,

a Symbolic 3600 is a single user machine costing about $90,0001

The minimum configuration consists of 2 megabytes of storage per

processor. The interconnection network which is being designed

by. us will provide a bandwith of 4 megabytes per second per port.

We think a 3600 will not be able to generate more than this much

traffic if it is doing any useful computation.

-85-

We will make the MEF behave like the data-flow machine by

making each 3600 emulate a Processing Element. Thus, 3600's

won't look like Lisp machines, and the Lisp run time environment

won't play any role in the emulated data-flow machine. However,

Li.sp machines provide a sophisticated programming environment and

we are doing all our program development in Lisp. It should be

noted that the internal parallelism of a PE would be emulated on

a 3600 (which is a sequential machine) by multitasking or virtual

concurrent processes.

Figure 7 shows the complete Multiprocessor Emulation

Facility. Because this facility is going to be very expensive,

external users will also have access to it. Only 8 of the 64

machines in MEF will be full machines while the rest will be

without disks and displays. The terminals on full machines may

be thought of as operator consoles on a main frame. Of course

the system will be connected to local networks, so that remote

program development can be done. It will be possible to do the

development of an interpreter for a novel architecture on a local

Lisp machine, and then ship the interpreter to the facility. In

a sense this emulation facility"is an analog of a big accelerator

laboratory, where people would come to do experiments after

having designed theil::' experiments at home.

-86-

MIT Local Area Networks

MEF

Local
consoles

* Personality Development

.. Interactive processing

Local Dial-up

ASCT I terminals

"* Interactive processing

Remote Development

... Personality Development

.. Remote processing

Fig. 7. MUltiprocessor Emulation Facility (MEF).

