
~.", •• t.;('H,l JdDif.it;p't 'l , j

""*"-...-- """ ",

..::;:."'"
I

:t
! 1

f

d:j
t ;. j

•

Fermilab Industrial Affiliates
Third Annual Meeting, May 19,1983

Sponsored by Fermilab
And the Fermilab Industrial Affiliates

A
V

Fermi National Accelerator Laboratory
Batavia, Illinois

Operated by Universities Research Association Inc.
Under Contract with the United States Department of Energy

-iii-

FOREWORD

The annual meeting of the Fermilab Industrial Affiliates

provides an opportunity for research directors and senior

technical personnel from the Affiliates and other companies to

visit Fermilab and see first hand the on-going work of the

Laboratory.

This year's meeting focused on supercomputers with a Round

Table on Supercomputer Developments in the Universities. The

round table grew out of the establishment of an advanced computer

program at Fermilab headed by Tom Nash. That program has studied

the possible approaches to supercomputers over the last year and

a half. An active seminar series has brought in many university

and industrial speakers in the computer area. At the same time,

there has been growing national recognition that the U. S. must

continue to play a role in the development of very powerful

computers in the face of determined foreign competition.

The round table was spearheaded by Dr. Ken Wilson of

Cornell, the 1982 Nobel Prize winner in physics. He emphasized

that universities were good prospective buyers for the first

model of a computer. They can do prototype software development

and undergraduates do not mind the problems associated with

getting the bugs out.

Other participants included the moderator and token

industrialist Dr. Burton Smith of Denelcor, Dr. Arvind of MIT,

Dr. Norman Christ of Columbia, Tom Nash, Dr. Jack Schwartz of

NYU, and Dr. David Wallace of Edinburgh.

-v-

TABLE OF CONTENTS

Page

Dr. Kenneth Wilson .. 1

Dr. David Wallace •• 27

Dr. Jack Schwartz •• 37

Dr. Thomas Nash •• 47

Dr. Norman Christ •• 57

Dr. Arvind ••• 69

Panel Discussion ••• 87

Fermilab Industrial Affiliates 119

-vii-

THE PARTICIPANTS

Dr._Arvi~~ is on the faculty of Electrical
Computer Sciences of the Massachusetts Institute
He is an expert in data-flow concepts.

Engineering ann
of Technology.

Dr. B. Norman Christ is a Theoretical Physicist on the facilIty of
Columbia- UnIverslty. Professor Christ is interested in using
numerical methods to predict the fundamental quantum field
theory. He is presently developing a special-purpose parallel
vector processor to deal with such problems.

Dr. Thomas Nash is Deputy Head of the Fermilab Physics Department
and Head of the Advanced Computer Program. He was one of the
major designers of a super high-speed modular processor developed
at Fermilab.

Dr. Jack Schwartz is a Professor in the Courant Institute at NYU.
He IS-Interested in machine architectures, programming languages
and robotics. He is a member of the National Academy of
Sciences. Dr. Schwartz is a principal mover behind the NYU
Ultra-Computer Project which intends to produce a large scale
fully parallel Super Computer in the early 1990's.

Dr. Burton Smith is Vice President of R&D of Denelcor, Inc. and
concurrently--Professor of Electrical Engineering at the
University of Colorado, Denver. The Denelcor HEP is the first
commercially available MIMD (parallel) Super Computer.

Dr. David Wallace is a member of the Physics Department at the
University of-Edinburgh. He is now involved with a group at
Edinburgh doing theoretical physics calculations on the ICL
Distributed Array Processor.

Dr. Kennet~ Wilso~ is a Theoretical Physicist on the faculty of
Cornell University. He is interested in applying new computer
concepts to complex physical problems. He was the recipient of
the 1982 Nobel Prize in Physics.

-1-

DR. KENNETH WILSON
CORNELL UNIVERSITY

Recently I have been in a learning process about technology

transfer. The technology that takes place when you are dealing

with computers is wholly different in kind and in scale when

compared to any other form of transfer that I have been involved

with. Let me give you an example that you will hear more about

later. This hasn't resulted in technology transfer yet but one

can see the possibilities. It's pretty hard to imagine how one

would use a superconducting magnet of the kind they have here at

Fermilab to make soap. On the other hand, Tom Nash of Fermilab

has been analyzing the data analysis track finding programs that

are used here. He has found after consultation with the computer

science community that what they are doing is data base

technology. Even the soap manufacturer has to keep track of how

many kinds of soap he has and where they sell the best. This is

just what data bases are good for.

This is what I mean when I imply that there really is

something different in kind and scale for computing than

virtually any other aspect of the technology transfer process.

First I will consider a definition of a supercomputer, then

I will discuss the industrial supercomputer market, why it is

necessary, the relation of industry and university in that

market, and why I think that that market is presently too small

for the health of US industry. I will then consider the barriers

to progress in uses of supercomputers. Finally I will discuss

what is happening in the university community to try to deal with

these barriers.

-3-

office to shorten the time scale for all the paperwork that

accompanies any new product. The other reason is the conversion

from regional or national markets to world markets. This is

driving the intense competition which is the business climate

today. The businessman must take advantage of the shortened time

scales to playa role in the market.

One consequence of the shortened time scales and accelerated

rate of change is that the organization outruns internal

experience with the product, with product design, with materials

that go into products. There is not much use having 20 years of

experience in how steel behaves if one is switching to a new

composite material. When a business is in that situation it has

to change the basis of manufacturing rapidly. It is a situation

where basic science must often be sUbstituted for experience.

Now one of the ways of using basic science in an industrial

setting is through computer simulation, simulation of how a

product will behave. This is totally standard when the science

is just Newton's laws, the process of structural analysis for a

bridge, let's say. No one goes out and builds a bridge to Know

whether it's going to hold up or not. The analysis is done in

advance. The use of computers to do structual analysis is now

totally standard. There are a variety of fluid and gas flow

situations that are handled by simulation. A lot of the design

of aircraft now involve simulation of the flow of air past the

wing and other parts of the aircraft. Fluid flow simulations are

heavily used in the oil industry especially when they are trying

to understand what the oil does when they try to recover it. Not

that those slmulations are terribly successful all the time. The

-2-

What is a supercomputer? Well, a supercomputer in my

definition (everybody has a different one) is a computer with

high performance, targeted for scientific and engineering

applications, and at least as powerful as the most powerful

business data processing mainframe. The standard examples in

magazine articles about the competition with Japan consist of the

Cray machines which can be 10,20,30 times faster than a business

mainframe or the CDC 205. Many of these stories fail to mention

that our moderator, Burton Smith, is also the architect of a

supercomputer which is in fact much more original than the Cray

or the CDC machines. There are a variety of other computers of

different kinds that fit the definition that I have given. This

is one of the difficulties in dealing with the subject. It is

not simply Cray and CDC anymore. For example, the company that I

have worked most closely with, Floating Point Sytems, makes what

are called array processors. I won't have anything more to say

on what an array processor is except I've carefully crafted the

definition so their products fit too.

Why are supercomputers important? Let me step back for a

bit and let's look at what is happening today. Industry, all the

non-defense industry and to some extent the defense industry too,

faces shortened time scales for research and development. It's

no longer true that one can develop a product and expect most of

them to last 20, 50, or 100 years on the market before a

replacement has to be designed. There are two reasons for these

shortened time scales. One is that the impact of computers makes

possible the shortened time scales with computer-aided design and

computer-aided manufacturing. Now we even have the computerized

-4-

area where one would dearly love to use simulation, and it is

useable in some circumstances but not all, is for microscopic

problems, or problems at the molecular level. This is for the

properties of materials, the equations of state of various kinds

of substances and so forth. That is in an area where a lot of

basic science is needed but there are some things that can be

done.

One example where microscopic

created a lot of problems was

pipeline through Northern Canada.

science was involved that

the question of a natural gas

This had to go through the

region of the permafrost. What nobody was able to figure out was

how strong the pipe would have to be to withstand 20 years of

changes in the permafrost around the pipe and the pressures that

would be put on the pipe. That's not something where one can go

out and do an experiment, because the pipeline was needed

immediately and not in 20 years. That gets into the subject of

soil science. It happens that the world's expert on frost in

soils is at Cornell. That's how I learned about the problem.

Another example with which I am more familiar in this whole

problem of progress outrunning experience in industry is the

situation in the high performance computing business itself where

the industry presently faces the problem of switching from

sequential processing to parallel processing. The need for

parallel processing is simple and obvious. It is just that

components of computers are becoming extremely powerful because

of very large scale integrated circuits, and extremely cheap.

However as computing becomes cheaper, while every other aspect of

research and development gets more expensive, industry has to put

-5-

a larger fraction of its Rand D investment into computers. Even

though a computer comes down to a cost of several thousand

dollars, the industry has to spend many millions of doliars on

computers. The most efficient way to spend those million dollars

would be to buy lots of 1000 dollar computers and have them run

concurrently. But the computer industry has absolutely no

experience in how to design parallel computers, has no experience

in how to persuade their customers to buy parallel computers, and

the users of computers have no experience in how they would use

such parallel computers. I should say when I say there is no

experience in design, about the sole exception is our moderator

here, Burton Smith, which is one of the reasons he is our

moderator today. When I talk to industrial computer designers

they make no bones about the fact that that is the problem that

is preventing them from moving towards parallel processing.

Now what is the role of the universities? I am not going to

talk about the role of the universities in the traditional way -

advance research which then leads to industrial advance research

which leads in turn to industrial research and development and

finally a product 20 years later. That is the typical technology

transfer process. This was true, for example, for the laser

which was invented around 1959 or 1960 and went through all those

stages before it became an extremely important part of industrial

communications.

But when we corne to supercomputers the role of the

universities is in the supercomputer market. We have a role in

research and development but, for example, when we deal with

Floating Point Systems we go through the Vice President for

-6-

Marketing. We don't go through the Research and Development

Group at Floating Points Systems. That is because we have a role

in the market, and, of course, when one has a role in the market

the research and development role is subsidiary to that.

What is the role of the universities in the market? The one

that is most obvious to everyone is the training of people and

specifically the training of people who know what supercomputers

are good for and who know what they are not good for. It is

perfectly clear in the visits that I have made to industry that

they suffer a very serious lack of people with that kind of

training. That is, people lack the training to recognize

opportunities for the use of large-scale scientific computing in

an industrial setting. That is one of the reasons that when you

talk about large-scale scientific computing in the business

community they have it pigeon holed. There are a few areas which

everybody recognizes where one has to use large-scale computing.

These include structural analysis, aerodynamic simulation,

seismic processing in the oil industry, and circuit optimization.

I f the application is not on the list, then the assumption is

that large-scale computing is not involved. That is nonsense.

The problem is there is a lack of people who can identify new

areas where large-scale scientific computing should be involved.

It is not only a question of training people. This is

graduate training, advanced training. (An undergraduate is

probably not going to be very helpful in this kind of problem.)

It is also a question of consultants because a consultant could

often help industry to figure things out. Unfortunately there

are very few people in the universities who are qualified to be

-7-

consultants when it comes to large-scale scientific computing,

because there is so little experience in the universities with

large-scale scientific computers. I must warn you specifically

that it will not do to go out and hire somebody with a Nobel

Prize and expect they will be able to help you on that problem.

Most of the Nobel Prize winners cannot help. You can tell it if

you start talking to them about large-scale scientific computing

and their eyes glaze over and they sort of look sour. That's not

a person to hire. There has to be a revolution in the

universities so that we start training not only the students but

the faculty in the realities of scientific computing.

There are also other roles that the universities play. Up

until now they have received very little credit for these roles.

Unfortunately when they don't play these roles the market suffers

and it suffers very severely. One important role is the testing

and demonstration of new large-scale computers as they come off

the assembly line. Universities are better suited than industry

to take delivery of model No. 1 or model No. 2 off the assembly

line than industry. This is because universities can live with

the prototype and lack of software and all the other minor but

exceedingly annoying problems that these computers have in their

early stages. The way it's handled is that professors decide

what is going to be done and students have to do the work.

Now one of the secret but very powerful resources that

universities have is their undergraduate population. There is a

fraction of those undergraduates who would just love to play with

computers. They will sit for hours waiting for something to come

back. It doesn't bother them; they don't cost very much; and it

-8-

doesn't hurt their morale to sit and wait. They can doodle; it's

all a game for them. It's programmers in industry paid $30-40

thousand dollars a year and always under the pressure of

deadlines that get disgusted when the computer doesn't work. Of

course their managers get disgusted too. What that means is we

don't want to think in terms of taking all those Cray l's which

are now obsolete, dumping them into the universities, and

considering that a favor to the universities. Rather the newest

supercomputers just coming off the assembly line, such as the

Cray XMP, or Burton Smith's Denelcor HEP, should be put in the

universities. Then the universities will start making use of

them early. They will also start the training process on their

students so that they will learn what those computers are good

for.

I learned about all this because five years ago we bought an

array processor at Cornell. We bought it simply because it was a

nice, very cost-effective device for research. The first hint

that made it clear that this was a different kind of interaction

than we had seen before with industry was when potential

commercial customers

questions like, "We

started

heard you

calling

just

us

got

up

llie

and asking us

Floating Point

Systems ' array processor, what do you want it for? Does it work?

Is the software any good? What applications do you have in mind

for it?" All of these are very practical questions that someone

wants the answers to before they go out and buy a computer. In

other words, we just acted as an information exchange. And of

course they also liked to know what is the competition, are the

competitors products any better, or any worse, and why? Because

-9-

they are open, the universities are a good resource for this.

They are open for someone to call up and ask us questions.

Nothing we do is secret and also we talk to all the other

universities. For example, if we had the Float~ng Point Systems

device and somebody else has the CSPI device which is Floating

Point's competitor, we're likely to know what's happening with

the CSPI device. That's just because universities are open and

God help us if anybody makes this secret.

The universities are the best place for conceptual software

development. I am not talking about software of industrial

quality, but demonstrating what kind of software is possible.

The classic example is the UCSD PASCAL system which was built at

the University of California, San Diego, largely with the help of

undergraduates . Some of these people are now fantastic computer

scientists and programmers. This system became one of the main

operating systems for microcomputers. It was of course developed

a lot further when it went to industry, but it started at UCSD.

One of the reasons to turn to the universities for this

conceptual software development is nobody else has any time to do

it. Computing manufacturers are stretched out getting their

FORTRAN compilers and operating systems not only out but fixing

and fixing and fixing them as people find troubles with them.

The industrial users of computing are stretched out just getting

their application programs done, so there is nobody left to think

about very advanced software development projects. I will come

back to that point later.

-10-

Finally there is the subject the universities are all about:

basic scientific research. Now we don't have to do research in

the physics department on Newton's laws, we already know Newton's

law. However there are areas of extreme importance to industry

which are also very fundamental subjects for basic research. One

example is turbulence, turbulent flow. It's not possible to do

all the aerodynamic simulations that one would like to do. As

soon as the flow becomes turbulent instead of having a nice

reliable accurate simulation, one has to go to phenomenological

shortcuts which mayor may not work. These shortcuts certainly

can't always be relied on. Another area is microscopic physics

which is just littered with subjects of basic research; problems

with phase changes, problems of properties at the molecular

level, the subject of quantum chemistry, all kinds of problems in

crack propagation in materials and areas like that.

These are the subjects of basic research. The importance of

the computer for these subjects is that it makes possible basic

research on problems of more realistic interest to industry. In

a fluid flow problem one no longer has to consider only the

perfect sphere, which is usually not the problem that is faced in

industry. Unfortunately as soon as one starts using the computer

in these areas, one finds that enormous computing power is needed

to accomplish anything. Indeed the closer one gets to nearly

basic research, the more the computing power is required to be

able to do things that cannot be done in the traditional history

of analytic science.

-11-

Let me just give an example of why computing power is

important. NASA uses reasonably heavy computing power to track

its spacecraft. They can do that and get pinpoint accuracy as to

where that spacecraft is going to go and that is important. But

if someone wants to do weather predictions, simply a problem in

gas flow, one finds that weather is not a homogeneous problem.

It is not a shell which rotates around the earth. Little regions

of air have to be looked at. It is necessary to see what each

little region is doing. First one takes a region that is ten

thousand miles wide and marks it off into little regions of 100

miles across so that there are 100 segments of 100 miles each to

make 10,000 miles East-West. There are 100 segments of 100 miles

each to make 10,000 miles North-South. Perhaps there are 100

layers going up through the atmosphere to cover the different

wind velocities at different altitudes. Altogether that's 1

million cubic segments of air that have to be tracked. It's like

having to track 1 million spacecraft. That factor of 1 million

increase basically represents the total gain in computing

capabilities between 1950 and today. Unfortunately the problems

in modern physics are much worse than that. We would like

another factor 1 million in computing capabilities, and we are

starting to figure out how to get it.

What are the barriers to progress in the large-scale

scientific computing area? First of all, it's important to know

that presently in the academic community large-scale scientific

computing has the lowest priority. It is a lower priority than

equipment for experimental research, it is a lower priority than

funds for more graduate students, more post docs and more junior

-12-

faculty. Because of this low priority, it has received very

little attention from the federal agencies and the universities

themselves. In fact there are very few universities which are

presently sufficiently organized to take advantage of large-scale

computing even if they were given the money to get it. This is

because one soon runs up against this barrier of priority.

The reason for that low priority is the experience that was

obtained in the 1960s with the computers that were available in

the universities. In the 1960s typically a computer mainframe

served the entire university and an individual researcher could

afford to use only a few seconds of the time on that mainframe.

It was not possible to do large-scale scientific computing with

one second of time on those mainframes. These were the

mainframes of the 1960s,

happened instead was the

graduate students getting

spending enormous amount

not the mainframes of today.

~aculty and university

interested in computing

of times struggling with

saw

but

all

What

their

just

the

difficulties of using those computers and not accomplishing

anything. That message has sunk deeply into the minds of the

faculty. It is very difficult to get that experience out of

their minds again. Those feelings are combined, of course, with

the problem that the entire society has a reaction towards

computers and the changes they bring which is as visible in the

universities as it is anywhere else. Of course it is the

universities' problem to get that priority raised. However, any

help from outside would be useful.

-13-

There are some more specific barriers. First of all, there

is a communications barrier. In order to make progress in

scientific computing, which does not make science any easier but

just makes it possible to do more difficult science, it is

necessary to have communications. These are communications

between different disciplines, because the scientific computing

problems are basically the same across all disciplines. These

are also communications between different universities,

These communications communications with the computer industry.

have to be electronic. It must be possible to be able to

to computers which are exchange software and to have access

elsewhere. In addition, the universities have to be able to take

advantage of all the benefits to ordinary communication that

computer networks provide.

One of the most important features of these computer

networks to exploit is to start networking universities with the

research groups in industry. The reason for that is that when

industry has a problem that might involve computing, it needs to

find exactly the right person to help with that problem. There

may be only two or three in the whole country who can help with a

specific problem. It is necessary to find those two or three

people. If someone else is found they will say that is not their

subject.

Now what can be done on a computer network is to have

bulletin boards categorized by subject. A request for help is

put on that bulletin board. In the network culture what happens

is that the experts scan the relevant bulletin board for notes

that they can reply to because if they are not replying to those

-14-

requests for help they will not be known as experts.

Unfortunately, most people don't get the experience and training

to be part of the networking culture. The main source of

training has been the ARPA NET run by the Department of Defense.

They have been very restrictive as to who could be on that

network. The people who don't have that experience don't get

into that culture and don't respond to network requests. In fact

even in the computer science community the older computer

scientists who are not trained to use the network culture, don't

participate in it. So the networks have to be established and

people have to be trained to use them.

One of the most important aids to technology transfer I know

of is to get that network culture established between university

and industry. That is, of course, not just computing itself, it

is technology transfer.

The second barrier is the lack of training programs in

universities involving computers. Overcoming this barrier means

two things: first of all there needs to be massive use of

computers in universities with everybody participating. This is

not happening today. Second, in the case of large-scale

scientific computing, there needs to be training of students in

the management of large-scale software, that is training in

computer science. It is not easy training to establish,

especially when the programs for graduate students are already

full and take too long. Nevertheless something has to be done

about it.

-15-

Finally, of the barriers to progress, there is one that

everybody recognizes as possibly the most critical. That is the

software barrier. What I see in industry over and over again is

that there is a mainframe bursting at the gills giving poor

service and poor turnaround. It is running programs that are ten

to twenty years old that have been developed and tinkered with

and are now well-established. People have confidence in those

programs and they are running them to death. Beside that

mainframe is a supercomputer that is sitting idle for two

reasons. First of all the programs running on the mainframe

won't transfer to the supercomputer, because they are so targeted

at the old mainframe that it is impossible to move them. Second

they have got lots of new applications which should be running on

the supercomputer and driving it to the wall, but their software

isn't finished yet. That in a nutshell is the software problem.

The software problem in the scientific case comes down to

the Fortran language, the programming language which is used to

write that software. In Fortran it takes forever to get the

programs up and running.

of the language in which

The major reason for that is the nature

the software is written. The main

problem with Fortran, for those of you who have some experience

with it, is that when one tries to write up a scientific

application and reduce it to Fortran to run in the computer,

what's involved is a total scrambling of the lines of thought

that go into that program. For example, a computer simulation is

usually based on a set of scientific equations. However if one

takes a Fortran prog~am and tries to figure out what the equation

is that it was based on one finds that the equation has been

-16-

ripped into hundreds of little pieces. It has been contorted

incredibly to take into account the approximation methods that

are used to put that equation on the computer. The equations are

now scattered through a 60 page Fortran listing just like pieces

of dust scattered around a room. Of course part of what takes so

long is first doing that shredding process. But the most

time-consuming part is understanding what that program is doing

after that shredding process is complete. You can watch

programmers leafing back and forth through those 60 pages of

listings to try to find out what's going on. That puts a factor

of 10-100 in the time scale to get those programs done and

working.

As I said the only place where one can really hope to get

this problem solved is in the universities, for nobody else has

the time to work on the problems at that level. The question is

how should scientific programming be done. At Cornell I have a

project that is joint between myself and the Computer Science

Department working precisely on the problem of a language for

writing scientic programs. In this language, the equations would

be in one place where they could be read. Once they had been

read the programmer would go on to the other parts of the problem

such as the numerical methods, the data structures, and the

optimization procedures needed to make the program run really

fast. This is especially important for these new architechtures

on the supercomputer or the parallel processors. At Cornell we

call this new approach the Gibbs project.

-17-

Let me conclude by pointing out what's happening today in

the universities to deal with this whole question of large-scale

scientific computing. The most important goal is to get people

collaborating within the universities and the universities

collaborating with industry, government and wherever else one has

to deal with this problem. The collaboration must be across

scientific disciplines: it must be between the scientist and the

computer scientist. That is especially important. It must

involve collaboration with the manufacturers of computers. This

is beginning to develop. It also involves collaboration with the

industrial users of computing.

In our dealings with Floating Point Systems we have tried to

put ourselves in a situation where we act as a buffer between the

commercial users of array processors and the manufacturers. For

example, the manager of the project at Cornell is presently the

President of the Users Group for Floating Point Systems. That's

an ideal way of establishing ourselves as providing that buffer.

We need to be in collaboration with the users of Floating Point

Systems so that when we complain to Floating Point Systems about

the way their products don't work, they listen to us because they

know that we will just go to the commercial customers and get

some support for everything we have to say. Of course their

designers don't like to hear that things that they did are wrong

so we have to have some pressure. You need collaboration with

industrial users so that they get the benefits of what we learn

about the products. Of course at the present time, since our

primary need is money, we come out hat in hand for a little help

for the services that we provide.

-18-

A number of us have been pressing for action at the

government level. I was a member of the Lax panel last summer

which reported the needs for large-scale computing to the NSF,

DOD, and other government agencies across all sciences. The one

sentence in that panel report which says that we were in danger

of falling behind the Japanese in the large-scale computing area

has received a lot of attention in the press. In fact there has

been a major turn-around at high government levels between last

July when the panel met and today. In the last two weeks there

was an announcement from the White House that there would be a

major effort within the Government to look at the problems of

supercomputer needs and access of university scientists to

supercomputers. I hope that that announcement really does get

followed up. I would be grateful for help from anybody who can

help maintain the pressure on the Congress and the White House

and governmental agencies to move and to give higher priority to

this whole large-scale scientific area than it has had in the

past.

There are a number of hardware and software products in the

universities. Some of them are discussed in more detail by the

round table participants. These include hardware projects at

places like MIT, Cal Tech, Columbia, and NYU. There are also

software projects at many of the major universities. One other

project I would mention from Cornell is that I am presently

organizing all of the theoretical science at Cornell into one

umbrella organization called the Theory Center to promote the

collaboration across disciplines and to attack our computing

support needs in common.

-19-

QUESTIONS

Question:

In some sense the world has moved in a direction of

distributed processing rather than the supercomputers in part to

tackle the multiproblem situation where a common data base is

needed. Isn't that a more intelligent way of approaching the

large volume of difficult problems rather than the alternative of

cOAcentrating on parallel processing?

Wilson:

What you hear at all computer conferences is about the

micros that are being distributed in personal computers by the

millions rather than centralized super main frames with lots of

computing power in one place. Now, in fact. for large-scale

scientific problems we need both. Just to give an example of the

way we plan to proceed at Cornell is to start with a distributed

network of super minicomputers. There will be one for each group

of theorists. This might be a group of three or four faculty

members and a number of students. All of these super minis will

be networked together, with a typical local area network. We

will hang array processors on that network or attach processors

as though they were like the FPS 164 which is a general purpose

number crunching engine at a reasonable cost. This costs about

$500K for a nicely loaded system. We will simply add more and

more FPS 164's as this demand develops. If we need 16 of them,

we will have 16, if we need 32, we will have 32, so that nobody

suffers from

productivity

delays

of our

in

500

turnaround. We do not want the

theorists to go down just because the

computer system is filled up.

-20-

We will then provide access to all kinds of very high

performance computers, supercomputers of various kinds, but with

the idea that those are for single jobs that have outrun the

capability of our distributed network. These are for the jobs

that must be like the tracking of a million space craft, which we

cannot do on the 164. Maybe we can only track 100,000 on the

164. We will make our users compete for access for longish

periods (weeks at a time) on whatever supercomputers we can get a

hold of. We will not distribute that time democratically.

Instead we will find the best of the projects that need

extrodinary amounts of computing time and we will let them take

over the supercomputer all to themselves like a personal

computing system. And of course, when the supercomputers become

cheap enough, we will just have enough of them for everybody.

Question:

As we go to larger computers, would it be possible for these

computers to interact among each other in such a way that we

don't have to go in there and make the necessary corrections? Is

the time going to come when one of the systems is larger than one

human being can possibly handle?

Wilson:

The important trend in artificial intelligence is the trend

to provide assistance to users who are in charge of the

programming process. There's a project which I like very much at

MIT called the Programmer's Apprentice. There they are not

trying to do artificial intelligence in the sense that you tell

the computer, here's my problem and an hour later e=mc 2 appears

on the screen as the answer to your question. That's all a pipe j

-21-

dream. What can be done and I think the artificial intelligence

community is doing a lot of good work in this area is to make it

easier for the human programmer. This can be done by giving him

assistance in places where one can't figure out how to give

assistance so that the programmer is not working almost at the

machine language level when he is writing programs. And, of

course, at a higher level what is happening is that people are

now packaging programs. For example, the structural anaylsis

programs are very heavily packaged. One goes to Swanson

Associates or to Nastran where the program is already packaged

and learns how to run the package. It isn't necessary to read

the 300,000 lines of Fortran that lies in Nastran; nobody could

do that. As we learn how to do work at the micro structure

level, there are again going to be packaged programs. There will

be companies that will swarm just to do that packaging and make

them available so that the industrial users will turn to these

packages rather than having to do a totally do-it-yourself

operation.

Ouest ion:

What is your view on the question of artificial

intelligence?

Wilson:

Well, this is a country of 200 million people. First of all

even if one decides that artificial intelligence has a higher

priority, and one neglects the large-scale scientific computing

especially the Japanese national project addressed specifically

t to large scale, super-speed scientific computing, it is still

t oxtr ... IY dangerous to give the large-scale scientific computing

-22-

such a low priority that nothing gets done. As I say we have 200

million people and they don't all have to be doing artificial

intelligence.

of promise

intelligence

The other thing that I would say is there is a lot

and not much performance in the artificial

area. There are particular kinds of artificial

intelligence which are extremely important. In our own Gibbs

project (the software productivity project) we interact mostly

with members of the artificial intelligence community because

that is where a lot of the ideas we are going to use come from.

On the other hand, it is clear there has been a big oversell in

the last couple of years about artificial intelligence. You

should be wary of this.

Question:

Would you care to comment on the impact of the MCC

consortium?

Wilson

I believe the MCC is potentially extremely important. At

the present time, I feel that it has far too little funding and

far too little force behind it to have that much interaction.

The critical questions are how it will grow, how fast it will

grow, and how adventurous it will be in carrying out it's

mandate. If it sticks to the statements as presently made, that

it's just doing proprietary advanced research, then it won't

really break out of that mold, especially in its interaction with

the universities. Then it would be a rather minor force. If it

does become aggressive in its relations with the universities and

starts addressing issues that are not strictly proprietary

-23-

research issues but some of the issues that we have been dealing

with in the universities on a global scale then it can be a

powerful force on the scene. At the same time it must build

support so it isn't a $50 million operation but a $500 million

operation. I wish Bobby Inman the very best of luck in steering

that corporation in the right direction and I hope he succeeds

because it is important.

Question:

What do you see as the impact of IBM not being involved in

MCC?

Wilson:

Let me describe my strategy with respect to IBM. I

apologize to the IBM representative here. First of all, I myself

can obviously have no impact on IBM. I talk to people at IBM and

there are people who are on my side and people who are not. The

people on my side are happy to talk to me and I do whatever I can

with them. On the other hand what IBM responds to is larger

forces than just one person. IBM responds to the market and the

needs of the market, so the really important objective is to

build up the large-scale scientific market so that IBM is

motivated to respond to that market. The way we build up that

market is by working with faster reacting smaller businesses.

This includes organizations like Floating Point Systems, Cray

Research, and Denelcor. We can try to build the culture of

large-scale scientific computing around these projects and

thereby build up the useage to the point where IBM reacts to that

market. I expect that by 1990 that market will be there. I am

-24-

sure that in 1990 IBM will make more money from the sales of

supercomputers than any other manufacturer, domestic or foreign.

Perhaps they will blame me for some small fraction of that

profit.

Comment:

Let me just assert that you don't have to convince top IBM

management that this is of essential importance, they are

convinced of that. The problem is that~the IBM company is very

large and its filled with people that don't know what they are

doing, who are trying to push wrong actions in the name of

scientific computing. IBM recognizes the need to keep people

trained, the issue that you stated before. IBM needs to be

salted more broadly with people who are skilled in understanding

scientific computing so that they make the right decisions. so

that they don't go rushing simultaneously in 90 wrong directions.

Wilson:

The problems I described they face too. But what I am

saying is when it becomes an important business decision they

find out how to do things right. I don't believe they really do

things wrong when it has to do with business data processing.

They don't do things wrong in personal computing because that's a

big enough market so they have got to do it right and they do it

right. I think they will do it right in the scientific market

when the market is large enough. I don't know how they will do

it: they may do amazing things in order to do it right and they

may do all the things I said that need to be done, but I am

convinced that when the market is big enough IBM will address

-25-

that market and will do it in a sensible fashion. So far it is

not really large enough for them to do that yet.

DR. DAVID WALLACE
University of Edinburgh

-27-

This paper covers some of our interests and experience at

Edinburgh using the Distributed Array Processor (DAP). This is a

machine which was built by International Computers Limited (ICL),

a U.K. company. It is a very interesting device because it is

truly an intrinsic parallel processor, consisting of a 64 by 64

hardwired array of elementary processors. The design of the

machine was published ten years ago and the device itself has

been available for about three years. Each of the processing

elements is extremely primitive. However, because there are

4,096 of them, it is a rather powerful machine which approaches

the performance of CRAY~l for many of the problems of physics

that we are interested in. The DAP is also very inexpensive. I

think that the reason for this is twofold. First, these

modular-structure machines are cheaper to design and to build so

they can be produced more cheaply. Second, the major mistake

that ICL made when they built the machine was to tie it into ICL

mainframes in the hope that this would sell more mainframes.

What happened was they didn't sell many DAP's. As a result

Edinburgh got a good bargain; ICL was selling the DAP's for about

a quarter of a million pounds in the end. I understand that six

DAP's have now been built. I regard it as a successful

first-generation machine on which we have already been able to do

a lot of interesting physics and the group at Edinburgh is

enthusiastically committed to this type of machine for our future

computing requi~ements.

-28-

Four topics are covered briefly here: 1) what the machine

is: 2) how we got it (involving the national funding bodies and

links with industry in the UK): 3) a little bit about how it is

used and, 4) a few remarks about prospects for this kind of

architecture.

Figure 1 is a schematic description of the machine. It is a

64 x 64 array of processing elements, PE ' s, each connected to its

nearest neighbor on the square, with periodic boundary conditions

if required. Each PE is very simple: arithmetic operations are

done by sequential single-bit manipulations. Switches control

the transfer of data between neighbors on the array. Each PE has

4K of RAM so that in total there are 2M bytes of central memory.

There is a master control unit broadcasting through the machine

which controls the whole system so this is a single instruction

but multiple data (SIMD) device: all the processing elements are

doing the same things at the same time but on different data.

IeL were really rather secretive about what the master control

unit looks like, but for the user everything is very explicit and

straightforward, as I shall indicate later.

2900

HOST SAC

CPU

-29-

OAP MASTER

CONTROL UNIT

.tr\
l' \

// I \
/ I \

/ / I \
/ / ~ I 64""'"

/ I \

/ \
~ \

~ 4096 bit memory

Fig. 1 DAP. Schematice architecture.

-30-

To understand how we got the machine it is necessary to

understand the funding within the UK. By the standards of

funding within the US, the UK has actually followed quite a

sensible policy in recent years and the scale of the funding for

a UK effort is not bad. The Science and Engineering Research

Council (SERC) had a policy that it would fund central facilities

which are what they describe as state-of-the-art computers,

whatever that actually means. Three or four years ago this was

easy to decide and they bought time on a CRAY which was installed

near Manchester. This meant there was a general CRAY facility

available to users in the scientific university community in

Britain - not very much of it, but it was generally available.

The SERC also set up a DAP unit at Queen Mary College in London.

This arrangement was quite interesting in that the head of the

DAP support unit also had an appointment with ICL so there was a

clear link there on installing a machine at an early stage in a

University in the expectation that fruitful developments would be

made. Of course, this didn't quite meet Ken Wilson's criteria

that prototypes should go free to universities because SERC had

to pay for it. More recently the CRAY machine has been

re-installed in the University of London Computing Centre for

general southern region users and there will be a CYBER available

in Manchester shortly. On top of that we have been able to

acquire our DAP. We needed to find 270,000 pounds sterling or

roughly $400,000 for it. After failing first in our efforts to

set up a national Scottish facility we spent Christmas and New

Years preparing an application to SERC in three blocks of 90,000

-31-

pounds sterling for work at Edinburgh in astronomy, solid-state

physics, and elementary particle physics. This application went

to different sUbcommittees of SERC who decided they would or

wouldn't fund it. It's a very long story. The strength of our

regional computing center links with ICL at this time should be

gauged by the fact that they allowed us to ship the machine in

and essentially set it in concrete in the machine room before

SERC had decided to support it, in fact, when two of the three

subcommittees had decided not to support it. That demonstrates

ICL's commitments to get a machine to us. The relationship

continues and we hope that they will build on the experience

gained on the DAP.

Next, a little bit about the software for the machine. The

way ICL set up the software for this new kind of machine on the

first attempt is impressive and fun to use. It is a development

of Fortran which they call DAP Fortran. Let me mention three

features: (a) There is a lot of choice in specifying variables

and constants. First, it is possible to have real and integer

variables of various lengths (e.g., 1,2, ... 8 byte integer

variables). Logical variables are particularly powerful and

simple to handle. Both of these features one might of course

expect in a machine with bit serial arithmetic. Second, in

addition to the usual scalar etc. variables of standard Fortran

one can also declare vectors of length 64 and 64 x 64 arrays

whose elements are distributed over the 4,096 PE's. If A, Band

C are declared as such arrays then in an equation such as A=B+C,

the operation of adding B to C and putting it in A is done

-32-

simultaneously on the different data in all of the 4096 PE's.

The same holds for operations with the standard mathematical

functions, e.g., A=SIN(B). (b) One of the most powerful

facilities that ICL has built in is the ability to switch off

some of the processing elements and decide not to calculate at

those elements. That is done by the use of logical masks which

are simply defined as logical, as shown in Fig. 2. The DAP has

built-in logical functions which may look somewhat unusual but

they are precisely the kind of functions that are needed for

scientific computation, for example, alternating rows by one

ALTR(l), as shown in Figure 2. More complicated masks can be

built up with simple lines of programming, for example the

chequerboard defined as alternating rows logically equal to

alternating columns (Fig.2). This is the kind of mask that is

needed if an algorithm says that one must perform calculations

only on every other processing element, for example, if all odd

sites must remain passive. These are typical requirements in the

kind of calculations that we do. The typical FORTRAN statement

that one then uses is A(L MASK)=B and this just puts B into A

everywhere that L mask is true.

the user. (c) A final point

That is very simple software for

worth mentioning is the shift

operation which transfers information between the various PE's.

For example a=B+SHWC(C,3) simply takes C and puts it into a

processing element three units to the left, adds it to B and puts

the result into A. This is done in parallel throughout the

machine. Similarly there are shifts east, north and south with

cyclic or planar boundary conditions: SHWC, SHEC, SHNC, SHSC,

-33-

SHWP, SHEP, SHNP, SHSP. This is simple to implement and it is

again precisely the kind of software that one has to have for the

kind of calculations that we do.

LOGICAL LMASK (,)

Examples:

LMASK .. ALTR (I) ~

denotes • TRUE.

• • • • • • or •

r---~~r--"r'II~~ •••••

~-NooO~4--..floo.<~:loI •••

'4 L MASK = AL TC (I)
~-~~t---R-O~1'i •••

t----i~~----i~~ •••

L..-_~~I-_..c.:o~:lIj •••

• • • •
or

• • •
• • •

• • •
• • •

LMASK = ALTR(I). LEO. ALTC (I)

• • • • • •
Fig. 2 Logical masks.

64 X 64 1 bit array

•••••

•••

•••

• ••

••• • • • • • • • • • • •

•••

•••

•••

•••

••• • • • • • • • • •

-34-

We use the machine for essentially the same kinds of

calculations that Ken Wilson or Norman Christ would be interested

in and which they will mention. These are problems where one

wants to simulate a physical system. It is necessary to

discretize that physical system (i.e., to approximate it by a

lattice of points) in order to put it onto a computer and then

one just associates so many of the lattice points of the physical

system with a processing element. The updating algorithm is then

begun and there is parallel updating of the simulation for all

the processing elements in the computer.

Finally, what are the prospects for this kind of machine?

The potential for future development is certainly very high. For

example Goodyear is now building the "massively parallel

processor" (MPP) for NASA and there are other developments along

these lines in other companies. It seems certain that the next

generation of machine will be twenty to thirty times faster and

still be bit serial processing. Our general philosophy about the

DAP is that it is a very good design for an engine, it is ideal

for the kind of calculation that we do, and it has given us links

with companies which will certainly increase.

The following is a selection of references covering general

information and some specific applications developed at

Edinburgh. The original DAP reference is: S.F. Reddaway, in

Proc. 1st Annual Symposium on Computer Architecture (IEEE/ACM),

Florida (Dec. 1973), pp. 61-65.

-35-

For further information on the DAP and its software see, for

example, R.W. Hockney and C.R. Jesshope, Parallel Computers (Adam

Hilger Ltd. Bristol, 1982)~ G.S. Pawley and G.W. Thomas, J.

Compo Phys. 47, 165 (1982). 165.

Reviews of the Edinburgh group's work and further references

are given in:

K.C. Bowler, in Proceedings of the Three Day In-depth Review on

the Impact of Specialized Processors in Elementary Particle

Physics, Padova, March 23-25, 1983 (University of Padua).

K.C. Bower and G.S. Pawley, to appear in Proceedings of IEEE,

January 1984.

G.S. Pawley, in Proceedings of the Conference on Monte Carlo

Methods and Future Computer Architecture, Brookhaven May 1983.

D.J. Wallace in Proceedings of Les Houches Workshop, March 1983,

to appear in Phys. Reports.

-37-

DR. JACK SCHWARTZ
Courant Institute, New York University

As the U. S. moves to meet the very ambitious supercomputer

plans announced by Japan, the general level of architectural

activity in the supercomputer area has been rising rapidly. Many

universities have become involved; over fifty designs for

parallel computers of various types have been proposed and more

are coming. This creates a substantial problem of choice for the

administrative agencies (principally DARPA, DOE, and NSF) that

will have to set the main directions of research funding in this

area.

Figure 1 gives a rough taxonomy of one major subclass of the

supercomputers that have been proposed. It shows the parallel

machines that are based on substantial individual processing

elements where "substantial" means at least a high-performance

microprocessor. These machines are to be contrasted with the

other main class, shown in Fig. 2 machines that are composed

of minimal processing elements, e.g., at an extreme, single bit

processors. The first, "substantial processor" class of machines

tend to use "universal" interconnections; machines of the second

class tend to be more severely constrained in their choice of

interconnection scheme by silicon layout considerations.

Figure 1 shows the substructure in the "substantial

processor" machine subfamily.

-38-

A subfamily of these consist of packet-switching machines which

use various types of optimal communication nets for coupling many

microcomputers very efficiently and tightly. Among the machines

of this subclass, there is a significant group of machines which

are designed to be programmed in a fairly conventional

"procedural" style -- one in Illinois, one at N.Y.U., one being

developed commercially by Sullivan Associates, and lately one at

Cal Tech having a slightly different, message-passing rather than

shared memory design. Down the next branch of the taxonomic tree

shown in Fig. 1, we find a class of data-flow machines

distinguished by a different sort of programming paradigm; these

will be discussed in more detail by Professor Arvind. Finally,

the "tightly coupled" family of machines shown in Fig. 1 includes

another branch on

communication net,

Texas. Finally,

which appears the circuit switching, optimal

TRAC machine developed by the University of

getting further away from the ULTRA class of

machine shown in the lower left hand of Fig. 1, one begins to

find computing devices that from the point of view of the

relatively tightly coupled "ULTRA" or "TRAC" machines are more

esoteric; these use various types of supplemented nearest-network

communication nets.

-39-

LARGE PROCESSING
ELEMENT FAMILY

~
TIGHTLY LOOSELY _ ---COUPLED ~LED - - _ ~ "-

/ ICIRCUIT ",
(PACKET SWITCHING) SWITCHING (SUPPLEMENTED \

IOPTIM/OMMU~Tl OPTI~~:~::~) IP~:~~~))
PROCEDURAL (DATA FLOW) /

p7Rr~ J~VIND //
CEDAR ULTRA CHOPP (MIT) (MIT) /

(ILLINOIS) (NYU) (SULLIVAN /'

2 MB
JlARYLAND)

CONCERT
(MIT)

ASSOC.) ,//

,/
./"

,/
./"

,/
./'

I 7----(RING (OTHER J E.G.

CONNECTION) CROSSBAR) ~

jp ~~CM ISTA~~ORD
(DISTRIBUTED

SYSTEMS)

I
(DENELCOR) (CMU) a LLL)

CRYSTAL (WISCONSIN)
ETHERNET (XEROX)

• • • (MANY DESIGNS)

Fig. 1 Machines composed of substantial processors.

-40-

In a short talk like this I clearly cannot review too many

machines in detail. By now there are at least 50, perhaps as

many as ISO, university supercomputer designs that have been

proposed. The total number is continuing to expand rapidly as

universities continue to get excited about this area.

Next I turn to the other part of our taxonomic diagram,

Fig. 2, which shows machines composed of minimal processing

elements.

These ultra-small-individual-processor designs tend to be

constrained (though they are not invariably constrained) in their

communication pattern; since designers of machines of this class

are trying to optimize the use of silicon area, they ordinarily

opt for simplified communication designs which layout well in

two dimensions. (However, there is a special subclass of these

machines, including the so-called MIT "connection" machine,

currently under active development, that use a more universal

logarithmic communication network.)

the tree machines, which use

bandwidth-limited communication net;

Typical of this

a logarithmic but

also the class

class are

severely

of image

processing machines exemplified by the ICL DAP. Finally, we have

H. T. Kung's class of systolic array machines within which data

flows through an "assembly line," with operations being done as

the data moves, until finally results emerge.

-41-

TINY PROCESSING
ELEMENT FAMILY

(~) (I ------------I (NEAREST NEIGHBOR)
SHUFFLE TREE

~:~ia~cno, ,,,I.), ~o,vo! \
(WAGNER. (CAL. (M.I.T.) (MAGO. (CAL (COLUMBIA) /

DUKE U.) TECH) U.N.C.l TECH) / (

"" /.7I' ,,"7~,ouc
(NASA / I C L PLANE CHIP ARRAY
GOODYEAR) (U.N.C.l (PURDUE) (CMU)

Fig. 2 Machines composed of "minimal" processing elements.

-42-

In connection with this general survey of architectural

proposals, I cannot resist the temptation to say a few more words

about NYU's own "ULTRACOMPUTER" proposal; this is shown in

Fig. 3. The advantage claimed for this machine is a particularly

"vanilla," general purpose design. A programmer would simply see

it as a large collection of processors, each having a certain

limited amount of private memory, but all connected to what the

programmer would see (on the other side of the data communication

switch shown in Fig. 3) as a giant, entirely homogenous, shared

global memory. Relative to some of the more highly optimized,

but also more special purpose machines that use powerful data

communication schemes, the ultracomputer's reliance on shared

global memory implies acceptance of a (hopefully slight) memory

access inefficiency in order to increase the generality and easy

use of this machine. However, this design decision does increase

the weight of the hardware substantially, because of the

necessity of accelerating memory communication as much as

possible.

THE 'VANILLA' PARALLEL SUPERCOMPUTER

COMMUNICATION

Fig. 3. NYU ultracomputer. Note that
individual processors are used.

fairly substantial

-43-

Additional details concerning the physical structure of the

"omega network" that supports memory-to-processor communication

in this machine are shown in Fig. 4.

16 X 16 OMEGA NETWORK (2 DIMENSION)

oooo--------~~------_ro~------~~~------;o~---OOOO

0001 0001

0010 0010
0011 0011

0100 0100
0101 0101

0110 0110
0111 0111

1000 1000
1001 1001

1001 1010
1011 1011

1100 1100
1101 1101

1101 1110
1111 1111

SHUFFLE

16 X 16 OMEGA NETWORK (3 DIMENSION)

1111

0000
0001

.,....-r------if-ii'\7'll-'" '-ii5""OH-i-F-1I10
~,.----------.../

~-----I--u---1..lI-----l!.....!.J--I::::I----1I11
"-----------./

Fig. 4 Details of the physical structure of the "Omega network"
that supports memory-to-memory processor communication in the NYU
ultracomputer.

-44-

So much by the way of a quick survey of

the supercomputer area. Next I would

U. S. offerings in

like to make some

prognostications about the developing Japanese

U. S. competitive relationship in regard to supercomputers, which

is one of the factors motivating activity within the United

States now. It is easy to predict the Japanese supercomputer

effort, like all their efforts, will be very well managed

technically. Whatever they seek to do and are capable of

defining precisely, they do very rapidly and well. On the other

hand, I would say that the present conceptual basis for their

fifth-generation machine is weak. Nevertheless, since Japan does

represent competition that is very strong technically, the

success of the developing U. S. response will depend on our

ability to follow a better strategy. This will in turn depend on

funding agency realism and will also require the effective

involvement of industry: if only U. S. universities are involved,

and a well-organized industrial participation able to move

forward quickly from the university work is absent,

predict that U. S. universities will innovate very

but only for the benefit of Hitachi and Fujitsu.

The administrators responsible for

it is easy to

successfully,

shaping the

U. S. program-to-be in the supercomputer area therefore need to

discern the strongest designs, the likeliest winners, from within

a growing crowd which already includes many vocal contenders.

Already something like 150 universities are each loudly

proclaiming that their machine is best. How then should the

funding agencies proceed? Concerning this difficult question, I

-45-

have time for only one comment. I believe it is important to

avoid too heavy a concentration on artificial intelligence

longshots. What one wants to do is fund a balanced set of

architectural alternatives which can serve to explore the whole

of the taxonomic spectrum set forth above: but one must also try

to concentrate on those classes of machines most likely to be

capable of serving a variety of purposes.

Next I would like to make several longer-term

prognostications. I believe that the wave of design innovation

represented by the best of the machines appearing in Figs. 1 and

2 will be successful, and that immense parallel machines,

presently entirely hypothetical, will become everyday realities

to which computing centers will become accustomed. No more than

a few years hence, I expect these to be commercially available as

the "Cray IV," the "IBM 5999," or what have you.

There is no secret in the construction of these parallel

machines. Once one has perceived the new possibilities that

large-scale parallelism opens up, the lines of design, especially

of general purpose parallel machine design, are fairly obvious.

I believe that the U. S. and Japanese large parallel machines

will come on the market within a few years of each other. Thus

the present race is for a quite temporary advantage.

Once this race has come to its natural end, i.e., once the

first few of the new generation of superspeed parallel machines

are around and computing centers start ordering them, the ensuing

competition will take on a normal commercial character.

Competition will then be a matter of quality of software

-46-

supplied, speed reached, features available, and

price-performance. The crucial factor will simply be the level

of corporate commitment, here in the U. S. and in Japan, to

maintain a strong position in the large computer area.

A final technical comment. I believe that future large

scientific applications systems will become partly hybrid. The

pure "vanilla" machine appearing in Fig. 2 is a reasonable first

supercomputer, but I expect that eventually one will have various

types of special processors attached to this massive general

purpose parallel computer base. Certainly in an environment like

Fermilab, where there are many major computations that can be

greatly accelerated by special- purpose devices, such an

admixture of special and general purpose computing devices can

have real advantage.

It is easy to surmise from what is already

future supercomputers will include attached

machines like the Goodyear Aerospace, MPP,

processing devices, graphics chips, etc.

happening that

image-processing

various signal

Some of these

attachments will have large enough markets to become regular

market offerings of vendors concerned to furnish a rounded line

of special-purpose devices supplementing their basic computer

line.

-47-

DR. THOMAS NASH
Fermi National Accelerator Laboratory

The job of experimental high-energy physicists is twofold:

for the cases where people like Norman Christ have successfully

calculated predictions we have to check to see if they have done

it correctly. For cases where they haven't calculated

experimente,rs' results in advance, we provide them, in principle,

with the intuition to understand how to get the right answers.

Experiments at Fermilab in the near future are somewhat

typified by the apparatus shown in Fig. 1.

Fig. 1. Fermilab Tagged Photon Spectrometec The apparatus is
more than 25 meters long. The beam enters a target and recoil
detector system on the left. The second figure is leaning on th~
second of two magnets. Drift chambers and an electromagnetic
calorimeter are interlaced among the magnets. Large Cerenkov
counters follow along with more drift chambers and calorimeters.

-48-

The scale of this experiment is indicated by the small

figures. This was drawn by a Mexican artist and the sombrero is

barely visible. The problem basically comes down to the

following: there's a beam of particles of one kind or another

that strike a target. A variety of secondary particles come off

of the interaction of the beam with the target. This apparatus

measures the angles and identities of all the secondary particles

to study the physics of the interactions. This is done in a

series of detectors that measure the point at which a particular

projectile passed.

The analysis

reconstruction of

of this kind of experiment involves the

all the data from these detectors. Just to

indicate the scale of the problem for a recent

this particular apparatus there were 1,000

experiment using

6250 bpi tapes,

containing about 25 million events with 1,500 words per event.

Each event takes about a second on a Cyber 175 computer. This is

pretty close to a Cyber year. This experiment is being analyzed

on 20% of Fermilab's computer center, 30% of an IBM 3033, 3 VAXs,

and 6 so-called 16BE emulators, altogether equivalent to another

4 Cyber 175. Clearly there is a problem in getting this kind of

data through.

We anticipate this problem will get worse with the Tevatron.

We are trying to deal with this on two fronts, one is a 5 million

dollar upgrade for the computer center. The other is the program

that I'm involved with. This is the Advanced Computer R&D

Program whose intention is to confront the computing-bound

problems in high-energy physics by developing new approaches and

-49-

thereby generally stimulating the computing atmosphere here at

Fermilab. The interaction with industry and university computer

science departments is one of our important mandates. This

interaction has been quite fruitful up to now, and we hope it

will remain so in the future.

The first project that we are concentrating on is an event

reconstruction processor that focuses on the problems that were

just outlined. The idea that we're pursuing is combining the

power of specialized devices with more general purpose machines.

We have some experience with the special purpose processor shown

in fig. 2 which was developed here. It is incredibly powerful

but rather inflexible. In one example, this processor, costing

about $100,000, was able to do in 7 microseconds what a million

and a half dollar Cyber 175 could do in about 40 milliseconds.

Thus it is possible to do a lot with such devices, but they are

not easy to program. That is why it's desirable to combine that

power with the programmability of microprocessors that have

Fortran compilers. The intention is to stay extremely modular in

order to allow optimizing architechure for different classes of

problems, and thereby maximize hardware utilization. We hope

this will include the possibility of array interconnections for

lattice gauge problems.

Fig. 2. Photograph of
developed at Fermilab.
problems.

-50-

the powerful EeL Data Driven Processor
~his system is configurable for different

-51-

In the reconstruction problem multiprocessing is encouraged

by several characteristics. The events are independent, the

problem breaks easily into major vertical subroutines, within the

events there is intrinsic parallelism, and most importantly there

exists an instruction sequence that dominates the computing time.

What would a full-blown system naturally look like? Here

one can divide the problem into a series of different subroutines

each one of which takes a different amount of relative time, so

that it is necessary to have the right number of processors to

handle a particular level so that there aren't any traffic jams.

Figure 3 illustrates the approach. The crucial idea that we're

emphasizing, indicated by the circles, are the co-processors

which are special purpose devices to do certain kernels of the

algorithms extremely rapidly and effectively. However, as a

first step in parallel with the co-processors, we are considering

a simple system of microprocessors particularly appropriate to

use in this kind of a system. The microprocessors must have good

Fortran. We are now actively evaluating such processors and have

a long list of candidates. We are discussing with various

corporations the possibility of research agreements and

arrangements that can help us solve our problem.

The co-processor concept is a generalization of the

co-processors used as a commercially supplied adjunct to a

microprocessor chip. The word is usually used in the context of

the floating point co-processor. Here we mean it to be special

purpose hardware to carry out at "blinding speed" the kind of

algorithms that one needs, such as finding the line through 3

-52-

points in a set of wire chambers, using non Von Neumann

techniques such as hit-arrays, memories, fast-cache, memory table

look-ups and so forth.

Sloge I
3 processors
eoch with 2
coprocessors

SfoQt

16 processOr pairs
2 parallel prOQroms

each with 2 different

coprocessors

Stoge 3~
\ p-node

no coproceSSor

Fig. 3. Full blown
co-processors.

co-processor system;

......... Coprocessor type B

Recoil de te ctor
analysis

There are 6 types in this example.

the

CharQed trock analysis

Cerenkov counter
analysis

circles indicate

-53-

The concept from a users standpoint is that the system looks

very similar to a library. The user's program would be a series

of subroutine calls to that library, well documented of course.

Every time he calls a particular subroutine, the system would go

into the hardware, execute the complex operation involving loops

if necessary at high speed and return quickly. That kind of an

approach has some broad applications. The speed up potential of

co-processors (which is a critical issue), goes as 1/(1-f) where

f is the fraction of the time spent in the co-processor algorithm

when you are running without co-processors. For example, if 90%

of the computing is inside the co-processor then there will be a

maximum speed up of 10. On the other hand, if only one half is

inside then there will be a speed up of no more than two. So the

crucial issue is how much can be diverted into the co-processor

in any particular problem. In order to answer that, a study has

been made of the structure of our particular kind of problems.

As Ken Wilson alluded to earlier, we find that they are dominated

by lists and list manipulations and they turn out to be very

similar operations to those used in relational data base problems

which is clearly an application area far outside high energy

physics. By a list we simply mean a series of columns of numbers

that have identifiable attributes. In our problem what happens

is that we have a series of disconnected lists that we start with

as shown in Fig. 4.

Fig. 4. List
algorithm.

-54-

LII' : LIST NAIIE

RaWl_

r.=:"::::::.o:=-,=J...-:.r.~'i- Col. (and sublist) nome.
2
3
4

=

t Linde.
Cotumn.
(yariable width)

Wire Chamber Coordinate Lists

Final Tr"k Li.t

wc
"­
-I
-2
=~

Region Track Segment Lis'.

PREIIAGNET SEGMENT

Xo YO x~ Yo wt i C w3c I
I •••
2
3

);/
TRACK LIST

y ••
I t

we we w.
2 3 4

.e ..
I 6
I
2
3
4

manipulation in a typical track recognition

-55-

That is the raw data coming from the variolls wire chambers that

have identified the particle track as it goes by. Through

manipulation using what are equivalent to data base concepts

these lists are related to make new lists which are the track

segments in one section of the detector.

are developed into a final track

Finally these segments

list . This is an

over-simplified explanation but the operations involved are

identifiable with those used elsewhere.

To summarize, at Fermilab the hardware subroutine-assisted

multi microprocessor approach is natural for our three dominant

computing problems which are track reconstruction, lattice gauge

calculations, and beam orbit calculations. The latter are

required to design the giant accelerators that are now being

discussed.

In general the program is aimed at classes of computing

problems which have some natural simple parallelism such as the

event structure of high energy physics experimental data and that

have a definable algorithm kernel that dominates the time. In

addition the approach can take advantage of the structured

vertical blocks in a program. This is not just for high-energy

physics: it's really for problems that can run in a static

configuration for days or weeks at a time, where the

architechture can be reconfigured to optimize it for each

problem. You can imagine that operators are not just plugging in

tapes. They can also be plugging in modules for the programs

working on that time scale.

-56-

There is a problem with semantics in the computing business.

People think in terms of either fully general purpose computers

or in terms of special purpose computers. But there is really a

whole spectrum in between. I don't know what words to use and

it's one that we are struggling with because sometimes semantics

becomes important. The point here is that our kind of approach

is not generally applicable. There are many problems for which

it is totally inappropriate. But it is broadly applicable to

many other problems. Perhaps the system should be called a

flexible hardware assisted multiprocessor.

DR. NORMAN CHRIST
Columbia University

-57-

Many physicists view matter and in particular the strongly

interacting particles as made up of quarks. The behavior of

quarks is actually described by a theory that is specified in

some detail called QCD (Quantum Chromo Dynamics). Figure 1

illustrates some of the strongly interacting particles such as

the neutron, proton, and pi meson and contrasts them to the

structureless point-like electron, muon, and photon. These

strongly-interacting particles have a size and are believed to be

made up of elementary, presumably point-like constituents, called

quarks. The quarks interact with each other through a field, the

gluon field, very much in analogy to the electromagnetic field

that describes the interaction between electrons. Figure 2

illustrates the interaction between two electrons and the

interaction between two quarks showing that there are many

similarities. The gluon field between the two quarks is quite

different from the electromagnetic field in that it obeys a

non-linear equation and presumably is squeezed into a tube of

flux between the two quarks so that the energy increases linearly

with the separation of the two quarks. This suggests that a free

quark is something that one will never see. This is quite a

complicated problem. Classically one has a non-linear version of

Maxwell's equations. Ouantum mechanically one has a problem

involving strong coupling.

-58-

CD
(QUANTUM CHROMO DYNAMICS)

~
C0
8

STRONGLY
INTERACTING

PARTICLES

NEUTRON

PROTON

l1 - MESON

G J -MESON

•
•
•

NOT
STRONGLY

INTERACTING

PARTICLES

ELECTRON

MUON

PHOTON

•
•
•

•

•

•

Fig. 1. Strongly interacting particle contrasted to point-like
particles.

ELECTRONS

... r

QUARKS

-59-

ENERGY

E,...,­
r

Fig. 2. Interactions between electrons compared to interactions
between quarks.

-60-

Now consider a quantum mechanical state that starts off with

some number of quarks and then add to it an array of anti-quarks

to give a sea of various kinds of particles as shown in Fig. 3

(a). Then if the gluons are included, the system is very

complicated indeed. These particles interact strongly. For

example, the usual weak coupling approximation that's made to

analyze the interaction of electrons and photons doesn't work.

This is a problem where conventional theoretical techniques have

made very little progress but in the last four years there has

been significant progress using numerical methods. These methods

begin by replacing the space-time continuum by a rectangular grid

so one imposes on the problem a lattice structure and requires

that all of these particles lie on the lattice. Finally the

picture looks something like Fig. 3 (b) with the quarks on the

vertices of the lattice and the gluons going on the links between

them.

The quantum mechanical problem involving all of these

degrees of freedom is best approached by the Feynman path

integral, that is the Feynman sum over histories. The actual

quantity that must be computed is the rather simply specified,

but in fact quite complicated, integral shown in Fig. 4. The

idea is that to each link in the lattice one associates a three

by three matrix. Imagine that you want to measure a physical

observable (0).

-61-

GLUONS,QUARKS AND ANTIQUARKS

'"

(

~

Fig. 3. Solving QeD. (a) a sea
interacting through gluons; (b)
lattice structure.

of quarks and
the system is

antiquartks
modeled by a

-62-

<0) =
f -f3l:trU [) r dUle Ddet ~ O(U)

Fig. 4. The equation for a QeD observable.

-63-

This may be an energy or mass or correlation function. It is

necessary to take that observable (0) as it depends on the

degrees of freedom and integrate over all the degrees of freedom,

that is all of the 3 by 3 matrices corresponding to all of the

links in the lattice. This integral is weighted with the

exponential of a sum of traces. Each term is a trace of a 3 by~3

matrix, one matrix for each elementary square in the lattice,

where that matrix is constructed by mUltiplying together the four

matrices corresponding to the four links that bound the square.

For a big lattice there are a lot of squares and a lot of traces.

The worst thing is the determinant det. Here is an operator

defined on the lattice in the discrete approximation. It is also

a matrix but a matrix whose number of rows and numbers of columns

equals the number of vertices in the lattice. Interesting

preliminary results that are not at all satisfactory have been

obtained by using lattices as large as 10 by 10 by 10 by 10.

This is in four dimensional space time, so that such a lattice

has ten thousand sites and 40 thousand links. There are eight

variables in each of these matrices, 320 thousand degrees of

freedom in this integral, and finally the determinant of a matrix

which is 120 thousand by 120 thousand.

The problem has now gone into a regime where the number of

degrees of freedom are so large that very good use can be made of

statistical techniques. The integrals here are really quite

successfully treated,

technique, that is a Monte

it appears, by

Carlo algorithm

using a

of the

Metropolis

Metropolis

type. One generates samples of configurations, assignments of

-64-

matrices to links, distributed according to

exponential and determinant in the integrand

the product

of Fig. 4.

of

The

expectation value, that is the value of a measurable quantity 0

is gotten by averaging 0 over the ensemble. The problem is such

that recent calculations have used 10 hours of Cray time and in

one case 100 hours. This is just touching the surface of the

problem. Because the technique is statistical, it is necessary

to run the program 100 times longer to get 10 times the accuracy.

In addition, it is desirable to deal with much bigger lattices.

The problem, then, requires two or three orders of magnitude

increase over the amount of power that is being devoted to it

today. Also this problem, the physics of strongly interacting

particles, may not be the most interesting one. This is a class

of phenomena that experimental physicists have studied for the

past 20 or 30 years. Both the theory and the experimental

results are known and here one is just making the connection.

However this type of theory, these strongly coupled gauge

theories, are believed to explain perhaps all of reality and

there are very large areas where the theory is not yet known,

where the experimental results aren't known and the calculations

are much harder.

I Two of us at Columbia, Tony Toronto and myself, have

designed and are building a special purpose computer intended to

give this needed increase in computer power. The computer takes

advantage of special properties of this particular problem. The

interactions, the physics of the particles on the lattice, are

local so that we could easily do with the the kind of

-65-

architecture that David Wallace just described. This is a grid

of processors, arranged in two dimensions with only nearest

neighbors in communication. The array is homogeneous. In fact

the same physics is going on at every node. At least in one mode

the processors could conceivably operate in lock step with the

same calculation being done at every site. The matrix

multiplication, which is the big difficulty, is heavily

arithmetic but it is very organized so that it can be easily

pipe-lined. Finally, because the whole problem is statistical

and the answers are not very precise, the method is one which

doesn't require high numerical precision. So what we propose is

an array of processors, perhaps in the end a 16 by 16 array,

capable of doing this kind of arithmetic very fast. The

structure is shown in Fig. 5. The square boxes are memories,

each containing the data for those sites and links with a group

of x and y coordinates but all values of z and t. The circles

are processors. Each neighboring pair of memories is connected

by a single processor. The design of the processors is quite

straightforward. One begins with a microprocessor, the Intel

80286, that is really a quite fast and sophisticated, and also

general purpose. A specially designed arithmetic unit is added

to that. The memories are divided into two independent halves

from which two arguments can be simultaneously fetched to perform

the multiplication. The result of the previous mUltiplication

can be accumulated with that of the previous additions and

finally the result written back into one of the memories. This

is all done in a pipeline fashion at 8 megahertz so 16 million

-66-

floating point operations can be performed per second. The whole

process is controlled by a microprogram which can contain the

instruction for doing one of these matrix mUltiplications.

This year we have been tal~ing about the physics of SU3.

Next year it may be E6. SU5 or whatever looks interesting. The

point is that the device must be some what general. Finally.

these devices have to be coupled to their neighbors. We do this

in the crudest possible way. All of the operations are supposed

to be synchronous. When the communication between neighbors is

occurring all of the processors have to be executing the same

instructions in lock-step; there is no hand-shaking between

units. The multiplier can get its arguments from its local

memory or from its neighbor's memories at exactly the same rate.

that is at 16 megabytes per second per node per operand. The

final result is a fairly inexpensive node. We have one built and

two-thirds working. at a cost of $2.500 for the single node. All

the nodes there are identical so· it's possible to make one board

and then reproduce them. We hope to hook together 256 of them to

achieve 4 billion floating point operations a second.

-67-

.,

DATA
64 K)

CONTROL --_
(24 K) ---.-::-, ... -

'.' - 1-- \\. ~.
\\ ~~,. h -'.

;f~/-L\ .. '- __ 1 MULTIPLY
\ \. " "',: \', I -\ \.)\/ --\)' --,/ f. \ /~ - -. 80286 \ \. I I' \I 1

\ \ 'I., ''I. • 1 \ I , 1\/
\ '. 'I., (......

\ \
1 \ ,,1 \ , \

I "
......

\ 'I. '
\
\ I '

,I
~. \ ,

" " 1/) ADD \. "\ I, ~~~
\ ' .. I--

CODE \
(32 K) \

\
\

'. DATA
(64K)

L

r

Fig. 5. The Columbia special purpose QCD computer.

-69-

DR; ARVIND
Massachusetts Institute of Technology

Among many machine projects at MIT, inc1'uding the

"Connection machine" Jack Schwartz alluded to, are two major

data-flow projects. I am going to review one of them, The

Tagged-Token Data-Flow Machine. The goal of my project, simply

stated, is to design a general-purpose parallel computer in which

all processors will cooperate to solve one problem. Clearly we

are interested in big problems, and the question of "What is

general purpose computing?" has to be understood in that

. context. If an application does not have any parallelism, we are

no magicians and therefore we can't invent it. However, many

applications have plenty of parallelism and one can build a

useful machine to exploit parallelism in a large class of

applications. Table I lists some characteristics of typical

applications which have massive amounts of parallelism.

Table I. Parallel Applications and their Characteristics.

Number Crunching, e.g.,
-Scientific Computing
-High performance
-Simple data structure - arrays

Symbol Manipulation, e.g.,
-AI type applications-algebraic simplifier
-Complex data structure
-Higher order functions
-Structure of the program itself is important

Concurrent Real time Computing, e.g.,
-Process control - Missile defense system
-Number of asynchronous inputs
-Adhoc hardware structures
-No' coherent functional view

-70-

In the area of symbol manipulation also, there are lots of

programs with parallelism except that these programs are not as

well understood as scientific computing. One reason is that

algorithms in AI programs are not so stable. AI Programs tend to

be far more complex then scientific programs. I understand

Professor Wilson's concern that in scientific computing the

equations are spread allover the program. In AI programs, often

there are no equations: the program is the sole document of the

algorithms used and the programmer's intentions.

While it may be hard to substantiate, I believe that if

there is a large program which runs for long periods of time then

it must have parallelism. I think it is impossible to write a

100,000 line Fortran program which runs for 2 days and which is

devoid of parallelism. So I am proceeding from the assumption

that if you have a large program you must have parallelism, even

though you may not know about it. The third class of

applications (see Table I) that I am interested in, is concurrent

real-time computing, that is, complex process control. In a

chemical refinery, one may find 1,000 one-board computers doing

calculations in various parts of the system. Generally people

don't view process control systems as application programs

because they don't have a good model~f parallel computing.

I have to do a little bit of preaching here. First of all,

Fortran as a computer language won't do for parallel computing.

This is not because the scientific programs cannot be written

well in Fortran. Actually Fortran is expressive enough for these

applications because most of the scientific computing involves no

more than simple do-loops, and arrays and matrices as data

-71-

structures. The problem is that by the time an algorithm has

been coded in Fortran, lots of parallelism has been obscured.

Compiler designers have to work very hard to uncover parallelism

that the Fortran programmer has obscured inadvertently. The

theory of compilers for parallel machines may be well understood, -but such compilers face many practical problems in optimizing a

large (say, 50,000 line) code because of interprocedural and

global data flow analysis. We should allow the scientific

programmer to express the problem in such a way that the code

retains whatever parallelism there is in the first place. The

issue is not whether people "think parallel" but rather if they

have tools languages and compilers which do not make the code

unnecessarily sequential.

On the hardware side, I don't believe that multi-processing

based on commercial processors can work. To employ many

processors on one problem requires a fundamental change in the

architecture of the proce~sor itself regardless of what is done

with the switching networks and memory structures. This change

is already taking place in very high performance units. For

example, in the Cray-l one finds that the concept of Program

Counter (PC) is rather fuzzy. It's not as "focused" as the PC in

a Motorola 68000 microprocessor where one knows precisely which

instruction is being executed. Instructions can often be

executed out of order to increase performance in a

high-performance system. By suitable use of interlocks a machine

designer can make this shuffling of instructions transparent to

the user. The negative effect of large memory latency on

performance can be avoided only by changing the sequential nature

-72-

of the processors. My point is that we must accept and confront

the fundamental limitations of single PC based machines so that

processor designs would not appear to be a collection of

"hardware hacks" implemented to achieve high performance.

I am going to propose a radical solution: change languages

to func~ional~~ngu~ges and the basis of the architecture

underlying the hardware to data-flow. I believe change in both

language and architecture is required because that's the only way

to get the best performance out of machines. Fortran is ideally

suited for conventional Von Neuman computers. Nobody has been

able to displace Fortran because the match is so perfect.

Anytime something fancy is

becomes inefficient. Anytime

architecture, changes which

done to

changes

can't be

Fortran it's compilation

are made in the

exploited by a Fortran

compiler, we either pay in terms of increased programming effort

or underutilized hardware. The symbiosis of language and

architecture has to be maintained, and I think this will happen

with functional languages and data~flow architectures.

Here is a thirty-second explanation of functional languages

and data-flow (see Fig. 1). Functional languages are really much

closer to the way scientists and engineers think about problems.

I have a harder time with computer scientists because they

already know programming. If someone dosn't know programming

they are much better off starting with functional languages,

because basically one has to know only primitive or base

functions like plus, minus, test-for-zero, and rules for

combining functions. Rules for combining functions are simple

function composition, conditional composition and recursion.

-73-

Composition of functions is something that engineers and

scientists understand very well. To take the trivial example

shown in Fig. 1, the program, f{g{a,b),h{a» may be written as

Le t x = g (a, b) :
- y = h (a):
in f(x,y).

It almost looks like an imperative program where first x is

computed, then y is computed, and then x and yare substituted in

f. However, note that if one thinks in terms of functions, one

doesn't ask absurdly simple questions like can g and h be done in

parallel. Of course they can be done in parallel since they are

functions, and functions don't effect each other. The value of

sin{x) does not get affected by the evaluation of cos {x)1 Those

are the kind of beautiful properties functional languages have.

They are also easier to program in and eventually they will be

more efficient to execute than imperative languages. Today,

functional languages are compiled on sequential machines and the

compiled code is inefficient because the underlying architecture

is not well suited to the task. It should be noted that this

problem is analogous to the problem of Fortran compilers which

generate very inefficient code for data-flow machines.

Figure 1 shows the connection between functional languages

and data~flow graphs. It is easy to view the composition of

functions in terms of data-flow graphs. Each box in the graph

represents a function which can be a plus, minus, fast Fourier

transform or even a linear equation solver. Boxes are connected

by lines which represent data-dependencies among functions. The

excution of these programs can be thought of in terms of arrival

of data along these lines at a box, the box being enabled and

-74-

then "firing" or executing. Finally data is produced as results

and is forwarded to other boxes. The natural consequence of

viewing things in

enabled can be fired.

this manner is that any operator that is

So the default is parallelism here, the

execution is constrained only by the data dependencies. Note in

Fig. I, f cannot fire until h has finished execution; however,

after g has output something, it can accept the next round of

data and start computing with it. So given a stream of data, g,

hand f may all fire simultaneously.

Next, lets consider the possibility of queuing tokens on the

arcs of a data-flow growth. Let's label each token with its

destination instruction address and its position in the queue.

As shown in Fig. 2, the ith token as well as the i + 1st token

may be in the queue at the same time. Why am I doing all this?

Because I would also like to exploit, what I call, temporal

parallelism in programs. If there are enough processors and

several sets of tokens on input arcs, I should be able to perform

several firings of the same function simultaneously. This is the

kind of parallelism my machine would exploit. The basic rule in

the abstract machine is that whenever two tokens have the same

label they get together, the instruction specified in the label

is fetched, and the operation specified in the instruction is

performed . Thus, as stated earlier, you should think of a token

as carrying a name (a tag) and some data.

-75-

f (9 (at b) t h (a))

a a

h

f

Fig. 1. Functional languages and data-flow. Here g and h can be
executed in parallel; execution of f and g may also overlap.

s·L.
s·

s:

I

L
r

I

*

f

I t : p

r

2

S

S

I

.l, + I

·L

Fig. 2. The U-interpreter. A scheme for tagging tokens. Each
distinct execution of an operator is given a unique (activity)
name, each token carries a destination activity name.

-76-

What kind of machine will execute in this manner? Figure 3

shows an architecture consisting of N identical Processing

Elements (PE's). It doesn't matter, as far as the functionality

of the machine is concerned, how the processors are connected.

The interconnection network may affect the performance but is not

reflected in the programming model. We assume that every

processing element is capable of sending tokens to any other

processing element. Figure 4 shows the internal structure of a

processing element and is important to understand because it's

very different from a conventional Von Neumann computer. A token

carrying a tag and data arrives at the processing element. The

first thing the token encounters is the Waiting-Matching section

which is initially empty. Remember our abstract machine has the

very simple rule that when two tokens have the same label they

must get together. If the token finds its partner in the

Waiting-Matching Section it goes to the Instruction Fetch

section, otherwise it "waits" in the Waiting-Matching Section.

The Instruction-Fetch Section has a program memory associated

with it.

/
I

I
I

-77-

~ PE ~ ..
~

NxN

PE ----- PACKET .
~

COMMUNICATION

• NETWORK •
• •
• •

PE ~ -

Fig. 3. An overview of the proposed architecture.

..
I

, ,
I

r ...

-=78-

<d = It opcode t data> <d = 0 t tag t data)

iI

I - structure
Storage

iI

Waiting

Matching

Instruction
Fetch

~ag t datal t data~

""- .. I Program

I- .. l~ Memory
~-'----------r-~

~data I f ata2

OPC-} ALU I
ode- \ tag

~data
1-1

output ~

I d = 0
~--.. ..c-\. ______ ---1 <tag t data)

ov

r
<d=1 t opcode t data)

Fig. 4. One processing element.

-79-

The instruction at the address indicated by the tag in the packet

is fetched. The fetched instruction says for instance. a-ha I am

an addition operation. After this the operator and the operands

are passed to the ALU. Notice the difference from a conventiona~

computer where after the instruction has been fetched. the

operands indicated by the instructions are fetched from the

memory. Only then something is done with the operands in the

ALU. In our processor. instruction fetch is done after the

operands have arrived to find out what is to be done with the

operands. You can have any type of Arithmetic Logic Unit here.

The ALU produces data as well as tags for the data. Finally the

processor outputs the results packet. This is how one Processing

Element which is a complete computer in itself. works.

Now. if two such devices are available how will we make use

of them? Well. a very simple strategy can be followed. One can

say all the tokens with even tags remain on the left-hand

processor and all the tokens which have odd tags should go to the

right-hand processor. (Of course. more sophisticated schemes

than this can be imagined.) This will automatically divide the

work. roughly equally. among two PE's. Many different strategies

for distributing work are supported by our machine. The

important point is that no central authority is involved in

distributing work. The Output Section only deals with the input

tag and data. and a copy of the program to generate a new tag.

and hence. the number of the number of the destination processor.

The data structure storage in this machine has something

similar to the HEP computer: there are extra bits assiciated with

each word of the memory. As shown in Fig. 5. these bits indicate

-80-

whether a word is empty or full. If a "read" is attempted on an

empty word, the I-structure storage controller remembers the

destination (i.e., the tag) where the data should be forwarded

whenever it is stored in the word. The "store" operation causes

the status of the word to be changed to "full," and in case there

are deferred reads, the data to be sent to the destination of the

deferred read operations. This type of storage, I think, is

essential for high performance multiprocessor machines to avoid

the so-called "read-before-write" problem.

Now, I will describe the communication system. Every PE is

provided a 4x4 or 8x8 switching element and switching elements

are connected to each other in any reasonable topology (see

Fig. 6). A switching element receives a token (a packet) with a

destination address on any of its input parts. Packets arrive

asynchronously at the input parts and, hence, several packets may

arrive simultaneously at a switching element. The switch looks

up the destination address in a table which is kept inside the

switch. The table essentially tells which output ports will take

the packet closer to its final destination. If any of these

output ports is free the packet is

held in a buffer in the switch.

forwarded, otherwise it is

Basically the communication

system is a store and forward packet communication network of

very flexible topology.

-81-

.... ~I
1
0

1 1
0

1 1
0

1 1
0

1 1
0

1
• • • •

Xo ~ Store Xo • Q • v)

....] H (If) H H H H • • • •
Xo

cell is free

A value is written in the cell

Zero or more reads are performed

- The cell IS declared free

Fig. 5. I-structure storage .

Fig. 6. Communication system.
elements.

-82-

An interconnection of switching

•

-83-

Next, I want to describe what we are building. We started

out four years ago thinking, rather naively, in terms of custom

VLSI chips. We hoped that our PE would fit in a single chip.

This dream did not last long but we still hoped that the PE would

fit at least on one board. It took another year to realize that

the amount of custom hardware we would have to build to fit the

PE on one board will involve seven custom chips of M68000

complexity. A hardware project of that magnitude is just too

risky. That is to say, we would never have been able to find out

if our architecture was defective or if the hardware was flaky.

It's clear to us that we are in the business of testing an

architectural idea and therefore it is necessary to take a fairly

conservative approach to constructing hardware. Even the

ultimate speed of the machine is not of real importance to us

except to the extent that it should be fast enough to run some

real user code. It doesn't have to be as fast as a Cray-l, but

it has to be fast enough so that an application programmer who

spends time programming the machine does not feel that his time

has been wasted. In this way a programmer will get a taste of

the future, at least as far as programming is concerned, and can

take comfort in the fact that the next version of the machine may

be faster than any sequential computer.

Thus, at some point we gave up the idea of building a real

machine and decided to simulate as well as emulate the

architecture. Since we had simulated an earlier version of the

machine and were aware of the effort required, we were not

thrilled about simulation initially. The push towards simulation

came from IBM people. They said look if you guys really want us

-84-

to believe the potential of your architecture, you have to

simulate the machine in a fair amount of detail. A cooperative

effort with IBM Yorktown is underway now. We have received the

gift of an IBM 4341 with 16 megabytes of physical storage for

simulation experiments. We are running the same simulation

program at Yorktown and MIT, and we hope to start running

experiments on the simulator in the fall. This system is already

about 250 pages of Pascal Code and it may grow by another 100 or

150 pages when the code to monitor the performance of the

data-flow machine is included. My guess is that it will take

about 24 CPU hours on the IBM 4341 to execute about 20 million

data-flow instruction . Twenty million instructions do not

represent a large time on a supercomputer, but properly designed
i

simulation experiments should increase our understand\ng of the

dynamic behavior of data-flow programs.

In order to execute even more instructions per experiment we

are building a Multiprocessor Emulation Facility (MEF). The

facility, funded by DARPA, will consist of 64 Lisp Machines

connected together by a high bandwith packet communication

network. The Lisp machines are of the Symbolic 3600 variety.

Most of you are probably not familiar with these machines. Well,

a Symbolic 3600 is a single user machine costing about $90 , 0001

The minimum configuration consists of 2 megabytes of storage per

processor. The interconnection network which is being designed

by us will provide a bandwith of 4 megabytes per second per port.

We think a 3600 will not be able to generate more than this much

traffic if it is doing any useful computation.

-85-

We will make the MEF behave like the data-flow machine by

making each 3600 emulate a Processing Element. Thus, 3600's

won't look like Lisp machines, and the Lisp run time environment

won't play any role in the emulated data-flow machine. However,

Lisp machines provide a sophisticated programming environment and

we are doing all our program development in Lisp. It should be

noted that the internal parallelism of a PE would be emulated on

a 3600 (which is a sequential machine) by multitasking or virtual

concurrent processes.

Figure 7 shows the complete Multiprocessor Emulation

Facility. Because this facility is going to be very expensive,

external users will also have access to it. Only 8 of the 64

machines in MEF will be full machines while the rest will be

without disks and displays. The terminals on full machines may

be thought of as operator consoles on a main frame. Of course

the system will be connected to local networks, so that remote

program development can be done. It will be possible to do the

development of an interpreter for a novel architecture on a local

Lisp machine, and then ship the interpreter to the facility. In

a sense this emulation facility is an analog of a big accelerator

laboratory, where people would come to do experiments after

having designed their experiments at home.

MEF

Local
consoles

-86-

MIT Local Area Networks

* Personality Development

* Interactive

Local Dial-up

ASCTI terminals

"* I nteractive processing

Remote Development

* Personality Development

• Remote processing

Fig. 7. Multiprocessor Emulation Facility (MEF).

-87-

PANEL DISCUSSION

THE NEW INTEREST IN PARALLEL COMPUTING.

Smith:

Many university researchers are suddenly interested in the

architecture of parallel computers. What is the motivation?

Schwartz:

The basic motivations are two fold. First, there is a

genuine technological opportunity, coming from the falling cost

of the elementary processor. Second, everybody smells money and

sees this as an opportunity to build up their own activities.

Smith:

Is the primary technological opportunity afforded by the

reduced cost of hardware, the ease of designing the LSI, or more

understanding of parallel. computing?

Schwartz:

The falling cost.

Arvind:

My point of view is slightly different. I have been

interested in parallel computing at least since 1975. I did not

think in terms of building one then; the investigation was

theoretical. I really believed that something was wrong in the

way parallel computing was being attempted even though there were

not very many parallel machines at that time. I always had

doubts as to whether one could connect 16 commercially available

processors together to get high performance out of the system.

-88-

Smith:

There are a few notably quiet members of the panel who are

not saying what I expected them to say, namely, that we need to

get our problems solved. Where are you guys when I need you?

Nash:

The point is that there is no more than another order of

magnitude and a half, or so, in the conventional approach to

enhancing computing and that's far away. There is just no other

way of gaining large factors of computing power except by going

parallel.

Wilson:

What excited me was when it became clear that by going to

parallelism the jump in performance would be far more than the

normal jump expected from commercial development. The factor of

100 per decade is going to be totally eclipsed by the gains that

come from parallelism.

THE IMPORTANCE OF IMPLEMENTING ARCHITECTURAL IDEAS
IN HARDWARE

Smi th:

Under what circumstances is it important that university

researchers have their architectural ideas implemented in real

hardware? It's fairly clear that if you have a problem to solve

and you are desperate you build real hardware. At what stage do

people like Arvind at MIT or Schwartz at NYU need to build

hardware?

-89-

Arvind:

I have had lots of discussions about this very question

within MIT and with other colleagues outside. I believe it is

important to go as far as possible with analysis, because

building machines is very tedious. To build a machine which

somebody else can use, is really a big task. It's not worth

undertaking unless there is a good reason to believe that there

is a bright architectural idea; the machine based on the idea

cannot be analyzed any further but is worthy of further

exploration. In other words, premature construction of new

machines can be a colossal waste of time and money.

I strongly recommend that people should go as far as they

can with the analysis and simulation of their architecture. They

should talk to real users and program some applications before

attempting to put together a machine which can be used. For

example, there are two machines on Schwartz's chart, CM* and

C. mmp, both at Carnegie Mellon University. The reliability of

CM* was so poor and the total computing power so limited that few

application programmers were interested in writing programs for

the machine. The main claim the designers can make is that they

put together 60 PDP - II's and set some sort of a world record.

I don't think it is worth building such machines because the

learning is not commensurate with the money and the effort

involved. Either the technology itself is to be tested by

putting these machines together or the architectural concept is

to be proven. The goals should be clear at the start.

-90-

Christ:

This is one aspect of the problem that has been changing.

There was a time when building a computer was much more difficult

than programming it. But as microprocessors and large scale

integrated chips have become available that are really able to be

interconnected by amateurs. At some point the possibility of

building hardware for particular processes involves less work

than programming. We may not have yet reached that stage, but in

fact we might.

Schwartz:

This may be true for existing hardware. However building

some new device like a Fast Fourier Transform chip is definitely

several orders of magnitude harder than doing it jn software.

Panel:

Perhaps our moderator could describe the Denelcor HEP

approach to parallelism?

Smith:

The Denelcor HEP computer system is a dance hall machine in

the sense of having all the boys on one side of the room and all

the girls on the other with a switch in the middle. It has

processors and memories and a connection network that ties them

together, very much like the picture that Schwartz showed. It's

not a data-flow machine according to some people but it is

according to others. In fact, it's a hybrid lying somewhere

between a data-flow machine and a multiprocessor.

-91-

It overcomes two of Arvind ' s objections to parallel

architectures: it is possible to not wait for memory references

and it is possible to avoid rewrite races in this architecture.

It is still necessary to schedule programs using program counters

as well as by the availability of data. In that sense it is a

hybrid between the Von Neumann approach which schedules

everything with program counters and the data-flow approach which

schedules everything with the availability or the need for data.

The HEP machine is pretty fast. It executes from 10 to 160

million instructions a second on 64 bit words. It's also pretty

new. There are six HEP processors in the field in three systems.

Each processor is a parallel processor though.

Wilson:

Bert Smith's HEP machine is the first machine for parallel

processing which was designed the right way. The

inter-communication network was designed first. The processors

and the memory are designed to have all the features that the

network requires including various signaling primitives, so that

different processors can communicate with each other. The

processors are designed so that they are not slowed down at all

by the time-delay in the network. There are a number of really

nice features on the HEP machine. The reason that it is not

selling like hotcakes is that it is also expensive. It does not

give the cost performance one would like to have these days.

-92-

However, we are leaning very hard on the agencies like the

Department of Energy to point out that we have got to have HEPs

available for experiments on parallel processing for which it is

unique.

Smith:

The word unique is maybe a little strong in the light of

what is going on in places like MIT and NYU. However, it is an

available machine. Machines like the Ultra computer, the Tagged

Token Data-flow machine that Arvind was describing, machines with

static data-flow of which Jack Denis is an advocate, the Cedar

machine at the University of Illinois, are being looked at,

evaluated and in some cases designed at various universities.

However, these machines are not yet available. Our machine is

very much akin to those machines, that is, it has the same sort

of applications and the same generic architecture.

Arvind:

I would like to make a simple point. Besides the fact that

it is probably the most innovative machine which is out in the

field today, I believe if people actually started using it we,

the architects, would learn something from it. If there were

eight or ten users of the machine, we would learn answers to

questions such as "Does the machine stay up? Is it easy to

program?"

-93-

STRATEGY OF DEVELOPMENT - HOW MANY GROUPS CAN BE INVOLVED?

Audience:

If you restrict attention to the people who have been

working seriously on computing rather than on special purpose

applications, that is, the people for whom the computing is more

of an end in itself other than a means to a scientific end, then

there is easily a score of very worthy projects. All of these

are short of money and even more short of talent.

There is a difficult decision that has to be made because

there is not enough money to go around. So Jack Schwartz raised

the question about how do we narrow this down. Do we let one

hundred flowers bloom? We certainly don't go as far as the

Japanese in mandating from above. Perhaps there is a happy

mid-ground.

Smith:

Underlying our concerns is the fact that in some cases it is

necessary not just to build machines to avoid the problems of

simulation hut to build serious machines. In fact these must be

quite serious machines. In Arvind's words these have to be

machines that get some of the industrial people and some of the

national laboratory people interested in actually writing

programs and developing applications for the hardware. We need

to develop computers with performance in the multimillion

operation per second range and with concomitant tolerance

invested in them. Are there comments?

-94"'"

Schwartz:

The right way to organize this would be to spot in a

judiciously chosen set of projects across the spectrum of

possibilities which tried all the major alternatives at a

significant but neverless a relatively modest level of

capability. Right now the universities are by and large trying

to advance to the 64 processor level with relatively small

processors. To go beyond that, one is starting to tal~ of major

facilities and larger dollars. The right way to do that is to

have some judiciously organized technical runoff with a smaller

number of machines allowed to advance to the thousand and four

thousand processor level. I am not sure that that degree of

judicious judgment is being brought to bear.

COOPERATION WITH INDUSTRY

Smith:

What cooperation with industry have you had so far, and what

cooperation would you like to have?

Wallace:

Within the UK scene we have had rather good cooperation with

ICL. We would almost certainly not have had the machine but for

a meeting between the regional computing center director and the

director of ICL. It does appear to us that we have been able to

show some of the things that this kind of machine can do. There

is now a wider interest in other companies both within the United

-95-

Kingdom and the United States. We are optimistic that our future

needs for computing engines can be met by early access to the

manufacturers' prototypes that we really want.

Arvind:

It is not very difficult to convince a manufacturer to give

you a computer if you say you will write programs for it. They

will love you if you do that. We are made offers like this all

the time. We have to turn them down because we cannot absorb too

many different types of machines. The really difficult

cooperation with industry is where we want industry to build a

machine based on our ideas. This is the type of cooperation that

is required to build new types of supercomputers.

Nash:

Over the last year we have had a seminar series on new

computer concepts. We had a very difficult time getting people

from industry to speak though we did have a couple of very good

talks. What we are learning is that industry likes to talk on a

one-on-one basis. That is, if I call up someone with whom I made

a contact and start talking they will pretty quickly get me

information on a non-disclosure basis. This does create a

difficulty. With any large audience an industry person is

apparently unlikely to say anything of great substance. On the

other hand, if you try to talk to them individually there appears

to be a lot of cooperation. As to what cooperation we are

looking for, first, we are trying to get our hands on certain

proprietary chips. Second, we need help with simulation

software. Third, is an area where we are having difficulty which

-96-

I call crystal ball gazing. This is getting realistic estimates

on what memories or processors will cost 18 or 24 months down the

road. Industry is very good at that. They have in house crystal

ball gazers who specialize in that. That sort of information

could be very helpful to us.

Brenner:

I have a question for Wallace. After Illiac 4 the DAP is

the first commercially available processor of its kind. There

has been good cooperation between ICL and the universities and

the National Research Council. Nevertheless it has been a

commercial flop. What went wrong? What should one do

differently? What can one do better to make it work next time

around?

Wallace:

The one specific point that I already mentioned was that the

manufacturer tied it very tightly into ICL main frames. These

don't sell in any numbers abroad, but there are a number of

centers in the United Kingdom with ICL main frames, so there is

some kind of market for the DAP with~ Britain. Tying them to

the mainframes was (at least with hindsight) a major mistake. If

they had mounted it on a smaller machine like a VAX (as, one

suspects, the designers proposed but were over ruled by the

previous management) they would have had a viable machine three

years ago costing $500,000 that would have approached Cray power

for a wide range of problems. I think that would have been an

interesting proposition.

-97-

Wi lson:

Note that there was an ICL DAP that was bought commercially

and then turned back to the company because the company couldn't

make use of it. One of the problems with these machines is that

someone has to learn how to use them. It's easier to learn in a

university setting, partly because the problems people are trying

to solve in a university setting are simpler than the problems

that industry has to solve. I believe the logical progression is

to learn how to use these machines starting in a university.

Some expertise is established in what the machine is really good

for and how to program it for that use. Then it is sent out to

industry, but at same time with industry consulting with the

universities to make sure they are buying it for something that

is feasible to use it for ..

This is not a Cray substitute. There are plenty of things

that can be done very well on the Cray which could be done in

principle on the DAP, but it would be a devil to program. This

is especially true if the programs are already written for some

other machine. Then it would be a disaster.

Wallace:

I don't think ICL thought very deeply about what the machine

would be used for. I suspect if they thought about the

possibility of having general image processing devices using the

basic arrays out of which the DAP is built, then they could have

built the DAP as a special machine based on these arrays.

Possibly use of the basic arrays for image processing would have

been commmercially feasible.

-98-

This is one of the points that encourages us to continue to work

in this area because we can see that we are riding on the back of

what could be a commercially successful architecture.

Christ:

At a somewhat lower level I could describe our interactions

with the Intel Corporation. We are using their microprocessor in

our device. We have gotten a fair amount of assistance from

them. They have a program for interacting with universities that

in our case essentially saved us 50% in the cost of items that we

bought. We hope that perhaps our direction in using

microprocessors might at some point produce a market for them.

Wilson:

Our interaction with Floa~ing Point Systems was thrust on

them. At first it was not something they particularly welcomed.

It started when we bought one of their processors and asked

people in the traditional FPS markets about Fortran. The general

reation was "what?", because they were used to programming these

machines in assembly language. That was the FPS market niche. I

talked with the FPS people about Fortran and they said well maybe

sometime. Then we started our Fortran project and a month later

they hired a director of their Fortran project . We are not quite

sure what the connection was. They actually bought half of the

compiler we wrote. There were enormous difficulties that

developed around that because of course they didn't understand

very much about Fortran. They had various difficulties that they

hadn't anticipated with our compiler. Actually it wasn't a very

good compi ler.

-99-

It took us a couple of years to get back their confidence after

that.

We got a lot more respect from FPS after the manager of the

project at Cornell started sending one paragraph summaries of

every phone call he received with respect to the array processor.

Somebody would call him up and a description of that phone call

went off to FPS. One thing that became very clear is that it is

necessary to identify a "friend" inside industry who can help. I

think that everybody that deals with industry finds this. ~his

is a particular person who is willing to fight on your behalf in

company politics. The friend we had at FPS was the Vice

President for Marketing. .First, he had come from CDC and he was

used to the role that universities have, because CDC had had some

experience with that where as FPS did not. I remember one

session when they were discussing the software for the FPS 164

and I was explaining what the universities would do. The FPS

people were looking skeptical so they asked the Vice President

for Marketing about the earlier experience of CDC. He described

how important it was to have the universities running their

equipment. Then someone pointed out the universities were

running their own software, and didn't that hurt. The Vice

President just laughed, because of course there was no CDC

software worthy of the name at that time.

Nash:

-100-

THE RELATION BETWEEN INDUSTRY, UNIVERSITIES
AND NATIONAL LABORATORIES

It's interesting to compare the roles and capabilities of

industry, the weapons laboratories like Livermore and Los Alamos,

the high-energy physics laboratories, and the universities to see

where they are strong and where they are weak. There are a

number of relevant factors like secrecy, hardware capability, and

architectural creativity that one can see. There may be some

hidden variables in industry that we don't know about such as the

available dollars, the ability to work fast which is most

important, the near versus far-sightedness, and the software

capability. Recently for fun I put down all these factors; I

scored them and added it all up. Surprisingly, their scores came

out exactly the same to the last decimal point.

The point is, and it's an- important point, in each area

there are some great strengths and some weaknesses. For example,

my personal view is that we at Fermi1ab are poor in software.

Another example, is that the universities are creative and have a

lot of foresightedness, but the ability to push something out the

door is admittedly weak. (Even though this is one persons

evaluation, Burt Smith looked at the chart and felt it in fact

was pretty close to his own point of view.) The question is

how can we get these four different, rather entrenched

perspectives together. It's not easy, because they each have

different motivations, different interests and fundamentally

-101-

different perspectives. I don't know the answer but in some

sense that is why I put this up here.

Smith:

George Michael of Livermore ,and Bill Buzbee of Los Alamos,

with the cooperation of Don Austin of the Department of Energy,

have been sponsoring a series of meetings pertaining to

architecture, applications, algorithms, programming environments,

new programming languages, and the like. These meetings get

people from the national laboratories active in defense together

with colleagues from industry and universities. The problem you

have pointed out is well recognized within the Department of

Energy.

Arvind:

I think this is one area where big bucks can make a big

difference. If a national initiative is taken you can really

bring together users as well as industries and universities.

Somebody has to figure out all the details of how this

cooperation is to be brought about.

Audience:

These are big institutional units, but isn't this really a

matter of making something happen between two people?

Smith:

When I first started taking part in these meetings I found

that what I was learning was language. What we have to do is

teach each other our languages so that we can develop those

one-to-one communications. I find now that I can go to a

Monte-Carlo conference and understand about 50% of what's said.

-102-

I can talk to people about aspects of computational physics or

other application areas much better by virtue of the fact that

people have been talking to me about these subjects for some

time. In part that's what this meeting is about.

Audience:

Some of these projects are very large. A lot of money is

needed to develop these kinds of systems. The question is how

can you work with industry? From my perspective I am not sure

that there are that many products in industry that can support

that kind of funding. I think that this is part of the problem.

Is there some way where one can work with a university in a

useful way without a product?

Nash:

That is what I was getting at earlier in terms of our needs

at Fermilab. We can get funding at some reasonable level through

our basic sources but from our perspective what we need are

certain of the things that industry is very good at. The crystal

ball gazers, the simulation, the proprietary chips, board level

computers that they can produce in large quantities, and

computer-aided design capabilities. In our case it is not

funding that we are after.

Schwartz:

In this area the universities have started to function as

fast-moving scouts wandering over the terrain and discovering

many interesting possibilities. The ideal role for industry

would be to be the large battalions that come marching behind

them and do a good job of putting substantial equipment in place.

-103-

A crucial element that is missing now is that they are not

marching, with the exception of a couple of small companies like

DENELCOR.

The basic problem is that in this area industries are trying

to decide whether they want to be involved at all. The smaller

manufacturers have their product concerns. T~ey have to have

short-term product development goals to make money. In Japan the

situation is different and industry is on the march. They may

not have scouted the terrain very well but as a matter of fact we

are doing that for them.

Wilson:

It is often difficult to find product support for university

operations. Take lasers as an example. The time delay from when

the university research was done to the present $100 billion

revolution in laser communications was two decades. Twenty years

ago a university researcher couldn't get access to any of that

$100 billion. On the other hand, the computing situation is

different. Floating Point System's next 32 bit product has to

find a one billion dollar market otherwise Floating Point Systems

goes down the tube. This product is something it has to produce

in the next year. This is not long term. FPS's basic problem is

having the right ideas as to what to build and to know that

product will find the necessary market. Remember that's one

billion dollars and Floating Point Systems is a company many

people have never heard of, it's not IBM.

-104-

The bucks we are talking about in the computing business are

incredible and they are incredible compared to other areas where

one talks about technology transfer.

One serious problem is getting the universities into the

computing game. The universities don't recognize the opportunity

that is there. The second problem is working out how to pay the

universities for their function once they got into the game.

Audience:

Would some kind of a clearing house for funding be useful

where smaller industries not big enough to back entire projects

could make contact with and assist university researchers?

Smith:

As I understand it, the panelists want other support than

just financial support. There was some discussion of MCC

earlier. That isn't such a clearing house. There are research

foundations and other methods of channeling industrial funds into

research activities. I believe the emphasis here was on

something rather different, namely how do we get technical

information from industry and how do we communicate what we find.

How do we act as scouts, perhaps speaking a different language.

I wonder how many of the battalions speak Arapaho or Cheyenne

which seems to be what some of us are speaking at times. However

this may be difficult to pay because instead of costing money it

costs talent. Talent is as expensive in industry as it is in

academia.

-105-

Wilson:

Of course there is a problem with money, but there is

another problem. The number of computer scientists is absurdly

small for the needs of the United States. The requirements for

people are not calculated properly either, because people usually

don't estimate how many computer scientists are needed to go in

and start up companies. Manpower estimates are always in terms

of the established market. The proper way to count is not just

how many people Hewlett-Packard hires.

The money for computers and computer science is absurdly

small in the university scene today even compared with other

subjects like physics. This is because computer science started

late and only really gathered steam in the seventies after the

big funding crunch. Universities that have to think of terms of

a twenty year time scale for a professor aren't eager to run up

their funds rapidly. On the other hand the computer science

students are doubling every year and the funding is not growing

to match.

Part of the trouble is the big funding from ARPA only goes

to a very few universities so NSF as usual is left holding the

bag. Nobody is giving support to raising the funding for

computer science at NSF including most of the people inside NSF.

As a result an absurdly small sum of money is determining how

many computer scientists we're going to have ten to twenty years

from now.

-106-

I hope some of you will start complaining, at least to the

government, that the ratio of funds for computer science has got

to be changed to be more sensible.

IS THERE SUCH A THING AS A GENERAL PURPOSE PARALLEL COMPUTER?

Schwartz:

We believe the design we are proposing and the data flow

machines are relatively general

parallel analogs of the IBM 3081.

purpose.

There will

I see them as the

also be special

devices, and the special devices will perform well.

Of course it's hard to define "general purpose" as preciSely

for parallel machines as it is for the 3081. The IBM 3081 is a

general-purpose machine because it can be programmed for hundreds

of applications. I believe the same will be true of parallel

machines except that those will be exclusively for large

applications.

Nash:

Maybe one should say that "general purpose" for a parallel

machine means that the machine can be efficiently programmed for

just about every problem, but not necessarily be the optimal

processor for every problem.

-107-

Wilson:

It isn't reasonable to call a parallel processing machine

general purpose because of the way typical users would understand

that term. It will always be possible to find a problem which

cannot be solved any faster on a parallel processor than it can

be solved on one element of that processor. There are even

mathematical theorems to that effect. What is fair to say is

that there are going to be enormously cost effective ways to use

parallel processors for problems for which they are suited.

There will be a distortion of the computer market towards the

problems which are suited to parallel processing because they

will be enormously effective. Huge markets will develop around

those applications in data bases and scientific computing. There

will be other areas which will not develop because they are not

suitable to parallel processing.

Smith:

Schwartz is saying regardless of whether there is one

problem or perhaps half-a-dozen it doesn't make any difference

because for economic reasons, people will want to buy parallel

processors for what we now call general purpose computing.

Wilson:

I think we should talk about single purpose and

multi-purpose parallel processing but I think it is dangerous to

call it general purpose.

Smith:

But you are saying that in some future time we will be doing

data base management and payroll checks in parallel?

-108-

Nash:

Why not?

Arvind:

I think it is a non-issue, you don't buy a truck to drive to

your office, yet trucks are general purpose.

Schwartz:

Looking at those present I would come down a little

differently. If one looks ahead to the availability of

general-purpose parallel machines, Al Brenner in charge of a

large computer center, will buy a general-purpose machine where

Tom Nash is interested in a very special purpose machine for a

particular experiment.

Nash:

Semantics are important here because planners are often not

that cognizant of the details. One has to be careful that by

using buzz words like "general purpose" or "artificial

intelligence" the problem is stereotyped too much and one might

end up funding and planning things in the wrong way.

ARTIFICIAL INTELLIGENCE AND SCIENTIFIC COMPUTING

Smith:

At a recent workshop, Duane Adams of DARPA walked up to Ken

Wilson and me and asked if there were any possibility that the

same sort of computer could be used to do scientific computing

and artificial intelligence. Do we need one score or two of

-109-

DARPA machines and one score or two of scientific machines? Who

knows what's next? Is some sort of synthesis possible?

Wilson:

It's a little hard to know what artificial intelligence is

these days. It does seem to me that there is going to be an

enormous need for high bandwidth data movement. That is as close

as one comes to a general need. There is a limit to what can be

done with one bus to move data around. What we are talking about

in these parallel systems ultimately comes down to the form of

the network on which the data movement takes place. The question

is what is its total aggregate bandwidth? Artificial

intelligence is going to need that just as much as the scientific

processor.

Brenner:

The semantics question is serious. These days DARPA is also

using the term supercomputer. This confuses the issue of

overlap. What we in the scientific community mean by

supercomputer and what they want in an artificial intelligence

super machine are not necessarily the same. What we want is a

number crunching super machine. One should be very careful about

that. DARPA has done a disservice to society in making that

confusion. We should all straighten that out whenever possible.

Arvind:

Even though today these machines are very different I don't

agree with that. Both sides require the other. It is clear that

there are AI applications which really require very fast floating

point arithmetic.

-110-

One moves into robotics the more that is the case. Robotics

applications cannot be done very effectively on many of these AI

type of machines. All the proposed artificial intelligence

machines will have fast floating point units on them, precisely

for that reason. Similarily, in scientific computing it is very

hard to graduate beyond machines designed to execute "inner

loops" efficiently unless applications are examined in totality.

Until now, designers of supercomputers have ignored the problems

of managing large address spaces, and the I/O bandwith between

primary and secondary storage. These problems have to be solved

if data-base management and graphics are to be integrated in

scientific computing. Designs of AI machines have a hean start

over designs of supercomputers in these ~reas.

Schwartz:

If I were asked what is the ideal computing machine for

dealing with those equations that are going to replace quantum

chromodynamics, I would have to reply that I don't know. I don't

know what those equations are, hence I can't say what computing

machine is ideal for dealipg with them. I have the same sense of

bewilderment about the ideal artificial intelligence machine. If

you look at the field technically there is such a shifting mass

of paradigms in use that it is hard to identify what artificial

intelligence is.

Smith:

I agree. In particular, the differences between a machine

designed for a language like LISP and a machine designed for a

language like PROLOG can be quite large.

-111-

Nash:

The phrase "artificial intelligence" is an example of the

problem with semantics. I've been trying to find out for at

least six months what artificial intelligence is. Every time I

encounter a computer scientist I ask him. The best answer I got

was from David Kuck. He said "artificial intelligence is

anything that you can't write a program for." That's a rather

large category of problems. Perhaps the buzz words "artificial

intelligence" mean what the defense people want them to mean, and

what they want is their own computers. It gets to be a

territorial question at a certain point. We have to avoid these

territorial problems as much as possible.

Smith:

That's very interesting. It seems that the AI machines are

machines that we can't write programs for.

Arvind:

Actually I find that comment very strange because some of

the largest programs that have been written to date are all in

AI.

Smith:

Kuck's statement is "to solve problems you can't write

programs for," not that you can't write AI programs. I was

jesting of course.

Smith:

-112-

HOW FAST CAN WE EXPECT SUPERCOMPUTERS
TO BE BY THE YEAR 2000?

We would like to ask the panel to prognosticate a bit and

answer the question, "How fast can we expect supercomputers to be

by the year 2000?" I don't care what measure you choose, if you

all choose different ones then you'll have the advantage of not

being compared to your neighbor. Nevertheless, let's have

something that we can get our hands on. Considering what's

happened in the last seventeen years, what are the next seventeen

years going to bring in machines that you can buy or issue a

purchase order for in the year 2000.

Arvind:

I would like to know where we are today?

Smi th:

So would we all. We don't know where we are today and

that's why your metric can be in any scale that you like. You

can just say how many Crays or how many IBM 308ls.

Wallace:

For us the simplest point of view is to consider the next

generation of the kind of machine that we are working with, which

is rather special purpose but still more general than might be

thought at first sight. The next generation will be 30 times

faster. That is still bit serial, so take 32-bit machines.

Another factor has to be i.ncluded for unanticipated hardware

developments that may take place by the year 2000.

-113-

So I would suggest that a thousand-fold increase can be

anticipated, with further factors from haroware and special

algorithms which cannot be foreseen.

Schwartz:

I think I would like to ratify that estimate. That would

suggest something around 100,000 million instructions per second

(MIPS) for the general-purpose machines and maybe a factor of as

much as 100 beyond that for special purpose machines.

Wilson:

Every time I have tried to predict what will happen in the

next three years, let alone in the year 2000, anything I have

said has been an underestimate. It has been impossible to make

an overestimate. For instance the last case that wiped me out

was when I said we needed a floating point chip, something with a

one microsecond cycle time. I speculated that we might have it

in three years. The next day the announcement of the

Hewlett-Packard chip was in Ele~~~~~!~~_~~~~~in~

Smith:

So you are underestimating i ndustry production?

Wilson:

I have underestimated a lot of factors. I underestimated

the importance of the ICL DAP. For parallel processors, I

underestimated the importance of the Monte Carlo processor at

Santa Barbara. These underestimates have forced me to become

more radical in my thinking of how computing is developing. A

second factor to consider is that for parallel processing "how

fast" depends on how may processors are available.

-114-

The n~mber of processors depends partly on just how much money

someone is willing to spend.

Now I doubt that anybody here today with the possible

exception of myself has a concept of how much money people will

be spending on computers by the year 2000. Scientists have

consistently underestimated the willingness of society to spend

money on their science after it has been developed into

something.

With these factors in mind I predict that by 1990, not 2000,

there will be one billion dollars worth of scientific computing

equipment at Cornell. These factors have to be folded into

estimates of how fast computers will be because obviously with a

billion dollars we can have a lot faster system than my present

budget of ten thousand dollars permits. This is true because

obviously industry is going to have to spend

research and development than it does today.

more money on

More of the price

of the goods will be the research and development cost. Second,

industry will have to put a larger fraction of the total R&D

budget in computing because computing costs are going down while

the cost of everything else goes up. Unfortunately a typical

university's management is ridiculous, so that the fact that the

cost of computers goes down and the fact that everything else

goes up means that they put their money in everything else

instead of computers . But, I believe that by 1990 the

universities will be important enough to the economy and to

industry in particular, so that they will be forced into doing

some sensible budgeting.

-115-

This will mean that the budget for computers in universities will

be a larger fraction of their total budget than it is today. In

addition, the importance of universities in the computer market

will mean that by 1990 the amount of computing equipment that we

have in the universities will be limited not by money but by the

total production capacity of the computer industry. In those

terms it is perfectly obvious that a billion dollars of computing

equipment in one of the best universities of the United States is

probably an underestimate rather than an over estimate.

Christ:

I don't see the difference between general purpose and

special purpose as clearly as my colleagues here. I wouldn't be

surprised if that difference was quite blurred by the year 2000.

Scaling up the sort of numbers that one can easily talk about

now, a gigaflop or a thousand million floating point operations

per second, I wouldn't be at all surprised to see that increased

by four orders of magnitude. The hardware may improve by a

factor of 100 and the scale of the system that is considered

feasible by a similar factor.

Nash.

I like the units megaflops per megadollars. By the year

2000 one will be able to get an enormous boost by using broadly

flexible "catered" processors. It is simply a question of how

many transistors will be packed on the head of a chip by industry

and how effective computer-aided design is going to be for

devising circuits to do special purpose co-processors in our

concept.

-116-

With these one can probably get that factor of a million in cost

effectiveness which is the real issue now. If you can get a

factor of another million in dollars you have available then

you're really doing well.

Arvind:

Today we can probably do twenty million floating point

operations per second on a sustained basis. Based on that, I

would say in the year 2000 we probably would be able to do 1-10

billion useful operations per second.

Smith:

In summary, we are getting numbers between a thousand and

ten thousand with the exception of Wilson who suggests perhaps
14

10 ". My numbers are more-or-less 104 for both special purpose

and general purpose machines. (These comments were followed by

several moments of intense discussion among the panelists as they

tried to arrange betting odds with each other on the

possibilities.)

WHAT IS THE SINGLE MOST IMPORTANT UNSOLVED PROBLEM
IN PARALLEL COMPUTING?

Schwartz:

Getting industry moving on the possibilities.

Wilson:

Learning how to program not for parallel processors but for

ordinary sequential processors.

-117-

Arvind:

I think technically programming, otherwise cooperation with

industry.

Christ:

Knowing how to use effectively parallel architecture, that

is thinking of the problem in the right way and programming

efficiently.

Nash:

Softwarel

Wallace:

High level software.

Smith:

Having posed the question, I had an advance look at it. I

had a difficult time deciding whether industrial cooperation or

software was more important. I came down in favor of industry

cooperation primarily because the importance of high speed

computing really depends on making it available for people. If

we don't have manufacturers and industrial users of high speed

computing cooperating in order to bring it into currency then we

won't have to worry about how easy the art of programming is or

anything else. We just won't be in the ball game. We will only

get leverage in high speed computing to the extent that new

devices are supplied by industry and used by people like you.

-119-

FERMILAB INDUSTRIAL AFFILIATES

The Fermilab Industrial Affiliates organization was

established in 1980 to improve university-industry research

communications and to foster technology transfer from Fermilab.

By now the Affiliates number more than 30 institutions including

many research-oriented companies in the Fortune 500 list as well

as several companies formed by Fermilab staff members and users.

Direct activities of the Affiliates include visits of

company representatives to Fermilab

Affiliates. The annual meeting is

and Fermilab personnel to

one of the principal

opportunities for such visits. Affiliates also receive selected

Fermilab reports and other information about on-going work at the

Laboratory.

Affiliate members have direct access to Fermilab staff for

information on the work at the Laboratory. They receive copies

of significant Fermilab technical publications and are kept

abreast of important seminars on technical matters at the

Laboratory. Efforts are also underway to stimulate more visits

of staff members from Affiliates' institutions to Fermilab and

vice-versa. An annual meeting is held in the spring. This Round

Table was presented at the third annual meeting. At the meeting

the visitors are given a comprehensive presentation of the

activities underway at the Laboratory. Tours and individual

conferences present an opportunity to see the Fermilab work in

detail. A membership fee of $1000 per year is charged to offset

part of the cost of the program.

-120-

Specific technology innovations are only one facet of the

work of the Laboratory that is emphasized. The "scientific

culture" related to particle physics is given heavy weight as

well as the long range potential of activities such as the

development of superconductivity technology. The participation

of more than a hundred universities in all phases of the

Laboratory is also important to Affiliate members. Often. an

Affiliate's interests in the Laboratory is hard to gauge. A

major farm equipment manufacturer turned out to be one of the

heaviest users of large computers in the United States.

Fermi National Accelerator Laboratory. by its nature.

amalgamates a wide array of engineering and physics disciplines

of interest to Affiliate members and industry in general.

The acceleration of particles requires a working together of

systems of high voltage electrostatics. high power radiofrequency

signals. and rapidly pulsed magnets all under rigid and precise

computer control. Beam optics. high vacuum techniques. ion

sourcery are also involved. Particle detection adds new areas in

terms of spatial and temporal resolution. fast logic circuitry

and decision making. techniques of multi-dimensional pattern

recognition. signal processing. and efficient number crunching.

A seven year R&D effort in superconductivity has culminated

in the construction of a four-mile ring of superconducting

magnets with associated cryogenic systems.

fraction of the world helium refrigeration

Fermilab. Advanced R&D looks to new materials.

A sUbstantial

capacity is at

refrigeration.

-121-

and understanding which will lead to pulsed magnets operating

with magnetic fields of greater than 100 kilogauss.

Since the scale of Fermilab is so large, four miles of

tunnel filled with sophisticated magnets and a 6800 acre site, an

important ingredient in much of the R&D has been a search for

innovative, cost-conscious designs. Special fabrication

techniques such as laminar tooling have been invented in pursuit

of precision coupled with economy. Remote and automomous controL

is important for the same reason. This has led to important

developments in large-scale distributed control and

data-collection systems.

Technology-related programs at Fermilab include holography,

solar energy, and neutron cancer therapy. A brochure is

available (Technology Development at Fermilab) with capsule

descr~tions of all these activities.

For information on the Affiliates contact:

Dr. Richard A. Carrigan, Jr.
Assistant Head of the Research Division

or

Dr. Leon M. Lederman
Director

Fermi National Accelerator Laboratory
P. O. Box 500

Batavia. IL 60510
(312) 840-3333

-122-

FERMILAB INDUSTRIAL AFFILIATES

Arco Petroleum Products
Bell Laboratories

Borg-Warner Corporation
Brunswick Corporation

Cherry Electrical Products Corporation
CMD Development

Commonwealth Edison
Deere & Company

Digital Equipment Corporation
Digital Pathways, Inc.

Eaton Corporation
FMC Corpora t ion

General Electric Corporation
The Goodyear Tire & Rubber Company

W. W. Grainger, Inc.
The Harshaw Chemical Company

Hewlett Packard
State of Illinois

International Business Machines Corporation
Johnson & Johnson
Litton Industries

McGraw-Edison Company
Nalco Chemical Company

Nuclear Data, Inc.
NYCB Real-Time Computing, Inc.

Omnibyte Corporation
Raychem Corporation

Richardson Electronics
Shell Development Company

Standard Oil Company (Indiana)
Sunbeam Appliance Company

UOP, Inc.
Varian Associates

Westinghouse Electric Corporation

	QC1.F4.19830001
	QC1.F4.19830002
	QC1.F4.19830003
	QC1.F4.19830007
	QC1.F4.19830008
	QC1.F4.19830009
	QC1.F4.19830011
	QC1.F4.19830012
	QC1.F4.19830013
	QC1.F4.19830014
	QC1.F4.19830015
	QC1.F4.19830016
	QC1.F4.19830017
	QC1.F4.19830018
	QC1.F4.19830019
	QC1.F4.19830020
	QC1.F4.19830022
	QC1.F4.19830023
	QC1.F4.19830025
	QC1.F4.19830026
	QC1.F4.19830027
	QC1.F4.19830028
	QC1.F4.19830030
	QC1.F4.19830031
	QC1.F4.19830032
	QC1.F4.19830033
	QC1.F4.19830034
	QC1.F4.19830035
	QC1.F4.19830036
	QC1.F4.19830037
	QC1.F4.19830038
	QC1.F4.19830039
	QC1.F4.19830040
	QC1.F4.19830041
	QC1.F4.19830042
	QC1.F4.19830043
	QC1.F4.19830044
	QC1.F4.19830045
	QC1.F4.19830046
	QC1.F4.19830047
	QC1.F4.19830048
	QC1.F4.19830049
	QC1.F4.19830050
	QC1.F4.19830051
	QC1.F4.19830053
	QC1.F4.19830054
	QC1.F4.19830055
	QC1.F4.19830056
	QC1.F4.19830057
	QC1.F4.19830058
	QC1.F4.19830059
	QC1.F4.19830060
	QC1.F4.19830061
	QC1.F4.19830062
	QC1.F4.19830063
	QC1.F4.19830064
	QC1.F4.19830065
	QC1.F4.19830066
	QC1.F4.19830067
	QC1.F4.19830068
	QC1.F4.19830069
	QC1.F4.19830070
	QC1.F4.19830071
	QC1.F4.19830073
	QC1.F4.19830074
	QC1.F4.19830075
	QC1.F4.19830076
	QC1.F4.19830077
	QC1.F4.19830079
	QC1.F4.19830081
	QC1.F4.19830082
	QC1.F4.19830083
	QC1.F4.19830084
	QC1.F4.19830085
	QC1.F4.19830086
	QC1.F4.19830087
	QC1.F4.19830088
	QC1.F4.19830089
	QC1.F4.19830090
	QC1.F4.19830091
	QC1.F4.19830092
	QC1.F4.19830093
	QC1.F4.19830094
	QC1.F4.19830095
	QC1.F4.19830096
	QC1.F4.19830097
	QC1.F4.19830098
	QC1.F4.19830099
	QC1.F4.19830100
	QC1.F4.19830102
	QC1.F4.19830103
	QC1.F4.19830104
	QC1.F4.19830105
	QC1.F4.19830106
	QC1.F4.19830107
	QC1.F4.19830109
	QC1.F4.19830110
	QC1.F4.19830111
	QC1.F4.19830112
	QC1.F4.19830115
	QC1.F4.19830116
	QC1.F4.19830117
	QC1.F4.19830118
	QC1.F4.19830119
	QC1.F4.19830121
	QC1.F4.19830122
	QC1.F4.19830123
	QC1.F4.19830125
	QC1.F4.19830126
	QC1.F4.19830127
	QC1.F4.19830129
	QC1.F4.19830130
	QC1.F4.19830131
	QC1.F4.19830132
	QC1.F4.19830134
	QC1.F4.19830135
	QC1.F4.19830136
	QC1.F4.19830137
	QC1.F4.19830138
	QC1.F4.19830139
	QC1.F4.19830140
	QC1.F4.19830141

