FINDING THE STANDARD HIGGS IN DECAYS OF Z°'s PRODUCED IN e⁺e⁻ COLLISIONS

Marvin Goldberg Syracuse University, Syracuse, New York 13210

Summary

Characteristics of Higgs meson production from e⁺e⁻ collision with center of mass energies at the Z[•] peak are discussed along with techniques for isolating the Higgs signal. Experiments to find the standard Higgs should be feasible with anticipated luminosities.

Experiments searching for Higgs mesons H^{\bullet} via Z^{\bullet} decay have been discussed in the SLC workshop¹, Cornell workshop², the EFCA/LEP Working Group³, and also by Barger et al.⁴.

For orientation purposes we first consider a Higgs of

$$M_{\mu \bullet} \cong 10 \text{ GeV/c}^2$$
,

where the rate

 $\Gamma(Z^{\bullet} + H^{\bullet} + X) / \Gamma(Z^{\bullet} + \mu^{+} \mu^{-}) \cong .03.$ (1)

The primary process contributing to such decays is the bremsstrahlung mechanism shown in Figure 1, where f, f are quarks or leptons.

 $\Gamma (Z^{\circ} + \mu^{+}\mu^{-})/\Gamma (Z^{\circ} + all)$.03, (2)

H° must be found by searching in an environment with signal/noise $\approx 10^{-3}$. With average yearly luminosities at the Z° anticipated to be in the vicinity of 10^{37} cm⁻², and peak cross sections on the Z° are $\approx 40 \times 10^{-33}$ cm⁻², we can expect several hundred Higgs/year. This situation deteriorates rapidly for heavier Higgs masses.

Searches for Higgs based on its decay modes must be designed to examine a ≈ 60 \$ branching ratio into cc and/or ≈ 30 \$ into $\tau\bar{\tau}$ if M_H <10GeV/c², or the 90\$ branching into bb for M_H > 10 GeV/c². The predicted branching ratios as functions of mass are shown in Figure 2⁴. Unless the identity of the ff of Figure 1 are e⁺e⁻ or $\mu^+\mu^-$, backgrounds and combinatorics would be high even if some decay paths are measured. Since e⁺e⁻ plus $\mu^+\mu^-$ costs only a factor \approx 6 in rate, an analysis of the decays

(a)
$$e^+e^-$$

 $Z^{\bullet} \to H^{\bullet} +$ (3)
(b) $\mu_{\bullet} \to \mu^-$

seems most feasible. We will focus on these modes for most of the remainder of this note. Further, if we assume a shower calorimeter with

Fig. 2. Branching ratios of a Higgs boson as a function of its mass, based on the following quark masses in GeV: $m_s = 0.3$, $m_c = 1.5$, $m_b = 5$, $m_t = 20$.

 $\sigma/E_c = 0.1/\sqrt{E_{GeV}}$, since $E_{\ell} > 20$ GeV for the leptons from the decay (3), $\sigma/E < 0.025$ for electrons. Since muon resolution will be several times worse, we will concentrate on the electron position pair in the decay (3a).

The rate for this decay relative to $Z^{\bullet} \rightarrow \mu^{+} \mu^{-}$ is illustrated³ in Figure 3. If the background were negligible, \cong 10 events could establish the existence of the H[•], and the necessary luminosities for this are shown, setting upper limits to the observable Higgs mass. We explore the situation $M_{H^{\bullet}} = 10$ GeV/c², 40 events, Lt = $.10^{37}$ cm⁻² in more detail. Typically these events contain two high momentum electrons well separated from the hadronic fragmentation. Separation from background may be based on cuts in three variables: i) the mass recoiling (M_{recoil}) from the e⁺e⁻ system, low in this case, ii) the effective mass of the leptons $M_{e^+e^-}$, iii) the angles α of the leptons with the sphericity (or similar) axis of the remaining particles. The latter two cuts are explored¹ in Figure 4, where the effective mass plot is presented for Lt = 10^{37} cm⁻² with two possible Higgs masses. Here the primary background is assumed to be

$$Z \rightarrow t + \bar{t} \rightarrow e^+ e^- + X \qquad (4)$$

with the branching ratio = $0.08 \times (0.1)^2$.

The top mass m_t is taken to be 25 GeV, while higher m_t will produce electron with larger transverse momentum, the decrease in the branching ratio $Z^{\bullet} + t + \bar{t}$ partly cancels this potential problem. Since a selected pair of hadrons in each event could fake a high effective mass e^+e^- pair if misidentified, the hadron rejection of the electron identifier must be of the order of $\sqrt{10^5}$ for these high energy electrons.

Figure 5 illustrates¹ a Monte Carlo scatter plot of M_{recoil} vs $M_{e^+e^-}$ for the 40 Higgs events and the postulated background. As the Higgs mass increases, the number of events falls rapidly, but the resolution in recoil mass improves³. Some potential background at high Higgs mass can also be rejected by additional cut, in visible energy, multiplicity and

Figure 3. The ratios $f'(2^0 + H^0\mu^+\mu^-)/F(2^0+\mu^+\mu^-)$ and $\Gamma(2^0+H^0\gamma)/\Gamma(2+\mu^+\mu^-)$ as functions of $w_{I\!I}/w_{I\!Z}$. The 10 event limit is shown for several luminosity scenarios.

Fig. 4 . Electron-positron pairs mass spectra for: e⁺e⁻ pairs from jets without cuts (solid line), e⁺e⁻ pairs from jets with 200 mr cut described in text (dashed line), e⁺e⁻ pairs from $Z^{o} + H^{o}e^{+}e^{-}$, $H_{H} = 10$ GeV (solid curve), e⁺e⁻ pairs from $Z^{o} + H^{o}e^{+}e^{-}$, $H_{H} = 30$ GeV (dashed curve). (1) (11)

(1v)

sphericity. Thus the 10 event/year limits of Figure 3 could be close to the real limits with optimization of selection criteria.

Scatter plot of $M(e^+e^-)$ versus recoil mass with calorimeter resolution $\Delta E/E = 0.1/\sqrt{E}$. Fig. 5.

For the Z* decay under consideration, Figure 6 illustrates¹ a low mass limit due to background from

two photon interactions. This restricts $M_{H^{\bullet}}$ to be greater than $\sim 8~\text{GeV/c}^2$. Since low $M_{H^{\bullet}}$ implies larger event samples, this restriction may be overcome by studying the decay sequence.

$$Z^{\bullet} \rightarrow H^{\bullet} + \mu^{+} \mu^{-}$$
(5)
$$\downarrow_{\rightarrow \tau^{+} \tau^{-}}$$

with two very high energy muons. Finally, we consider the decay

 $Z^{\bullet} \rightarrow H^{\bullet} + \gamma$ (6)

In Figure 3 we see that the branching ratio provides barely useful samples at the highest luminosity considered. Further, Figure 7 indicates³ that

background problems from $Z^{\bullet \to \ell + \ell - \gamma}$ are severe, except for certain leptonic channels at certain Higgs masses. Nevertheless, this reaction provides important gauge theoretical information, and should be measured if possible.

<u>References</u>

- 1. Proceeds of the SLC Workshop, SLAC 247, Stanford Linear Accelerator Center, March 1982.
- Proceeds of the Cornell Theory Workshop, CLNS-81-485, Cornell University, February 1981; Detectors and Experiments for e⁺e⁻ at 100 GeV, CLNS 81-490, Cornell University, April 1981.
- The Production and Detection of Higgs Particles at LEP, DESY 79-27.
- 4. V. Barger, F. Hulzen and W.Y. Keung, PRL 110B, 323, 1982.