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The traditional forms of the formulas giving the
longitudinal (subscript 2) and the transverse (syb-
script t) instabilities of a charged particlie beam
travelling inside the vacuum pipe of a storage ring
are:

Longitudinal
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where

ZQ = longitudinal impedance of the whole beam

pipe (in unit Q)
n = mode number = number of instability waves per
turn

E,I = energy and current of beam
1 1 dw,
n=—--—= =2 —° = reyolution fre-
2 2 w dp
Y Y o
quency dispersion factor
7
/ wy = revolution frequency
Yt = transition energy
g =Y. beam velocity ,
c velocity of light
e = charge of particle

%E— = FWHM of momentum spread in beam.
This formula is derived for a continuous (coasting)
beam but can also be applied to a bunched beam if I
is interpreted as the peak current in the bunch and
Z, is modified to contain only the relevant frequency
components.

Transverse
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where
Zt = transverse impedance of the whole beam pipe
(in unit $/m)
<Bt> = amplitude-function of the transverse (beta-
tron) oscillation averaged over the whole
ring.
Vv = tune (wave number) of the transverse oscil-
lation
__dv_ _ .
3 d?gij- chromaticity.
P

Again, when applied to bunched beams I should be inter-
preted as the peak current during the bunch and 2
should contain only the relevant frequency compornients.

The longitudinal and transverse impedances of a
circular beam pipe (ignoring the space charge imped-
ances) are related by
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where b is the radius of the pipe and 2mR is the circum-
ference of the ring.

A. Alternative Forms

Since these coherent instabilities do not in-
volve reasonances with the revolution frequency, expli-
cit reference to the circumference of the ring should
be avoidable. Furthermore, it should be possible to re-
place the impedances of the whole ring by the average im-
pedances per unit length of beam pipe. This can indeed

be done. Equation (1) can be rewritten as
7 E/le B Ap
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where
Ly
Zé = TR average longitudinal impedance per unit
v length of beam pipe
= Frequency of the nth mode of the longitudi-

nal instability picked up at fixed azimuthal
location = frequency sensed by the beam pipe,
[To be exact this should be (n-v_)w_ where
v, o= synchrotron (longitudinal) oscillation
wave number. But since generally Vg << 1 it
can be neglected.

Similarly, Equation (2) can be written as
2
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where , z
z =_t = average transverse impedance per unit
t 7 21mR -
length of beam pipe
(n-v)mo = frequency of the nth mode of the trans-

verse instability picked up at fixed
azimuthal location = frequency sensed
by the beam pipe

and Equation (3) can be written as

Z, (w)
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where w = nw_ = frequency at which the impedances are
measured.

Only the radius of the beam pipe and not the total
length appears in Equations (4), (5) and (6). Together
with the fact that only impedances per unit length are
involved this makes them purely local equations. The
only implicit reference to the ring circumference is
through the mode number n. But since nw_ and (n-v)w
are simply the frequencies of the instaBilities senSed
by the beam pipe we see that the appearance of n is
quite incidental to the physical meanings stated by
these equations. Indeed they have the same forms whether
the beam and pipe form a closed ring or are straight
but infinitely long. In this sense these formulas ap-
ply equally well to a linac as to a circular machine.

B. The Impedances
There are 4 types of contribution to the impe-

dance.
1. Space charge term - This term depends on the
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energy and the dimensions of the beam and is non-zero
even when the beam pipe is removed.

Longitudinal
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Zo = 377 @ = impedance of vacuum
8y = 1+ 2 4n 5. geometrical factor (a,b=
a N .
radii of beam and pipe
both assumed cylindrical)
Transverse ZOR
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g, = =5 — =5 = geometrical factor.
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2. Resistive wall term - This term depends on
the conductivity 0 and the permeability u of the wall
of the beam pipe through the skin depth. It is rich
in low frequencies and is generally small.

Longitudinal
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3. Non-resonant broadband term - This term is
the contribution from discontinuities in the pipe,
bellows, electrodes etc. It has the frequency depen-
dence of a parallel R(=RS) , L, C circuit with a re-

sonant frequency roughly equal to the cut-off frequency
of the beam pipe. This term is mainly responsible for
high frequency instabilities within each single bunch.

Longitudinal
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where
RS = total shunt resistance of beam pipe
R
r' =2ﬁ§_ = shunt resistance per unit length
Rs
Q = o "Q" of the resonant circuit = 1
- 1 . . c
wg = = resonant frequency of circuit = T "
YLC
cut-off frequency.
Transverse
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4. High-Q resonant term - This term arises from
resonances of specific configurations or devices in the
beam pipe and hence can not be expressed in a standard
form. It is generally rich in low frequencies and gives
rise to interbunch or single bunch multi-turn instabili-
ties. These instabilities can be cured by feedback.
Therefore this term can usually be neglected.

From the above discussion we see that 1f one neg-

lects the space charge terms one gets the relation
2R [ %
et lm
b8
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Since b 8. =3 - 1 is generally much larger than 8y~
a

142 Qn—%'the above relation gives a lower limit for
Zt’ thus a separate threshold for Zz/nthrough the thres-

hold value of Zt for transverse instability.

C. Scaling Laws

Here we assume that each beam bunch contains
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N particles, has a longitudinal emittance €, and is
bunched by an rf with peak voltage V and waVe length

2TR

A= W where h is the harmonic number. Generally

€, is much smaller than the (stationary )rf bucket
area. Thus, we can write for the full dimensions of
the beam bunch

€ Y
=] 2L
Length = AL = Pl
€ 1 (14)
Momentum spread = bp o ) 2
P pAT
where a is given by
2 1 A ev Yy (15)
a5 2R _2n
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for the peak current during the beam bunch we have

I=K2,_N‘

Equations (1), (2), (3), (14), (15) and (16) give al-
together the following scaling laws.

(16)
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where the subscript th denotes threshold value and
where we have used the following approximations

g =1, Y * Vv
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Although the tune spread Av is shown explicitly in the
formulas,it is limited by resonances to a small and
fixed value, and can therefore be considered as con-
stant. The dependencies in <|le/n)th and (|Zt|)

can be summarized in the following table of exponeszs.
(12l (1z1)

& A N

I fixed N fixed I fixed N fixed
£y 1 3/2 0 1/2
A 1/2 5/4 0 3/4
R -1/2 ~-1/4 -1 -3/4
Y -1/2 -3/4 1 3/4
v -1 -3/2 1 1/2
v 1/2 1/4 0 -1/4

To make the beam more stable i.e. to increase

(|zzl/h) and (|Zt[> this table shows that:
th th

1. For €9 A and R the exponents have the same
signs for all cases. Hence we conclude:

The longitudinal emittance €y should be large.

The ring circumference 27mR should be small.
The rf wave length A should be large.

(Namely, the harmonic number h = 2mR should

be small. For the ranges of energy and rf
frequency of interest,A and R are essenti-
ally independent.)

All three are actually fairly obvious statements.

(]2

statement can be made regarding the choice of their
values.

2. The exponents of A and v in (,Zlb/ﬂ) and

) have opposite signs. Therefore, no s&gple
th

3. For the fixed-current (I) case one may want
to make the rf voltage V large to improve the longi-
tuninal stability. However, for the more realistic
fixed~number (N) case the effects of V on the longi-
tudinal and the transverse instabilities are equal and
opposite.

To reduce the magnet aperture or equivalently the
radius b of the beam pipe Equation (19) states that one
should reduce €ps A, R and V; and increase Y and V.

Combining the effects on the beam pipe radius and
those on the threshold impedances we are left with only
one unequivocal requirement, namely that the ring cir-
cumference should be small.

*Operated by Universities Research Association, Inc.

under contract with the U.S. Department of Energy.

~355-



ADDENDUM. CHOICE OF TUNE AND APERTURE OF A CIRCULAR COLLIDER

At low energles the considerations in the
choice of the focusing strength (choice of v) are
the beam size and the orbit distortion due to field
errors which, together, generate a geometrical
requirement on the size of the beam pipe and the
good field aperture. Indeed, the strong focusing
principle was invented to reduce the necessary mag-
net aperture, thereby the cost of the magnets. But,
at high energies this 1is no longer true. The beam
‘size 1s, generally, negligibly small, and the orbit
distortion is corrected to arbitrary desired accur-
acy. With a properly designed trim dipole system
the correction is straightforward. Other types of
geometrical demands on the aperture arise from beam
manipulations such as stacking and resonant extrac-
tion. These requirements tend to be local and can
usually be satisfied by local lattice insertions
(high or low-B8, high or zero-dispersion, etc.)

The excitation of higher order resonances by
magnet field errors is small and negligible beyond
the octupole., However, in colliders the excitation
by beam-beam forces is large and resonances up to
the 7th order must be avoided. (This severely
limits the allowable tune spread Av, hence the
available Landau damping of beam 1instabilities.)
But this excitation depends only on the orbit
functions at the collision point and not on the
overall focusing strength.

In a high—energy collider for which there is no
geometrical demand on aperture we are left only with
the electromagnetic consideration in choosing the
focusing strength and the aperture, namely that of
the coherent instabilities of the beam. The bean
current induces a voltage through an "impedance” of
the beam pipe. This voltage acts back on the beam
as positive feedback and making it unstable. The
ingtability is damped by a spread in the natural
frequencies of individual particles in the beam
which causes the instability to lose coherence. The
larger is the frequency spread (generally generated
by a momentum spread) and the smaller is the "impe-
dance"; the more stable is the beam.

The condition for longitudinal stability is, at
high energies

YA
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v
where

2,
n

longitudinal impedance

mode number = number of
instability waves around the ring
energy and current of beam

tune

full momentum spread.

E and I
v

Ap/p

Solving for v we get

/2 Z,{\-1/2
v < (E/Te) 3}; (I—i‘) . (14)

The condition for transverse stability is

|Zt' < HE/IE-;{ Av, or

1 I R
where V2 S Ee B |Zt' (28
Z transverse lmpedance

R = radius of ring

Av = tune spread in beam,
For a circular beam pipe the transverse impedance is
related to the 1longitudinal impedance through the
pipe dimensions by the inequality

t

z
o 2R J—:i— (34)

|zt| > b2

where
b = beam pipe radius.
Equations (2A) and (3A) together give
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Thus, v is hemmed in by
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where the tune spread Av is limited by resonances to
a fixed value of ~0,01.

A. Scaling

A wider range of acceptable v-value would
allow larger values of 4 j/n. Hence we would like
A to be large and B to mall. To increase A and
decrease B we should

1. Increase E/I. This extends the accept-—
able vrange at both ends. This also indicates that
the tightest constraint occurs at injection when E
is smallest. Reducing I helps, but the luminosity
suffers.

2, Increase Ap/p. This raises the upper
limit of the wvrange, but requires either blowing up
the longitudinal emittance or a huge increase in rf
voltage (as the 4th power of ap/p). Neither
alternative 1s very attractive.

3. Increase b/R. Because of the squared
dependence this 1is very effective in lowering the
lower limit of the w-range. Since the stored energy
in the magnet ring is proportional to B2 x (b2 R) ~
b%/R, to minimize the increase in stored energy it
is more desirable to reduce R than to increase b.

B. Numerical example
For a 20-TeV collider assuming

E = 1 TeV (injection energy)
I=1A4(2x1019 protons in a
1 m long bunch)
Mp/p = 2x10”Y (a large value)
R =9 km (using 10 T dipoles)
b = 0.0254 m (1" radius aperture)
Av = 0.0l (limited by resonances)

we get
(an'l)-lz_xfl. < v< (zqonl/2)<-|i,’}-|-)_l/2

which gives a range of about 40 to 90 even with
iﬁl /n = 5Q and shows that v = 60 is a good choice.

ing to R = 36 km (2.5 T dipoles) raises the lower
limit by a factor 16 and gives

_ z Z,1\-1/2
(128 @ 1)_|_T’1‘-L < v< (200 91/2)<J—l’1‘-|-> .

The v-range narrows to zero at lzzlln = 1.35 2. The
value |Zg]/n 1 9 1s very difficult to achieve and
the value v = 179 is not very desirable.
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