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The traditional forms of the formulas giving the
longitudinal (subscript t) and the transverse (sub­
script t) instabilities of a charged partic}e beam
travelling inside the vacuum pipe of a storage ring
are:

(3)

where b is the radius of the pipe and 27TR is the circum­
ference of the ring.

Longitudinal A. Alternative Forms

where

Zt = longitudinal impedance of the whole beam

pipe (in unit ~)

n = mode number = number of instability waves per
(4)

average longitudinal impedance per unit
length of beam pipe

Frequency of the nth mode of the longitudi­
nal instability picked up at fixed azimuthal
location = frequency sensed by the beam pipe,
[to be exact this should be (n-v)w where
V = synchrotron (longitudinal) gsc~llation
w~ve number. But since generally V «1 it
can be neglectedJ s

nwo

where
Z' = Zt

t - 27TR

Since these coherent instabilities do not in­
volve reasonances with the revolution frequency, expli­
cit reference to the circumference of the ring should
be avoidable. Furthermore, it should be possible to re­
place the impedances of the whole ring by the average im­
pedances per unit length of beam pipe. This can indeed
be done. Equation (1) can be rewritten as
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~ = FWHM of momentum spread in beam.
p

This formula is derived for a continuous (coasting)
beam but can also be applied to a bunched beam if I
is interpreted as the peak current in the bunch and
Zt is modified to contain only the relevant frequency
components.

transverse impedance of the whole beam pipe
(in unit ~/m)

Similarly, Equation (2) can be written as
2
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t
>c 0

(5)

(6)

average transverse impedance per unit
length of beam pipe

frequency of the nth mode of the trans­
verse instability picked up at fixed
azimuthal location = frequency sensed
by the beam pipe

(n-v)w
o

where Z
Z = t

t - 27TR

and Equation (3) can be written as

2c (Z~ (w»)
Z~ (w) b2 w

where w = nw
o

frequency at which the impedances are
measured.

(2)I(n-v)T)-d~)3
< E/e 13

7T -1- <6>
t

where

Transverse

Again, when applied to bunched beams I should be inter­
preted as the peak current during the bunch and Zt
should contain only the relevant frequency components.

v

amplitude-function of the transverse (beta­
tron) oscillation averaged over the whole
ring.

tune (wave number) of the transverse oscil­
lation

chromaticity.

Only the radius of the beam pipe and not the total
length appears in Equations (4), (5) and (6). Together
with the fact that only impedances per unit length are
involved this makes them purely local equations. The
only implicit reference to the ring circumference is
through the mode number n. But since nw and (n-v)w
are simply the frequencies of the instagilities senged
by the beam pipe we see that the appearance of n is
quite incidental to the physical meanings stated by
these equations. Indeed they have the same forms whether
the beam and pipe form a closed ring or are straight
but infinitely long. In this sense these formulas ap­
ply equally well to a linac as to a circular machine.

The longitudinal and transverse impedances of a
circular beam pipe (ignoring the space charge imped­
ances) are related by

B. The Impedances

There are 4 types of contribution to the impe-
dance.

1. Space charge term - This term depends on the
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energy and the dimensions of the beam and is non-zero
even when the beam pipe is removed.

sonant frequency roughly equal to the cut-off frequency
of the beam pipe. This term is mainly responsible for
high frequency instabilities within each single bunch.

Longi tudinal

i
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"Q" of the resonant circuit _ 1
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total shunt resistance of beam pipe
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where

Longitudinal

or

or

377 n = impedance of vacuum

9,n ~ = geometrical factor (a,b=
a radii of beam and pipe

both assumed cylindrical)

1 + 2

Z
o

Transverse

or

Longitudinal
Z R

l-i _0_ we
Z9, ~ b

2. Resistive wall term - This term depends on
the conductivity 0 and the permeability ~ of the wall
of the beam pipe through the skin depth. It is rich
in low frequencies and is generally small.

__1_ = resonant frequency of circuit ~ ~
ILC
cut-off frequency.

Transverse

Z 2R
( :9,~= R (k-) f(w)t =b2B s

\ b
2

Wror

Z' R' 2c f(w) ~(l) (12)
t s

b-Z:- b2 w
r

4. High-Q resonant term - This term arises from
resonances of specific configurations or devices in the
beam pipe and hence can not be expressed in a standard
form. It is generally rich in low frequencies and gives
rise to interbunch or single bunch multi-turn instabili­
ties. These instabilities can be cured by feedback.
Therefore this term can usually be neglected.

(8)

Z R
o
b

l-i
-2-

Z'
t

1 1
gt = a 2 - b2 = geometrical factor.

or

or

where

3. Non-resonant broadband term - This term is
the contribution from discontinuities in the pipe,
bellows, electrodes etc. It has the frequency depen­
den~e of a parallel R(=Rs ) , L, C circuit with a re-

e =A 2. w~o

(9) From the above discussion we see that if one neg-
lects the space charge terms one gets the relation

Zt = 2RC9,)
b26 n

or

Z' =~(l) (13)
t b2 w

where

Transverse
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Z R
(I-i) 0

~

(10)

2 b
2

Since b gt = --2- - 1 is generally much larger than g9,=
b a

1 + 2 9,n-a the above relation gives a lower limit for
Zt' thus a separate threshold for Z9,lnthrough the thres-

hold value of Zt for transverse instability.

C. Scaling Laws

Here we assume that each beam bunch contains
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3. For the fixed-current (I) case one may want
to make the rf voltage V large to improve the longi­
tuninal stability. However, for the more realistic
fixed-number (N) case the effects of V on the longi­
tudinal and the transverse instabilities are equal and
opposite.

To reduce the magnet aperture or equivalently the
radius b of the beam pipe Equation (19) states that one
should reduce Et , A, R and V; and increase y and V.

Combining the effects on the beam pipe radius and
those on the threshold impedances we are left with only
one unequivocal requirement, namely that the ring cir­
cumference should be small.

The ring circumference 2rrR should be small.
The rf wave length A should be large.

(Namely, the harmonic number h = 2~R should
be small. For the ranges of energy and rf
frequency of interest,A and R are essenti­
ally independent.)

All three are actually fairly obvious statements.

2. The exponents of A and V in (lz£Vfn) and

(IZtl) have opposite signs. Therefore, no s!gple
th

statement can be made regarding the choice of their
values.

(17)

(16)

(15)

(18)

M = ~ ( Et !) ~

{""og'h - rr rr a

Q£=
2:

C

(:t a)

~ (14)
Momentum spread

p

where a is given by
2a

N particles, has a longitudinal emittance E
t

and is
bunched by an rf with peak voltage V and wave length

\ - 2rrR h h' h h i b G 11A =~ were 1S t e armon c num er. enera y

E
t

is much smaller than the (stationary )rf bucket
area. Thus, we can write for the full dimensions of
the beam bunch

I = ecS NM .

Equations (1), (2), (3), (14), (15) and (16) give al­
together the following scaling laws.

for the peak current during the beam bunch we have

(~I)
- ~

V~
3/2 5/4
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~ 3/4
y3/4,}/2b.v 1 b.v £t A

'" - R yv'" NI R3/ 4 V\

and

2R~Z£.. n th
( Z \

, t I th

V~
3/2 2

Y V
(19)

where the subscript th denotes threshold value and
where we have used the following approximations

S ~ 1,

_ w b.v •
o

Although the tune spread b.v is shown explicitly in the
formulas,it is limited by resonances to a small and
fixed value, and can therefore be considered as con­
stant. The dependencies in (Iztl/n)th and ~IZtl) th

can be summarized in the following table of exponents.

1/2

3/4

-3/4

3/4

1/2

-1/4

I fixed

o
o

-1

1

1

o

( IZt I )
th

_-__~A.... ~,

N fixed

( IZ£ IIn)
th

"
I fixed N fixed

C9. 1 3/2

A 1/2 5/4

R -1/2 -1/4

Y -1/2 -3/4

v -1 -3/2

V 1/2 1/4

To make the beam more stable i.e. to increase

(lz£l/n) and (IZtl) this table shows that:
th th

1. For Et , A and R the exponents have the same

signs for all caSeS. Hence we conclude:

The longitudinal emittance E£ should be large.

*Operated by Universities Research Association, Inc.
under contract with the U.S. Department of Energy.
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ADDENDUM. CHOICE OF TUNE AND APERTURE OF A CIRCULAR COLLIDER

where

(4A)

(5A)

(JA)

(6A)

of acceptable v-value would
IZ.e.l/n. Hence we would like

Me Jmall. To increase A and

2 I (!b)2 ,Iv 1zn.e.1
v > IT E"7e il

Thus, v is hemmed in by

Equations (2A) and (3A) together give

b = beam pipe radius.

A. Scaling
A wider range

allow larger values of
A to be large and B to
decrease B we should

1. Increase E/r. This extends the accept­
able v-range at both ends. This also indicates that
the tightest constraint occurs at injection when E
is smalles t. Reducing I helps, but the luminosi ty
suffers.

2. Increase l1p/p. This raises the upper
limit of the v-range, but requires either blowing up
t.he longitudinal emittance or a huge increase in rf
voltage (as the 4th power of !J.p/p) • Neither
alternative is very attractive.

3. Increase b/R. l!ecause of the squared
dependence this is very effective in lowering the
lower limit of the v-range. Since the stored energy
in the magnet ring is proportional to B2 x (b 2 R) ­
b 2/R, to minimize the increase in stored energy it
is more desirable to reduce R than to increase b.

where the tune spread l1v is limited by resonances to
a fixed value of ..(l.01.

with

At low energies the considerations in the
choice of the focusing strength (choice of v) are
the beam size and the orbit distortion due to field
errors which, together, generate a geometrical
requirement on the size of the beam pipe and the
good field aperture. Indeed, the strong focusing
principle was invented to reduce the necessary mag­
net aperture, thereby the cost of the magnets. But,
at high energies this is no longer true. The beam
'size is, generally, negligibly small, and the orbit
distortion is corrected to arbitrary desired accur­
acy. With a properly designed trim dipole system
the correction is straightforward. Other types of
geometrical demands on the aperture arise from beam
manipulations such as stacking and resonant extrac­
tion. These requirements tend to be local and can
usually be satisfied by local lattice insertions
(high or low- fl, high or zero-dispersion, etc.)

The excitation of higher order resonances by
magnet field errors is small and negligible beyond
the octupole. However, in colliders the excitation
by beam-beam forces is large and resonances up to
the 7th order must be avoided. (This severely
limits the allowable tune spread l1V, hence the
available Landau damping of beam instabilities.)
But this excitation depends only on the orbit
functions at the collision point and not on the
overall focusing strength.

In a high-energy collider for which there is no
geo.etrical demand on aperture we are left only with
the electr~gnetic consideration in choosing the
focusing strength and the aperture, namely that of
the coherent instabilities of the beam. The beam
current induces a voltage through an "impedance" of
the beam pipe. This voltage acts back on the beam
as positive feedback and making it unstable. The
instability is damped by a spread in the natural
frequencies of individual particles in the beam
which causes the instability to lose coherence. The
larger is the frequency spread (generally generated
by a momentum spread) and the smaller is the "impe­
dance"; the more stable is the beam.

The condition for longitudinal stability is, at
high energies

where

The condition for transverse stability is

E/e v
1T -1- If l1v, or

for v we get

(E/e)d2
v < -1-

bp/p =
R
b =

l1v =

Numerical example
For a 20-TeV collider assuming

E 1 TeV (in1ection energy)
I 1 A (2xl0 0 protons in a

1 m long bunch)
2 xlO-" (a large value)
9 kin (using 10 T dipoles)
0.0254 m 0" radius aperture)
0.01 (limited by resonances)

B.

we get

(8.e 1).l:¥ < v < (2Q0011 2)(J.:gl)-11 2

which gives a range of about 40 to 90 even with
IZ.e.l/n = 50 and shows that v= 60 is a good choice.
GoiAg to R = 36 kin (2.5 T dipoles) raises the lower
limit by a factor 16 and gives

OA)

(2A)

ring

longitudinal impedance
mode number = number of
instability waves around the
energy and current of beam
tune
full momentum spread.

v =
!J.p/p

IZtl <

v>~Vel1~IZtl

E and I

Solving

where

Zt = transverse impedance
R = radius of ring

l1v = tune spread in beam.
For a circular beam pipe the transverse impedance is
related to the longitudinal impedance through the
pipe dimensions by the inequality

(128 0- 1) J.:gl < v < (200 (1/2)(J.:glr 1/2.
The v-ran¥e narrows to zero at IZ.e.1 In;;: 1.35 O.
value Z.e.l/n;; lOis very difficult to achieve
the value v " 179 is not very desirable.

The
and
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