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1. INTRODUCTION
We believe that QCD is the correct theory for the hadronic world not only when it is probed

at a high energy accelerator (by some external current), but when it is treated much less violently;
when masses, widths and other spectroscopical data are measured. These are non-perturbative question
in a d = 4, relativistic quantum field theory.

The past in particle physics is not very glorious in this respect. In classical statistical
physics, however, the analogous problem - namely extracting universal properties of a system approach
ing a continuous phase transition point - has a respectable history. It is the most natural thing
to try to borrow the beautiful theoretical ideas and powerful numerical methods from this field.

Using the path integral formulation, a Wick rotation Xo ~ -ix~ transforms the quantum field
theoretical problem into a problem in the statistical mechanics of fields in Euclidean space. Of
course, it is not an easy problem either, for instance, if it is plagued by the same ultra-violet
divergences as the original one. It is natural to use a lattice regularization in this respect.

QCD regularized on a lattice is the only formulation which at present is able to give quanti
tative predictions. A large part of my ta"lk will be related to the developments in lattice-orrr;
TnCTUaing the problems and first results on fermions.

In recent years, nice qualitative ideas have been advanced for the driving mechanism concerning
confinement. Unfortunately, none of them has been transformed into a systematic, quantitative
method. Some of these ideas slowly fade away, not because they are disproved, but because they
cannot be developed any further. Certain subjectiveness is unavoidable in discussing the matter.

There are interesting developments related to the realization of chiral symmetry in QCD.
Largely as a by-product of the search for models where the chiral symmetry is unbroken, it is now
strongly believed that if QCD confines then the final chiral symmetry pattern of the theory is
that observed in nature: SU(nf)xSU(nf)xU(l) is broken spontaneously to SU(nf)xU(l) producing
nt-l Goldstone bosons along this way. This topic is discussed in detail by Peskin1) at this
Conference, therefore I will mention only those problems which are closely related to the lattice
formulation.
2. CONFINEMENT (QUALITATIVE)
2.1 Bag Model

Apart from its phenomenological successes, the bag mode1 2) provides for a qualitative picture
of confined quarks.

The real vacuum is assumed to be highly non-perturbative, which cannot support the propagation
of coloured objects. To create a bubble with the phase inside, where quarks and gluons propagate
in the ordinary manner (~Fock vacuum), requires energy which is proportional to the volume (and
surface) of the bubble.

Consider a heavy quark-anti quark system in a colour singlet state •. In this case, the des
cription offered by the bag model is very close to the picture one usually has about heavy quarks
in QCD. The vacuum pressure is balanced locally by the outward pressure of the confined Coulomb
electric field. The condition of local equilibrium governs the motion and shape of the bubble which
in turn determines a potential for the quarks3).

Of course, the bag model cannot explain quark confinement (it is assumed), and, unfortunately,
it fails on the other important issue, namely on the problem of chiral symmetry breaking.
2.2 Hadron Propagation in Configuration Space

Though we usually draw Feynman diagrams in momentum space, it might be useful to stay in confi
guration space, where we have a better intuition. Consider the propagation of a colour singlet
meson from the point x to y. The process is described by the propagator

q(y) rq(y» (1)

where r is a matrix in Dirac and flavour space.
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The action is built up from the gluon and quark fields in the usual way

S = Jd'+x 1-~ Tr F2
- <H'x) y (0 +iA (x)) q(x) - q(x).A(' q(x) -_I_ I::g-]J\! ]J ]J ]J

P. Hasenfratz

(2)

Let me be formal, forget about regularization for a while. The action is quadratic in the
quark fields the functional integral over these fields can be done. By using an old trick due
to Schwi nger4), the resulting determinant det(0]J+iA+.A(,) (and derivatives thereof) can be re
lated to the propagation of a spinning, coloured quantum mechanical particle in the external
field Av• Neither the details of the derivation nor the exact form of the final result are
interestlng here. The meson propagator has the following suggestive general form5) :

<qfq(x) qfq(y» - J (measure) • k(C,f) <Tr P ei C~y A]Jdx]J >
Seff

over all closed paths Cxy
connecting the points x and y

where k(C,f) is a number obtained by performing the traces in Dirac and flavour space.
main weighting factor for a path C is the expectation value of the Wilson loop6) over
The expectation value is calculated with the effective action

(3)

The
C.

Seff=Jd'+x WTr F~\! + J (measure)' k(C) (Tr P ei
g5 A]Jdx]J)

over all closed paths C
in four-dimensional Euclidean space

c:J

(4)

The interpretation is clear. The quark and antiquark of the meson ("valence quarks")
propagate from x to y in an environment created by the gluons and virtual quark loops
(" sea quarks").

Observe the basic r.ole of the Wilson loop. Confinement dictates that large valence loops
must be strongly suppressed in Eq. (3), except when local singlets are formed with the help of
the sea quarks :

It is generally believed
theory with external sources.
meter concerning confinement.

<W(C» _ e-a.Area(C)

that the essence of confinement can be understood in a pure gauge
In this case the Wilson loop expectation value is an order para
It is expected to follow an area law

( 5)

for a large planar loop C.
As I mentioned, in discussing the different qualitative ideas on confinement, one has to make

a subjective choice. There is a long list of works in the literature on this subject, especially
on the ideas of the Princeton people and the Copenhagen group7),8). Here I want to say a few words
about the mechanism suggested a few years ago by It Hooft and Mandelstam9).
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2.3 Confinement as a Dual Meissner Effect
One would like to have a better understanding of the confining environment created by the

gluons. It was suggested by It Hooft and Mandelstam9) that the physics behind is a dual
(electric) Meissner effect.

A) The magnetic Meissner effect is well known in the physics of superconductors. Due to
supercurrents an external magnetic field is repelled from the bulk of the superconducting
material. If the magnetic field is strong enough it can force its way through the superconduc
tor, but it is squeezed into narrow flux tubes with a quantized magnetic flux.

The situation is well described by the Abelian Higgs model

(6)

where V describes the self-interaction of the charged field ~. This Lagrangian has a U(l)
symmetry, which is spontaneously broken if the minimum of the potential V is away from zero.
In this case <01~10> = F f 0, the photon acquires a mass ~g2F2. Due to the photon mass, the
magnetic field dies away exponentially in the superconductor, which is the Meissner effect.

The formation of narrow, quanti?ed flux tubes is also described by this model : these are
the famous Nielsen-Olesen vortices lO ). The vortex is a topologically stable solution of the
classical equations of motion. It is a narrow tube of a quantized magnetic flux.

The flux tube can be closed by magnetic monopoles of magnetic charge q = ±(2n/g)n
(n =±l,±2, ••• ). Clearly, these magnetic monopoles would be confined by a linear potential.

Now, electromagnetism with electric and magnetic charges is symmetric under the interchange
of electric and magnetic notions. It is quite natural to assume that the dually opposite can
also happen: the condensation of magnetic monopoles resulting in electric confinement; the
dual Meissner effect.

B) Consider now a non-Abelian theory, but do not discard the Higgs yet. To be explicit,
consider the Georgi-Glashow model ll ). It is an SU(2) gauge model which is broken down to U(l)
by an isovector Hi99s field. This model exhibits a striking classical solution, the It Hooft
Polyakov monopolel2).

Concerning the long-distance properties, this theory is a compact U(l) theory, which on
his part is equal to usual electromagnetism (non-compact U(l)) plus monopoles. Now we can
again introduce a charged Higgs field. Then we arrive at the Abelian Higgs model discussed
before, with the exception that now the monopoles need not be introduced by hand.

If the Higgs field forms a condensate, these monopoles are confined by Nielsen-Olesen
vortices. By changing the couplings in the Lagrangian, the monopole mass can be decreased
and the confining string can be made weaker and weaker. In the ground state of the system mono
pole pairs will be easily created, and they can propagate over long distances due to the weakness
of the confining force. It is natural to believe that by tuning the couplings they might form
a condensate, giving charge confinement.

C) At the place of the monopole the symmetry is restored. By densely populating the vacuum
the symmetry is restored everywhere. The Higgs fields are not important anymore and one feels
we should be able to get rid of if.

Take a pure gauge theory based on the compact group SU(N). How to exhibit the presence of
monopole degrees of freedom explicitly?

It is a difficult problem and it is not completely solved yet. What we dream of is a clear
kinematical separation of the relevant degrees of freedom, like for instance in the XY model
in two dimensions.

The XY model is a spin model. The spins are coupled ferromagnetically and can rotate in
a plane. The model is described originally by a set of angle variables {~i}, ~iE(0,2TI). By
standard transformations13 ) ~i can be replaced by a non-compact variable ~i€(_oo,oo) (describing
a simple massless scalar field, called spin waves in this case) plus additional degrees of free
dom representing the Kosterlitz-Thouless vortices of the model 14 ). These topological excitations
are analogous to the above monopoles.

The procedure is independent of the exact form of the spin-spin interaction, and correctly
enumerates the degrees of freedom independently, whether the vortices are really present in bound
states or form a condensate.

In a recent work, It Hooft suggested a procedure to achieve the same goal in SU(N) gauge
theories lS ). He argues that by partially fixing the gauge the SU(2) gauge theory goes over a
theory with a U(l) gauge freedom (SU(N}~U(l)N-l). In this gauge fixing process, the compact
U(l) is automatically dismantled into the U(l) gauge field, charges and monopoles. An explicit
solution of this gauge fixing procedure would give the form of the interaction between these
degrees of freedom. The technical difficulties seem to be formidable.
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Though this picture is nice and intuitive, it is far from ready for a quantitative calculation.
On the other hand the lattice formulation which I am going to discuss now is able to give quantita
tive results. One has to admit, however, that the powerful numerical methods ~ especially the
Monte Carlo simulation - did not help to obtain a better physical understanding, a deeper insight
into the theory.
3. PURE GAUGE THEORY ON THE LATTICE; FORMULATION
3.1 Lattice Regularization

On the lattice the gauge field is described by the link variable Unu associated with the
link with end-points nand n+p. The variable UnlJ is an element of the gauge group. The
action is built up from gauge-invariant combinations: the trace of the product of U matrices
along closed curves. In the action originally suggested by Wilson6 ),16J, these closed loops run
around the elementary plaquettes of the lattice:

s =-.l. '\'W 2 ~
g plaquettes

n+0 n+0+0
p: 0

n n+O

(7)

In the formal a-+O limit, the usual continuum action is recovered by expanding Un =eigAnlJ in
terms of the vector potentials. This requirement - namely that the lattice classicaY theory should
be identical to the usual one - is not very restrictive. Different types of loops and/or functional
forms can be chosen. In terms of the vector potentials, these actions differ by terms proportional
to the lattice distance, and are expected to give identical continuum theories (in different renorm
alization schemes).
3.2 Continuum Limit

Consider the action in Eq. (7). The only parameter it contains is the dimensionless coupling
g and, of course, the lattice distance a implicitly. The lattice gives a cut-off n/a in mo
mentum space. The dimension of masses and lengths is carried by a, the coefficients depend on g:

1
m = f( g-) • a' ~ = h(g) "'a • (8)

In the continuum limit the cut-off must be much larger than the physical masses. Also the correla
tion length is much larger than the lattice distance. In the language of statistical physics, the
system should approach a continuous phase transition point. This has to be arranged by tuning the
coupling g. We want to find an asymptotically free theory in this limit. In an asymptotically
free theory the bare coupling goes to zero as the cut-off is sent to infinity. On the lattice, g
is the bare coupling. Therefore, the continuum theory should be recovered by approaching the g=O
point.
3.3 Dimensional Transmutation, Alatt Parameter

In the continuum limit, physical quantities should become independent of the cut-off. For
instance:

dera m = 0, (a -+ 0) (9)

which is just the requirement of renormalizability. By using standard arguments, Eq. (9) implies
that every physical dimensional quantity can be expressed in terms of a single, renormalization
group invariant, mass parameter Alatt:

= C A
latt

m rn 11 •

latt
~ = C~ A ,'" (10)

Alatt is defined in complete analogy to the A parameters of the continuum formulation l ?). The
non-perturbative content of the theory is carried by the constants Cm, C~ ••••
3.4 Strong Coupling Limit

Gauge theories can be solved exactly in the other extreme limit g-+oo. Quark sources are
confi ned at g =00. However. the 1att ice is coarse grained when g is 1arge; the mode1 has not
much to do with a continuum field theory. The strong coupling limit is important only as a
starting point for certain non-perturbative methods.
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3.5 Non-Perturbative Methods on the Lattice
I shall discuss the results obtained by strong coupling expansions and Monte Carlo simulations.

Other methods such as real space renormalization techniques. variational calculations. or generalized
mean field methods have not yet become quantitative.

The strong coupling expansion is a systematic expansion in 1/92 (1/g4 in the Hamiltonian
formulation) starting from the exact. confining solution at g=oo 6),16),18). The resulting power
series is extrapolated towards the g=O continuum point. The success of the procedure largely
depends on whether the region g£(O.oo) (more generally, nearby regions in the complex g plane)
is free of singularities. As was discussed before. this property is influenced by the form of the
action.

The Monte Carlo method is a direct way of numerically evaluating the functional integrals on
a finite lattice19 ). The size of the lattice and the numerical precision are restricted by the
memory size and the speed of the computers.
4. PURE GAUGE THEORY ON THE LATTICE; RESULTS
4.1 String Tension

The string tension a is the strength of the linear potential between two heavy quark sources.
It is an order parameter concerning confinement. Its experimental value is also known from the slope
of Regge trajectories and from heavy quark spectroscopy: aexp~ (400 MeV)2.

4.1.1 ~~~!~_~~~1~_~~~~1!~

Large Wilson loop expectation values are expected to behave as

<WL> ~ e-(A+B.perimeter+a.area), (11 )

where a can be extracted by taking the appropriate ratios of different loop expectation values.
Large loop means: large compared to the actual correlation length.

The first results are due to Creutz20 ). Since then several other groups have repeated the
calculation2l ).

For the qualitative question concerning the persistence of confinement in the continuum
limit,· one might say: there is no sign of a deconfining phase transition in SU(2) and SU(3).

The connection between the tension and Alatt is predicted to be a):

A~att = (0.013 ± 0.002) 10 ,

Alatt = (0.005 ± 0.0015) 10 ,
W

SU(2) ,

s11 (3 )

At first sight these numbers are strange. They imply that A~att is only a few MeV. However,
as is well known, A is scheme-dependent17 ),22). There is a large, calculable connecting factor
between A~att and the A parameters of the usual continuum schemes23 ):

Amom - 57.5 Awlatt ,a=l -

83.5 A~att

SU(2) ,

SU(3) (13)

The controversy concerning these numbers is over; they have been confirmed24 )-26). Using the
connecting factor for SU(3), the Monte Carlo result would imply A~~~ = (180±60) MeV, which
is quite reasonable. However, one must remember that both lO)exp and A~~~)ex contain
fermionic corrections, whilst the above calculation is for pure gauge theory. p

An important question is how close are these numbers to the real. continuum content of the
model considered? A possible internal check is to compare results obtained by using different
lattice actions. The corresponding scales (A-s) can be exactly connected by a perturbative
calculation (in the g-+O limit) and we can check whether the Monte Carlo result follows the
prediction. The results27 ) in Table 1 referring to two alternative actions (Manton's action28 )
and the heat kernel action29 )) versus Wilson's action signal some discrepancy beyond the statis
tical errors. Clearly, it would be necessary to go deeper into the continuum regime to investigate
this problem.
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Table 1

Th eory 26 ) , 27) Monte Carlo 27)

Alatt /Alatt 3.07 5.13 ± 1Manton W

~att /Alatt 1 1.25 ± 0.05anton hk

4.1.2 ~!~~~9_~~~E11~9_~~~~1!~

The strong coupling results for the tension and the B function obtained by Kogut, Pearson
and Shigemitsu in SU(3) Hamiltonian formulation 30 ) were very important in raising interest and
hopes in lattice gauge theories. Since then an additional order has been calculated31 ), and there
is a series available for SU(2) and SU(3) in the Euclidean formulation also32 ). However, the
programme is faced with unpleasant difficulties at this moment. The difficulties are related
to unexpected singularities in the complex coupling constant plane. I shall return to this
question; let me now give only the results. In the Euclidean case, consistency is claimed with
the Monte Carlo results. The method is to take the series as it is and to make a direct compari
son with the Monte Carlo points. However, in the region where the string tension should be
extracted from the theory, the series is clearly not convergent.

In the Hamiltonian formulation, the procedure is similar. The prediction is31 ):

10 = (69 ± 15) Alatt
Ham ' SU( 3) . (14)

A~attIn ord1r to compare this with the Monte Carlo result, Eq. (12), the connection between
and AH~~t is needed. Using the results obtained by Gross 33 ):

Alatt / Alatt = 3 07 (15)Ham W .,

However, a recent calculation gave a completely different value25 ):consistency is obtained.

Alatt / Alatt = 0 91Ham W • (16)

which would spoil this picture. Clarification is needed.
4.2 Gluebali Mass

Correlations (for instance, plaquette-plaquette correlations) die away exponentially. The
rate of this decay defines the correlation length ~, the inverse of which can be considered
as the mass of the lightest glueba11 excitation.

4.2.1 ~~~!~_~~~1~_~~~~1!~

It is a difficult analysis, because by increasing the distance between the plaquettes the
signal rapidly disappears in the noise. No quantum number separation is made; some average value
of the lowest excitations is measured. One should consider the following numbers with reserva
tion:

Bhanot and Rebbi 21 ).

(3.7 ± 1.2) 10, SU(2)

(3 ± 1) 10, SU(2),

34)
(17)

More recent analyses give a systematically lower value

4.2.2 ~!~~~9_~~~El1~9_~~~~1!~

The series derived in Hamiltonian formulation 36 )
The Euclidean series is rather erratic, giving37 ):

for 35)mg

is short, and only mass ratios were formed.

mq (1.8 ± 0.8) 10, SU(2),

mg ~ 310, SU(3)
( 18)
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4.3 Two Additional Quantities
There are two additional quantities investigated in pure gauge theories which, however, raised

some controversy, and the question is not yet settled.
The first is the evaluation of

<~ E Fa Fa > 38)
TI a,~,v ~v ~v •

It is an important parameter in the phenomenological analysis of Shifman, Vainstein and Zakharov39 ),
and via the trace anomaly of the energy momentum tensor it might also be related to the volume
tension of the bag model.

The second quantity is the topological susceptibility40):

A <fd~x q(x) q(O»,

where q(x) is the topological charge density. A non-zero A would be relevant in the resolution
of the U(l) prob1em41 ).

In both cases the main problem is how these quantities are defined. Concerning the second
quantity, there is an extra problem: how to define the topological charge density on the lattice.
In recent interesting papers, Berg and LUscher42 ) and Martinelli, Petronzio and Virasoro43 ) dis
cussed this question in the two-dimensional a model. They suggested a definition which really
has a topological meaning. Therefore A is free from perturbative ultra-violet divergences.
Unfortunately, it is plagued by non-perturbative ultra-violet divergences and this fact spoils our
hopes that a fast progress can be made in this field.
4.4 QCD at High Temperature; Thermal Quark Liberation

There has been a long-standing conjecture that a phase transition must take place between the
high-temperature and low-temperature phases of a non-Abelian gauge field theory44). In the high
temperature phase the quarks are free.

It has been shown45 ) that lattice gauge theories undergo this thermal quark liberation in the
strong coupling limit, and there are Monte Carlo calculations indicating that this phenomenon
persists also in the continuum 1imit46 ). The critical temperature is predicted to be

Tc = (0.35 ± 0.05);0, SU(2), (19)

which is quite reasonable.
In the high-temperature region the force between quark sources is a screened Coulomb law, and

a recent Monte Carlo study47) indicates that the magnetic flux is also screened.
At very high temperatures the energy density is expected to follow the Stefan-Boltzmann law:

€ - T~. This offers a unique possibility to check how the continuum limit is approached in the
Monte Carlo simulation. The reason is that contrary to the previous examples, not only the re
normalization group behaviour is known, but the absolute normalization also:

SU( I~) • (20)

The Monte Carlo analysis for SU(2) is in surprising quantitative agreement with this prediction48 ).
4.5 Annoying Phase Transitions

The lattice is a regularization. A cut-off is introduced temporarily, which is removed at the
end. When the cut-off is large ("a" is small), the theory should behave like a decent continuous
theory: continuous QCD with certain expected properties. If, however, we make excursions into region
where the cut-off is small (the lattice is coarse grained), there the model has not much to do with
the final theory we are looking for, and we might meet surprises.

Many of the new results of the last year are related to the phase transitions in these inter
mediate -regions; phase transition as the number of colours goes to infinity (N-+<Xl, 49)-52)), as
the flux tube connecting two he~vy quarks becomes rough (roughening, 53)-59»), and different types
of bulk phase transitions60 )-63),b). Clearly, gauge theories have a much more complicated phase
structure than we naively thought. The presence of these singularities is related to the difficultie
of the strong coupling expansions.
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5. LATTICE QCD (INCLUDING FERMIONS)
The fate of this whole programme largely depends on our ability to inti ~ fermions and

to calculate something in this extended theory. There are theoretical and technical problems.
The theoretical problems are centered around the question of chiral symmetry breaking, while
the technical problems are related to the fact that it is difficult to find an effective Monte
Carlo procedure for this extended theory.

Before discussing these questions let me make a general remark concerning the introduction
of matter fields, indepently of whether they are fermions or bosons. If the matter field is in
the fundamental representation of the gauge group then long flux tubes are broken by pair
creation, large Wilson loops will follow a perimeter law. The Wilson loop is not an order
parameter anymore. The parameter region where the model is "Higgs-like" is analytically con
nected to the region where it is "confinement-like"64). There is no phase transition between
them. Recent Monte Carlo studies confirmed this expectation in different models without any
surprises65 ).
5. 1 Theoretical Problems of Introducing Fermions on a Lattice

5. 1. 1 !~~_~~iY~_~~~

The naive way of putting fermions on the lattice follows the usual recipe. One starts
from the continuum action of a free Dirac particle:

S = Jd'+x 1- --2
1 q(x) y a q(x) - mq(x) q(x) -I, (21)- ).1 ).1 -

and by replacing derivatives by differences one arrives to

S = a'+ ~ [~ia (q (x) Y).1 q(n+p) - q(n+p) Y).1 q(n)) - m q(n) q(n) ] (22)

By inserting the gauge field Un).1 in the usual way (to preserve gauge invariancy) one obtains
the lattice version of QED

1

- 1 -,S = a'+ L L~ (q(n) Y).1 U q(n+p) - q(n+p) Y).1 U+ q(n)) - m q(n) q(n) _n _).1 La n).1 n).1

+ Sgauge field.

(23)

For m = a the model is invariant under the transformations:

(24)

The symmetry group is U(l)~U(l). This symmetry is exact for any value of the lattice constant,
therefore it is there even in the a -+ 0 cont i nuum 1i mi t.

But then we realize that something went wrong here. Adler's theorem claims66 ) (under very
general conditions) that there is no regularization which would respect both of these symmetries.
In the quantum theory the U(l) chiral symmetry is necessarily explicitly broken. The axial
vector current is not conserved, its divergence receives a non-zero contribution via the Adler
Bell-Jackiwanomaly67).

The above construction seemingly contradicts this theorem. The resolution of this paradox
is that although we wanted to describe the interaction of a single fermion with the electro
magnetic field, the action in Eq. (23) contains 16 fermion species. S describes 16 massless
fermions, and, as it was shown by Karsten and Smit68), their contribution to the axial anomaly
alternates in sign and adds up to zero.

Really, Eq. (23) gives the fermion propagator:

(25)P E: (-TI. TI),).1
1

D(p) ~ t Y Sln p •
).1).1 ).1

and as sin p = 0 at p = a and p = TI, D(p) contains 2'+ = 16 poles altogether. This is
quite general: U(l) axial symmetry implies species doubling69 ).

Of course, we do not want to work with 16 identical fermions from the beginning.
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5.1.2 ~~~!_~~_~~~!

Consider QCD with nf light (massless) quarks. The classical action has a U(nf)xU(nf)
symmetry. In quantum theory the flavour singlet axial U(l) is explicitly broken due to the
triangle anomaly. Therefore the symmetry in the quantum theory is:

(26)

Finally, we want the chiral SU(nf) to be realized in a spontaneously broken way. The
axial symmetry should be broken by the ground state, producing massless Goldstone bosons.

5.1.3 ~~~!_~~_~~~~i_~~99~~!~~_~~1~!1~~~

As we discussed before on an U(l) example, chiral symmetry implies species doubling on
the lattice. If we want to describe a single fermion, the U(l) axial symmetry must be expli
citly broken. We accept this fact, it cannot be otherwise due to the Adler theorem.

Similarly, for the general case, we accept that the flavour singlet U(l) axial symmetry
is explicitly broken. This is independent of the lattice. However, we would like to keep the
SU(nf) axial symmetry. That is the point where the solutions suggested until now are not
completely satisfactory.
Wilson's method6),70),68)

In order to avoid species doubling, Wilson suggested to add a new term to the action with
the following properties:
- it gives large (- cut-off) masses to the 15 unwanted fermions,
- it goes to zero in the formal a~O continuum limit, therefore, hopefully, it will not affect

the behaviour of the remaining single fermion at the end.
The action has the following form: (1 flavour, a = 1 is taken)

S L: { -q (n) q(n) + K L: q(n) (1- y ) U q(n+~)n ]..1]..1 nj.l
+ K L: q(n+~) (l+y]..l) U+ q(n) }

j.I nj.l
+ -l L: (Tr U + cc). (27)

g2 plaquettes P

Here Un € SU(N), K is called the hopping parameter, K = ~ in the classical continuum limit.
It is ea~y to write down the action describing nf flavours. Unfortunately, S is not chiral
invariant. It is hoped that in the continuum limit the axial symmetry will be recovered (and
additionally it will be realized in a spontaneously broken wayC)).
Susskind1s method73 ),74)

It starts with a one-component fermion field ~, and the extra species are used to build up
the four components of q. The degeneracy is decreased by a factor of 4.

It also has the advantage that some remnants of the chiral symmetry are preserved. The
resulting action is invariant under certain discrete chiral transformations. It prevents the
occurrence of mass counter terms which is the main advantage of this method.

The solution suggested by the SLAC group75) results in a non-local action and has several
problems76 ).
5.2 Technical Problems of Introducing Fermions in a Monte Carlo Simulation

In a path integral formulation the fermion fields are represented by anticommuting c
numbers, by Grassmann variables. There is no sensible way to represent them on a computer.

On the other hand the action is only quadratic in the fermion fields. In a concise notation
it has the form

S=L:q.~ .. (U)q.+s
1 lJ J gauge (28)

As we discussed in Section 2.2, one can integrate over the fermion fields in the vacuum functional
or in any expectation value of fermion fields. One is left with a problem in pure gauge theory but
with a new effective action
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One might try to do Monte Carlo simulations with this new action. However. in the updating
process. when at a gi ven 1ink U-+ U+ 8U. the di fference Seff( U+8U) - Seff (U) shou 1d be ca1
culated. and it is very time consuming to calculate such a non-local expression as Tr~n~(U).

To avoid this difficulty. Fucito. Marinari. Parisi and Rebbi 77 ) suggested to calculate
Tr~n~(U) by Monte Carlo. by introducing an auxiliary complex scalar field ~.

Consider a small change at a given link in the updating process: U-+U+8U (a-+a+oa)

(30)

On the other hand:

(31 )-1 () -~ .. U = <~.~.> =
lJ 1 J

JD~D~ ~.¢. e-L~~(U)~
1 J ,

JD~D¢ e- L¢~ (U)cp

where ¢ is a bosonic field. The procedures followed by Scalapino and Sugar78 ), and Weingarten
and Petcher79 ) are closely related to this method. Seemingly, however. even this method is
rather time consuming. There are interesting results in one and two dimensions 77 ),78).80), but
it is rather far from d = 4 QCD. Weingarten and Petcher79 ) worked on 24 lattice in SU(2)
with two flavours. Measuring the one-plaquette and the thermal-loop expectation values with an
accuracy of ~10% required of about 50 hours of equivalent CDC computer time.

To improve upon this situation it has been suggested81 ).82) to combine the Monte Carlo
simulation with a hopping parameter expansion70 ),83) in Wilson's method. The starting point is
Eqs. (3) and (4) generalized on the lattice. The main bhysical idea is that loops, which are
larger than the characteristic length of the problem. are irrelevant. A truncation is made in
the length of the quark loops (the expansion in the length of the loops is made analytically)
and then the resulting local action is analyzed by Monte Carlo. Although the results of Ref. 79)
could be reproduced in a few minutes of computer time with this method81), it remains to be shown
that the method works for more realistic problems.

During this conference, I heard several rumours that certain groups are just on the threshold
of obtaining the hadron spectrum. Presumably these rumours are largely unfounded even if we are
very generous on what we mean by 1I0btaining the hadron spectrum ll

, But they reflect something
I strongly believe: there will be exciting progress in this field in the near future.
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Footnotes
latta) The scale parameter correspondina to the action in Eq. (7) is denoted by A\'1 . The Cluoted

results are taken from Ref. 20).
b) For a summary, see the last reference in 16). 71)
c) General Theorems in the continuum formulation nive definite hone for t~2} . There are certain

stronn couplina results on the lattice also nointinn in this direction .

Discussion

K.H. Becks, Gesamthochschule Huppertal: Theorists start to aive statistical errors. Can you oive
MO~'a1so a systemati ca1 error on A' '?

P. Hasenfratz: Actually yes, because the systematical error was reflected in the table which I
showed. Takina different kinds of formulations you can calculate theoretically the expected re
sult and you can com~are it with the Monte Carlo result. The ~onte Carlo result contains a stati
stical error and beyond the statistical error you observe a discreoancy and that is character
istic for the systematical error which is due to the fact that you are not in the continuum
limit in the Monte Carlo calculation. It is not included, of course, because there is no way. But
I think that by doino a more careful job on the Stefan-Boltzmann law one can find a way to oet
the systematical errors also.

S.D. Orell, SLAC: I believe there is at oresent no fully satisfactory scheme for nuttina fermions
on a lattice. The aporoach we have used in the SLAC nroun is to retain chiral symmetry on the
lattice and to retain correct countina of fermion states by definina the aradient to couDle sites
on the lattice beyond nearest nei~hbour (i.e. non-local on the lattice and avoidinG no-ao theo
rems). J. Rabin has confirmed the satisfactory character of this scheme (to be published). How~

ever, fermions on a lattice are still not simnle.
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