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I. Introduction

In the last few years we have achieved an enormous increase in our ability to calculate high energy pro
cesses from perturbative QCD.l Originally it was thought that only sufficiently inclusive processes were amenable
to perturbative techniques. We realize now, however, that almost every high energy process has its Q2 or mo
mentum transfer dependence determined to a large extent by perturbative QCD. In the end I think that the inclu
sive processes will furnish more precise tests of QCD, but our understanding of exclusive processes adds a depth of
knowledge of short distance phenomena which is very satisfying.

In this talk I shall concentrate on purely exclusive processes
2

although I shall in a few instances deal
with inclusive processes near a kinematic limit where their inclusiveness may be in question. In Sec. II form fac
tors and exclusive decays of heavy quarkonium states will be discussed. In Sec. III elastic wide angle elastic
scattering will be considered with emphasis placed On the energy dependence for a fixed angle. The x - 1 Hmit
of structure functions is discussed in Sec. N. This is a limit which matches on, in a rather complicated way, with
transition form factors. In Sec. V the idea of intrinsic charm is considered, mostly from a conceptual viewpoint as
to its definition and possible existence. In Sec. VI there is a brief discussion of calculations of matrix elements
which occur in deeply inelastic scattering by use of a bag model. In Sec. VII wee parton cancellations and Suda
kov corrections for tJ-pair production are considered. Sec. VIII concerns soft particle production and the multi
pli city of hadrons in a jet.

II. Elasti c Form Factors

One of the striking theoretical developments in QCD in the past few years has been the realization that
the asymptotic behavior of elastic form factors is determined by perturbative QCD.3-9, 1 For particles which com
municate with a quark-anti-quark pair, mesons, this result is now firmly established. For baryons the result is like
ly true as a consequence of a Sudakov suppression of unwanted terms. We begin with a discussion of the asymp
totic behavior of the pion form factor.

A. Meson Form Factors

An obvious question occurs. How can one calculate the asymptotic behavior of the pion form factor when
one cannot give any reasonable description of a pion as a Nambu-Goldstone boson In QCD? The answer to this
question is that factorization allows one to separate a Q2 dependent part of the form factor which is calculable
in perturbation theory from a Q2 independent part which is not directly calculable but which is related, at leas!
partially, to the pion weak decay constant. Thus, we begin by consider(ng the transition form factor for a q-Cj
pair of momentum p to go into a q-q pair of momentum pi under the influence of the electromagnetic current.
Such a process is illustrated in Fig. 1. We shall take a frame where PIJ = (PO' 0, 0, p) and p I = (PO' 0, 0, -p).
We suppose p2, p12 , p. k, p'. k' , k2 and k'2 remain fixed as Q2= 2p. p" becomes large~ We snail obtain

- p/2 +k -pl/2+kl

p/2+k pl/2+k'

Fig. 1
A q-q transition form factor.
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(1 )

the pion form factor by letting p2 - mJ and pl2 - mJ at the end of the calculation. Call x = I k 1/1 pi
and Xl = I 1(1 1/1 pi I . Then after a suitable projection of spinor indices we consider a scalar transition form
factor T(p, k; pi, kl ).

Order by order in perturbation theory one proves for large Q2 that

J1 2
T(p, k; pi, k') = dx dx' v(p, k, x) T(x, Q, Xl) V(pl, kl, Xl) .

-1

Correcti Ons to (1) are of order (m/Q). v(p, k, x) depends on the detai Is of near mass shell QCD so we do not ex"
pect to be able to reliably calculate such an object. T(x, Q2/~2, x'), on the other hand, depends only on far off
shell behavior and is calculable by the renormalization group. We expect (1) to be true in general and an evalu
ation of T{x, Q2, x') to be possible within perturbative QCD.

Using the renormalization gr<>up one finds

2 2
T(x, Q / ~ , Xl) 2

Q -00

(2)

with

(3)

(4) is proportional to the weak decay constant f1l". Thus one may write,

(5)

(4)

In general one cannot evaluate
1J-
1

dx v(p, k, x) CN(x) ,

2 2
p - m1l" 'however, for N == 0 and

taking p2, p.2 - m': ,
2 -y 2

F(Q2)=1611"f2o(~)[1+ E c
N

(lnQ2/./) NJ
11" 11" Q N=2,4, ..•

where the Y
N

are positive and increasing with N. -1!.l X 1:S 1/0

7T gets smaller

Fig. 2

I\

A space-time description of the pion form factor.

Now that we have seen that the asymptotic behavior of the form factor of the pion (or of any other meson'
communicating with a q-q system) is calculable, let me take a moment to describe, in terms of a space-time pic
ture, why such form factors are calculable. In Fig. 2 I have illustrated what occurs. Suppose the virtual photon
acts at x~ = o. Then at a time t1 ~ - p/~ , with ~ ~ 350 MeV, the wave function of the pion starts to become
small. That is, at this time the valence q-q pair begins to shrink in transverse size and any gluons present start tQ
be absorbed. By the time the photon acts, the q-q pair is within a size I f1X1 ~ l/Q. The virtual photon turns
ane of the quarks around. Then, within a time ~t ~ l/Qthe q (or cj) which has been struck interacts with the
spectator q (or q) turning it around also. At this point the q-q pair starts to expand to a normal pion size,
which process is completed at a time t2 ~ p/~2. The process of collapse and expansion of the q-q pair (and the.
accompanying gluons) is calculable in perturbative QCD since short distances are involved. The non-calculable
part is the wave function of the pion before the collapse and after the final expansion of the q-q pair in the final
state. There is no teleology involved here, of course. The wave function of the pion is simply fluctuating, in the
interaction picture, as it normally does. These short distance fluctuations are calculable in QeD.
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B. Baryon Form Factors

In order to emphasize that the calculation of baryon form factors is not on so sound a footing as it is for
mesons, let me outline two possible procedures for deal ing with baryon form factors. 8

Procedure 1. Assume factorization of the 3-quark transition form factor illustrated in Fig. 3. Thus one supposes
one has on analos of Eq. 1. Next, apply the renormal ization group just as has been outl ined for the meson case.
This procedure gives a well-defined answer for the asymptotic behavior of GM(Q2) for the nucleon. And

222
G (02) '"'" 321T Ct (0 )

M "" 9 Q4
-A -A

r b (InQ2/ 2) n m
nm ~

n,m
(6)

5
results. Unfortunately, here none of the b can be related di rectly to tony well measured process.

nm
Procedure 2. Begin calculating in perturbation theory for the 3-quark transition form foetor. If the quark has a

nonzero mass, one finds on answer which disagrees with Procedure 1. In fact one finds a series of Sudakov loga
rithms in this case.8

What should one do? Very possibly, even probably, Sudakov effects suppress the bad logarithms in Pro
cedure 2 and make Procedure t the correct prescription. Hopefully, one will be able to prove that this is the case
in the near future.

Fig. 3

three quark form factor.

Fig. 4

r - 0+ 0

C. T -Decays

Exclusive decays oUhe T are formally very similar to form factors. 10 The following processes have
been considered. (i) T - KK and T - DO , 11 (ii) T - proton-anti -proton, 12 .(i in T -- y + 1T + 1T. 13 Let
me describe very briefly Chao's calculation of l' - D15. Consider the graph shown in Fig. 4 where T -- 3g _
Dn is illustrated. Although the l' is not on especially small object the annihilation tokes place within a short

That is, the points 1, 2, 3 of Fi~. 4 are within a spatial size I!::.x!~ 11M.,. The decoy T - DO

then consists of (i) a collapse of the b - b in the upsilon to a point, (ij) the transition of b - b into a pair of
oppositely movi~g q-q pairs, and finally (iii) the fitting of these quark-anti-quark pairs into the wave functions
of th~ D and D. (i) is exactly the same as for the process 1" -- e+e- and so has been measured. (ii) is caicul
able In QCD and h.as been calculated by Chao. (iii) requires the knowledge of the D's wove function. This is
model dependent, Just as the c N in Eq. 5 are model dependent, and becomes the major uncertainty in the col cu
lotion. Chao finds

r' 
T- KKr
T - all hodrons

and f 4
D

~ (SO-l00) (r) ~T KK
K -
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III. Wide Angle Elastic Scattering

Although I do not think it likely that wide angle elasti c scattering will become a good quantitative test
ing ground for QeD, it is an interesting theoretical question to what extent energy and angular dependences are
predictable for these processes. Let me begin my discussion by giving the contrasting power counting rules sug
gested by Brodsky, Farrar14 and by Landshoff. 15- For simplicity the discussion will be phrased in terms of 1f-11'

elastic scattering.

In the Brodsky, Farrar pi cture elastic scattering occurs much as does the hadron scattering part of an elas'"
tic electron hadron interaction. Refer to the graph shown in Fig. 5. According to Brodsky and Farrar, before the
scattering the valence quark-anti-quark pair (3,4) in the pion comes within a transverse distance IAx 1.s. lilA'
as does the pair (1, 2). The 'Fock states of the two pions, in the center-of-mass system, are supposed to-consist only
of their q-q valence pairs. Upon colliding, two interactions between the pions are necessary in order to turn
both q and q around. A simple counting of variables then indicates the necessity of a further hard interaction
in order that the outgoing q-q systems have low masses. Dimensional counting for these various hard scatterings,

three of them, gives ~ ~ ~ f(9).
4-00
9 fixed

Fig. 5

A hard scattering contribution to wide angle
elastic scattering.

4

11

Fig. 6

The Landshoff graph.

41

In the Landshoff picture, see Fig. 6, the pions also consist only of their q-q valence pairs. However,
now one views the q and q in a particular pion as not being close together in transverse coordinate space. (In
momentum space this means that the q and q are not to be very for off mass shelJ.) There are supposed to be
two scatterings of almost identical angle which turn the q-q pairs arour'ld, leaving them in a low mass system.
That is, 9(1, 11

) Z 9(2, 2'} ~ 9(3, 3'} ~ 9(4, 4'}. A power counting for such scatterings leads to
dO"' 1 "-at - -:"'5' f (9) •

A.-oo 4,;

9 fixed

Thus, the Landshoff type of scattering would seem to dominate wide angle elasti c scattering. However,
there is an apparent danger in the situation envisioned by Landshoff. The valence q-q in the pion are not close
together, and hence do not form a very local color neutral system. Thus it is unlikely that collinear and soft
gluons will be absent. However, gluons must be absent if the scattering is to be purely elastic. In general the
price one pays for picking out a particular piece of the wave function not having collinear and soft gluons is a
Sudakov factor. (In the Brodsky, Farrar type of scattering the q and q are close together and so form a local
color singlet. A color singlet does not need to have a gluon cloud and so one expects no Sudakov suppression in
that case.)
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In fact there are Sudakov corrections to the Landshoff graphs. After taking into account leading double
logarithmic effects one finds l

~~ ~ ~ 1/1 dX l dX2 dx,' dX:i t ~ .(x l ,~ ...) ~.(x2' X; ...l ~.(x,' ,]1"; ....1

( 'X ) -2c[InAL.(In In .. - In InXi ....)-ln l/Zi I H(I I) 1
2

et> 1T x2 ' I 4. e i p, P , x, x

where JG is a combination of xl' x2 ' xl' , xd and Q. Hi is a_particul q r",hcJrd"'part:ar,d.4>1T j~1CI

renormalization grouf evolved wave function of the pion. (A judicious use of the techniques of the type developed
by Collins and Soper 6 might allow one to show that (7) is the dominant term in an asymptotic series for dlT /dt.)
Numeri cally it turns out that one is somewhat cI oser to Brodsky, Farrar than to Landshoff si nce

-4c In 4c + 1 4c
dO" 1 ~ F
d
- - -5 A c as far as power dependences are concerned. c = ~I .

t A-oo .0 -~nf

IV. x - 1 Limit of Structure Functions

There are at least five distinct regions, in x, for a deeply inelastic structure function. These regions

are: (i) x - 0; (ii) x finite, away from 0 or 1; (iii) 1 - x <1 but In -1-1-/ln Q2 < A; (iv) In -1
1

/In Q2-x -x
> A but Q2(1 -x) large and A to be specified later; (v) Q2(1 - x) fixed as Q2 grows. Region (i) is the

,Regge region for which no systematic discussion exists in the QCD context. Region (ii) is the normal region where
one may directly apply renormalization group improved perturbation theory in order to confront data with QCD.
Region (v) is the region of elastic and transition form factors which we have previously discussed. We shall now
summarize the status of our understanding of regions (iii) and (iv).

Suppose for fixed x away from zero or one we let Q2 become large and keep only the dominant twist
(dominant power in Q2) contributions to ,»W2 for, say, the proton. If we now let x go near I there are con
tributions like a (Q2) In2 1/1-x which vitiate a standard renormalization group calculation when Q.(Q2) In21/1-~
is o~order 1. (In fact a careful analysis reveals terms more complicated in structure than simple powers of
a(Q ) In2 1/1-x .) So far we have no systematic treatment of all the leading and subleading logarithms in 1 - x .
Such a systematic analysis should be possible. Brodsky, Lepage 17 and Amati, Bassetto, Gafaloni, Marchesini,
Veneziana18 have suggested that one may sum the leading 1 - x singular terms simply by a judicious modification
of the argument of the running coupling in a renormalization group or Altarelli-Parisi equation. This conjecture
has been verified in an Abelian theory by an explicit calculation of the leading Sudakov effects in the presence
of a running coupling. 1 (In an axial gauge the non-Abelian Sudakov case follows directly from the Abelian cal
culation.) One finds

3 {4CF 2 2 2 2 1 13l.
lJW2 = c(l-x) exp -11 _~ n

f
[In Q In In Q - In Q (I-x) In In Q (l-x)-ln r:; In In r:-xlj.

(8)
However, until one has a method of systematically improving Eq. 8, this formula should be token with some caution~

Tn particular the scale to be used in (8) will be set by subleading effects. This is our description of region (iii).

In addition to the leading twist terms, those terms in ~W2 which have a factor of (I _x)3 near x = 1
but which have no inverse power of 0 2 , there are in general non-Ie~ding twist terms. In particular we should
expect 3(1-x)2/02 terms coming from twist-4 operators, 1-x/(02) terms coming from twist-6 operators and
1/(Q2) terms coming from twist-8 operators. The twist-4 and twist-6 terms also have Sudakov factors although
the twist-8 contribution has no Sudakov suppression. The twist-2 and twist-8 contributions are comparable when
1/(Q2)3 is of the same size as the expression on the right hand side of Eq. 8. This happens when In 1/1-x =
X In Q2 with A satisfying 3(1-A) =4cF/ll -~ nf [In l/l-A + A In 1-A/A] • Thus, for

In ,..L /In Q2 > A the twist-8 contribution dominates the twist-2 contribution. (Whether or not there is a region
I-X

either like X. < In -1
1

/In 0 2
< A or like X < In -11 /In Q2~ X. in which twist-4 or twist-6 terms dominate

I -x -x I

'" W2 is a question which can be answered only when the Sudokov calculation has been done for those terms in the
Wilson expansion. In the following we suppose, for simplicity, that twist-4 and twist-6 terms never dominate lIW24)
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So long as
can write6,8

02(1-x) remains large, but In -11 lin 0
2 > >. , we are in region (iv) •

-x

GM(02) 2 en [I 0 2 J-2AN

~ 0(0 ) r C -:---~n...-:--:-
0 2 N=O N In 02(1-x)

In this region we

(9)

(11 )

'where the A N are anomalous dimensions of a particular 3-nucleon operator and CN is a pure, calculable, N
dependent number.

v. Intrinsic Charm

We have heard earlier in this conference a number of discussions on the phenomenological predi cti ons of
'~intJ:inili: cbmm prQpcuol of Brodsky, Hoyer,. Peten.on and Sakai19 CBHpS). RoffleJ4 f~Gatfemptfng to evaluate
the successes or fai iures of this hypothesis, I shalT here try to explain the idea of an intrinsic heavy quark compon'"
ent in a low mass hadron and to show the conceptual difficulties which arise when one imagines that this is a long
lived component.

To begin let us recall the Witten,20 Georgi-Politze?l discussion of heavy quark, say charm, contributiolllS
to deeply inelastic structure functions. One may write

11 ~W2(x, 0 2) xndx == t (p Idj) Ip) E(i)(02) + (p Ide) Ip) E(c)(Q2) (10)
o i==l n n n n

where the O~j) are local operators corresaonding to ordinary quarks and gluons, and 0 (c) corresponds to a
charmed quark operator c(x) YfJ D.·. D c(x). Charmed quark effects show up in nthree places. (n There

are charm effects in E~i) (Q2); 1(ii)lJ~p IOJ~ Ip) may depend on charmed quarks; and ~ii) the second term on thE!
right hand side of Eq. (10) depends explicitly on charmed q,uark effects. The Symanzik, 3 Appelquist-CarazzoneU

theorem tells one that (ii) and (iii) give effects of order IJ"'/mc2 where IJ Z 300 MeV. (0 can give terms of order
1 which are calculable at large Q2. It is the calculation of these order 1 terms that Witten and Georgi-Politzer
discussed. Such contributions correspond to a small value of x in .,W2 . Intrinsic charm, a large x component,
must be a part of the 1J2/ml terms that Witten and Georgi-Politzer are unable to handle systemati cally.

Write the state of the proton as

IlJI ) = ~ IlJI >normal + a I t\l >cc
p p p

where IljJp>normal is that part of the proton state which can be given only in terms of light quark and gluon Foci,:
space states in the proton's rest frame. I ti'p)cc is that part of the proton state which includes cc pairs in its Foell.
space description with renormalization done on a light mass scale. a 2 is of order 1J2/m? Bag model calcula-
tions of Donoghue and Golowich24 find 0 2 ::::: 0.01-0.02. BHPS argue that such an intrinsic charm contribution is
sufficient to account for the large xF charm production observed at the ISR. Bertsch, Brodsky, Goldhaber and
Gunion25 suggest that diffractive charm production may dominate ordinary diffractive dissociation in hadroni c
collisions with large nuclei. Roy26 has then noted that the intrinsic charm component of BHPS should give a sig
nificant contribution to the large x part of ""W2, partially compensating the scaling violations due to ordinary
quarks. The status of these phenomenological considerations can be found elsewhere in the proceedings of this
conference.

In Fig. 7 I have illustrated the interaction picture evolution of quanta in a proton bound state. Solid
lines are quarks, wiggly lines are gluons and heavy solid lines are charmed quarks. The time scale for emission
and absorption of a gluon, in an infinite momentum frame of the proton, is 1:0 Z pi;. There are also cc fluc
tuations, illustrated in Fig. 70, on a time scale 1:1 :::::: p/mc2 • If k2 , in Fig~ 7a, iSfreat~r than mc

2 then these
contributions are calculable by the techniques of Witten and Georgi-Politzer. If k < mc , such contributions are
part of the .J/mc2 contribution which is not calculable by perturbative QCD. However, such a CC component
is not the intrinsic charm component of BHPS since the heavy quarks do not in general carry a particularly large
part of the momentum of the proton. Also, such a short lived fluctuation cannot contribute to diffractive dissoc
iation since diffractive effects should average over times of order pi1J2. We suspect it is these short lived cc
fluctuations which Donoghue and Golowich have calculated in the bag model. Thus we believe that the bag cal
culation has little to do with the idea of intrinsic charm.
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Fig. 70 A short lived cc fluctuation.

Fig. 7b A possible long lived intrinsic charm component.

The hypothesized intrinsic charm-must correspond to a long lived cc pair as illustrated in Fig. lb. Here
we suppose that the cc pair lives a time 't"0 ~ p/~. However, in order that this be the case it is necessary thalt
the cc pair interact with the rest of the bound state on a time scale 't'l = p/ml so that the cc does not separ
ate spatially from the rest of the proton. The c and c have a lower velocity then the light components of the
proton. It is these rapid interactions which give most of the momentum p to the cc system in the infinite mo
mentum frame. Unfortunately, there does not seem to be a QCD interaction strong enough to connect the cc pair
with the rest of the proton with anything like a '1;'1 scale of interaction. Thus we feel that it will be very hard to
build a realistic model of an intrinsic, long lived, chann component of the proton.

As a theoretical prediction I think the idea of intrinsic charm is suspect. If it should happen that phe
nomenology forces us into the conclusion that a long lived intrinsic charm component of the proton exists, we
would then have the task of trying to find an interaction strong enough to keep the cc system bound in the proton.

VI. Calculation of Matrix Elements

In many of the problems we have discussed up to this point it has been possible to calculate Q2 depen
dences, but absolute predictions have been elusive. With respect to some of the apparent successes of OCD, in
particular for deeply inelastic structure functions, it has even been suggested that the 1/02 corrections to the
dominant term in QCD may be important. For this reason it is important to attempt, admittedly model dependent,
calculations of matrix elements in QeD.

Jaffe and Ross27 have calculated the matrix elements of the twist-2 non-singlet operators occurring in
deeply inelastic scattering. The calculation was done using an MIT bag model. Combining these matrix elements,
with a renormaJization group calculation for the Wilson coefficients, a good agreement between theory and exper-'
iment was found. "rhis agreement could be taken as indirect evidence that higher twist effects are small. It is
much better, however, to have some direct evidence as to the size of higher twist terms.

Jaffe and Soldate
28

have begun an analysis and calculation of higher twist terms following the program
discussed by Politzer. 29 $0 for they have calculated, completely, one higher twist non-singlet term. If one writes

J
0

1
vW

2
N•S·(x, Q2) dx = Twist-2 part - <k (p 1 0 I p) E

2
(Q2) , (12)
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they have evaluated (p I0 Ip). E2(Q2) is taken from the parton model. Nonnalizing E2 == 1

1 /).2
Q2 (p I0 Ip) == Q2 (13)

with /). ~ 60 MeV is found. At Q2 == 5 the higher twist contribution is < 1 % of the lower twist tenn. It is im+-
portant to have this calculation extended to other moments to be sure that the above calculated smallness of the
twist-4 term is not accidental.

Calculations of this variety can be very important in letting us decide where perturbative QCD is most
Hkely to give accurate predictions, It would be very nice to have some calculations of the type of matrix element~

which appear in fonn factors and in T-decays.

VII. IJ- Pair Production

",,-pair production is one of the oldest and most interesting processes for which a parton model and QCD
onalysis has met with some considerable success. The process is illustrated in Fig. 8, With x. == Q2/2Pi • q and ~
'the transverse momentum of the ""- pair in the center-of-mass of the colliding hadrons the pOrl-on model, with QCD
'modi fi ed parton di stributi ons, predi cts

2

Jd G" d2n _ 811' a ,,2{F 2 'F 2} (14)d4; ~ - 3N
c

(Q2)2 r.iF Xl P (xl' Q ) x2 P (x2 , Q ) + 1 ~ 2 .

0(Q2) corrections to the above fonnula give the famous " K" factor which brings theory and experiment into
reasonable agreement. c/l-1ic

At very high energies there are two distinct regions where q.2/0
2 « 1 .1,30,31 (i) When ~2~ (Q2) ,

with c == 4cF/l1- ~ nF = 16/25 for 4 flavors, one has

2 2 -cln l+c
dl" ~ 811"0 (Q) c 2c1nQ2

~ 3N (Q2)2 A*2 11" (1 + c)2
c

c
2 2 T+C

(ii) For q. ~ (0) one has

811" 2 ,,2 [[ 2 2 2 2 2 J]-~CL----';2 La. iF exp -c In 0 (In In 0 - In In ~ ) - In 0 /~ _
3Nc (Q2) F

x2a{ F 2 F 2 }q. ~ Xl P (xl' q. ) x2P (x2 , q. ) + 1 ~ 2 •
a~

The peneral behavior of Egs (15) and (16) is illustrated in Fig. 9.

(16)

Fig. 8

1.1- pai r producti on.
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Qualitatl'f'ely, the striking etfect shown in Fig. II IS the decrE..OSe of del' /d~2, at ~ft =: 0, as Q'l in
creases. At the same time the ~2 distribution of dO" /d4q broadens, the region of flatness in 902 increasing as
(Q2)16/41 . These effects should be very evident at ISABELLE. The absolute normalization of d r/d4q at g2=: 0
is given once one knows A*. Collins and Soper16 have given a prescription for calculating 1\* in terms of the
QCD parameter t\ . This prescription involves the evaluation of two loop diagrams which have yet to be done..

Equations 15 and 16 are not yet at a rigorous level, although there is a prescription by Collins and Sope~6
for calculating corrections to these equations. In fact, as emphasized by Bodwin, Brodsky and Lepage (BBU,32 even
Eq. 14 is not a rigorous consequence of QCD. The problem is soft gluon exchanges which have been a stumbling
block in attempts to prove factorization in processes where two or more hadrons of fixed momenta are involved. In
case all the explicitly observed hadrons are in the final state, for example in y(Q2) - h(Pl) + h(P2)+ ... + h(Pn)+ x
with y(Q2) a highly off-shell photon and h(Pi) an observed hadron with momentum Pi' Collins and Sterman 33
were able to give convincing arguments that all soft gluon exchanges cancel order by order in perturbation theory.
They were not abl e to prove an analogous cancellation for IJ - pai r producti on because of some troub Iesome i E: IS.

BBL then gave an explicit example in \-I-pair production where soft-gluon exchanges do not cancel in a non
Abelian theory. At first glance this would seem to be a great setback for QCD phenomenology. Before showing

'why I think one can avoid the disease found by BBl, let me describe the example they consider.

BBL deal with the graphs shown in Fig. 10 where the gluon lines .11 and 12 are presumed to be soft.
BBl estimate the effects of these graphs by making a Glauber approximation where the lines k l + t2 ,
k1 + 11 + .12 , P2 - k2 + ' 1 , P2 - k2 + .11 + 12 in Fig. lOa are put on-shell and where the lines kl + 1 2 '

k1 - 11 , P2 - k2 - 11, P2 - k2 + 1.2 in Fig. lOb are put on-shell. In an Abelian theory the contribution of the
graph in Fig. 100 exactly cancels that of the graph in Fig. 1Db. However, in the non-Abelian case the ratio of
the contributions of the graph in Fig. lOa to that of Fig. lOb is

tr{TaTbTaTbl

tr{TaTarbrb}
1

N2_l
(17)

for color SU(N). Thus we believe, fallo"';ing BBl, that wee gluons will not cancel order by order in perturbation
theory.

It turns out that there are Sudakov corrections to the graphs shown in Fig. 10.34 A leading double log
arithmic approximation shows that these Sudakov effects precisely remove the part of the wee gluon contribution
whi ch does not cancel between the two graphs in Fig. 10. Thus we may suspect, and hope, that the disease found
by BBL is cured by Sudakov and that it is acceptable to apply standard QeD phenomenology to the Drell-Yan
process. We may anticipate a rigorous verification of this conjecture in the next year or so.

VIII. Soft Particle Production and Multiplicity

When x - 0 single parti cle inclusive annihilation cross sections in t+J.- collisions are no longer
governed by a straightforward application of the renormalization group. "rhis shows -up, for example, in a series of

the form 2 2 00 2 m-l

y (g ) = JL ~ c (_9_) + less singular terms (18)
n n-1 mL;l m (n-1)2

ifor the anomalous dimension matrix. A number of groups35-38 have suggested that a solution to the Altarelli
Parisi equations with a careful handling of kinematics, in order to treat the running coupling properly, might be a
way to go beyond the renormalization group and obtain small x results. Such an approach has been successful in
"btaining the Sudakov effects as x - 1. Following this procedure one obtains an average multipli city of pro
duced hadrons growing like an exponential of .fTnQ2. Such an increase comes from a square root branch point
of Yn(g2) in n after summing the series indicated in (18).

However, in contrast to the x - 1 case, it now appears that the above procedure gives the correct form
for y , but not the correct values of the parameters appearing in the square root. 39 The origin of this difficulty
is thar non-planar graphs are just as important as planar graphs. We may understand this in the following way. The
average multiplicity is determined by

- 2n(Q )G'" (19)

or
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Fig. 100

Fig. lOb

Soft gluon exchanges in \-1- pair production.
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I
J

d I"
::: 2E 3"" X dx

2P/Q d p

(20)

(21)

where dcr/d3p is the inclusive cross section for producing a particle of momentum p and moss P. p corres
ponds to a fraction, x, of the maximum possible momentum of a produced parti c1e. In (20) factors of
1/x2 Inn l/x in 2E da-/d3 p get cha~ed into Inn+ 1Q/P factors. Thus terms which are non leading in
2E d.,. /d3p , as far as powers of In Q are concerned, may have additional powers of In l/x and be port of a
leading series in In Q2 as far as n(Q2) is concerned. This is exactly what happens for non-planar graphs.

h h rd 6 h . I I d· . f d .• 'th39
T roug 0 er g t e sing et anoma ous ,mens,on or ecay processes /s consIstent WI

1 2 I 2 8n CA
Y

n
::: '4 [:-(n-1) + \/(n-1) + -IT- ] •

(Planar graphs have a form identi cal to (21) except that the 4 and 8 are replaced by 2 and 4 in that equa
tion.) We may now use factorization, which states

(22)

to find

and the renormalizotion group, which gives

JQ2 dX2 2 2
~ )y yn[g (X )J

e

/
Q2 dX2 2 2
2 2 Y1 [g (X ) ]

n(Q2) oc e IJ X

(23)

(241

(251

Although Y1 (g2) does not make sense order by order in perturbation theory, the form (21) does make sense evalu
ated at n::: 1 so one gets Y1 (g2) = ../aCA/2lT . Then one easily finds

J2CA In Q2
n(Q2) oc e -:;:rI)

with b::: 33-2nf/121T. It should be possible to extend the calculation of the leading singularities in y to all
orders in g2. IJ

The picture which emerges from the above three loop calculation is consistent with a branching process
(see Fig. 11) but where Q(ki , k. 1) >Q(k. l' k. 2) in the center of moss of the current initiating the process
and in a light-like axial gauge. I+A planar s~~ of g~6phs gives a branching process with the angular constraint

1 - cos Q(ki ' ki+1) ki+2
2 > ~1,+

1 - cos 9( ki+ 1 ' ki+2 )

2
(26)

da-
One can use the form (21) for YIJ to solve for dX at small x. One fj nds

(27)

« 1.

J2CA 2
-:;b In Q

e
oc

dr
dX J In3/2 Q2

1 2 1 2
(4" In Q X In x)

In2 Q2
so long as
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Fig. 11

Inclusive annihilation as a branching process.
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Fig. 12

A string-breakin9 picture of virtual photon decoy.
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If it turns out that these low order calculations are not misleading and that something like a branching
process is correct, then the idea of preconfinement40 becomes very important. If a branching process is a correct
description of the evolution of a jet, then One may follow the evolution of quarks and gluons down to off shell
masses on the order of a few GeV or perhaps even less. It is only at this late stage in jet evolution that non-per
turbative effects become important. But, if non-perturbative effects only come in at a very late stage it must be
true that an effective local color neutralization has taken place completely within perturbative QCD. This neu
tralization is preconfinement. It is an important problem to show that preconfinement occurs for a general non
Abelian color group.

The picture above is in striking contrast to the Bjorken41 and Casher, Kogut, Susskind
42

pi cture of jet
evolution. In Fig. 12 we have illustrated the evolution of a virtual photon into a q-q pair, the formation of 0

color string between the q and q, and the subsequent breakings of that string as the q and q separate in space.
In this picture non-perturbative effects come in at the early stages of jet evolution. In such a case we should no
longer expect to be able to calculate the multiplicity without a deeper understanding of non-perturbotive QCD.
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Footnote

This research was supoorted in Dart by the U.S. Department of Ener~y.

Discussion

L.M. Jones, Univ.
at lar0e Q2 can't
gences because it
out when physical

of Illinois: Is there any reason why "diouark" wave function and
be calculated in the same way for the pion? I realize there will
is not a color singlet, but you might exnect these to factor off
processes are calculated.

form factor
be diver

and cancel

A.H. Mueller: Yes, you miaht. However, there would be a Sudakov factor which would suopress the
diquark form factor. This means that the diouark mass could never be small.
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