2.6 JET PHYSICS IN THE FERMILAB POLARIZED PROTON BEAM

W. R. Ditzler, Argonne National Laboratory

Why look at jet spin-dependence?

Jets allow us to study the high- p_T region where singleparticle rates are prohibitively low. This is the region where simple hard-scattering processes are expected to dominate the cross section. QCD-based models make unambiguous predictions for the spin-dependence of these processes. A hadron calorimeter experiment in the polarized beam line therefore can test these models.

What are the predictions?

1. qq scattering by one-gluon exchange has zero asymmetry in a single-spin experiment (polarized beam, unpolarized target). There are upper bounds on the asymmetry possible in qq process. Nevertheless, large asymmetries in pion production have recently been observed at CERN.¹

2. Double-spin asymmetries (polarized beam and target) are directly related to the distribution of spin inside the nucleon. SLAC deep-inelastic results suggest that the lead-ing quark carries all the spin as x + 1.

The predicted asymmetries for longitudinal polarization are about 10x larger than those for transverse beam and target polarization² and are rising functions of X_{\perp} (see Fig. 1).

2a. The process $p\overline{p}$ + jet + X is dominated by $q\overline{q}$ scattering at high p_T and should show very small 2-spin asymmetry, unlike pp + jet + X.³

3. If a significant single-spin asymmetry (item 1) is observed in pp + jet + X, the nuclear-size dependence of the asymmetry should be studied. Sukhatme suggests that multiple scattering in large nuclei causes gluon processes to dominate even at large p_{T} .

What about the apparatus?

The polarized beam now planned has a maximum momentum of 450 GeV/c. It can deliver 3×10^7 p/spill at 45% polarization (see Fig. 2). Studies at Saclay on a polarized Li₆D target appear promising. This target would have ~30% average nucleon polarization. (Li₆ = α + D). Otherwise, an NH₃ target with 15% average polarization will be used.

Reducing unpolarized background material in the target is crucial for measurement of inclusive asymmetries; the true spin-dependence is diluted by a factor of the average

Fig. 1. 2-spin asymmetries for several models.

From Babcock, Monsay, and Sivers (Ref. 3). Statistical errors shown for p_T = 5 and p_T - 6 at 450 GeV.

Fig. 2. Estimated polarized-proton and- antiproton intensities.

polarization per nucleon--assuming linear A-dependence. Anomalous A-dependence at high ${\rm p}_T$ makes the factor even larger.

For accurate measurement of asymmetries, large calorimeter solid angle is essential. Let us assume the calorimeter array of E-609, which has a **fiducial** acceptance of ~2 sr centered on 90° c.m. and 2π coverage in ϕ . Drift chambers and analyzing magnet as in E-609 allow charge identification and some momentum analysis of charged particles.

Rate =
$$N_{\text{beam}} \cdot \rho_{\text{tgt}} \cdot \Delta \Omega \cdot \Delta p_{\text{lab}} \cdot \left(\frac{d^3 \sigma}{d\Omega dp}\right)_{\text{lab}}$$

 $\Delta \theta_{\text{lab}} = 0.03 \text{ sr}$
 $\Delta p_{\text{lab}} \approx 15 \cdot \Delta p_{\text{T}} = 7.5 \text{ GeV/c} \frac{p_{\text{lab}^2}}{E_{\text{lab}}} \left(E \frac{d^3 \sigma}{dp^3}\right)_{\text{inv}}.$

 $N_{beam} = 4 \times 10^{10} \text{ per day} \simeq p_{1ab} \simeq 15 p_T$

 $\rho_{tgt} = 4 \times 10^{24} / \text{cm}^2$ (15% collision length).

From E-395, $Ed^{3}\sigma/dp^{3}(jet) \simeq 10^{-28-1.5}(p_{T}^{-3})$ at 400 GeV⁵

so evts/day = $5.4 \times 10^7 \text{ p}_{\text{T}} \cdot 30^{-(\text{p}_{\text{T}}^{-3})}$

^p T	<u>events/day</u>
3	5.4 \times 10 ⁷
4	1.8×10^{6}
5	6×10^{4}
6	2×10^{3}
7	60
8	2

Assume a 20-day run--then error in raw asymmetry measurement will be ~(20 \times evts/day)^{-1/2}, but true asymmetry is 1/(p_{beam} • p_{tgt}) times raw mesurement.

P _T	Raw Error	True Error
3	3 E-5	2 E-4
4	1.7 E-4	1.1 E-3
5	9 E-4	6 E-3
6	5 E-3	3.3 E-2
7	3 E-2	0.2

(assuming an LiD target; double true errors for $\mathrm{NH}_3\,\mathrm{)}$

Thus we can reach \textbf{X}_{T} values of -0.4 with adequate statistics.

References

C. Bourrely and J. Soffer, Phys. Lett., 71B, 330 (1977).
 K. Hiduka, E. Monsay, and D. Sivers, ANL-HEP-PR-78-47.
 J. Babock, E. Monsay, and D. Sivers, ANL-HEP-PR-78-39.
 U. Sukhatme, (private communication).
 W. Selove, UPR-70E.

~_