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INTRODUCTION

Our theoretical activity in particle physics can
be roughly divided between invention of new physical
mechanisms, and application of these mechanisms to the
construction of different models. The most familiar
example is the Higgs mechanism, and it is amazing in
how many different models this simple phenomenon has
been used. In my opinion at the present time we lack
new mechanisms, and not models.

In this talk, I describe several pieces of infor-
mation concerning the dynamics of gauge theories. Since
a complete picture of this dynamics is absent up to now,
the best I can do is to present several disjointed ideas
which look beautiful and promising. Certainly the
choice is highly subjective and I do not try to conceal
this.

Gauge fields are used for the construction of QCD
and QFD. In both cases the most important question is
what phases are realized if the gauge group is given.
Different possibilities are known: confinement, total
spontaneous breakdown, partial spontaneous breakdown
and their combinations. Some unknown options also are
not excluded. At the moment we have some superficial
understanding of the qualitative features of different
phases, but we do not know under what circumstances
this or that phase is realized. I want to begin the
discussion by describing some of the features mentioned
above.

GEORGI-GLASHOW TYPE PHASE AND SUICIDAL MONOPOLES

There is a strong appeal for grand unification of
all interactions, which needs no explanation. One of
the nice features of such unifications is that electric
charge becomes a generator of some semi-simple group
and is quantized in the same fashion as angular momentum
in quantum mechanics. This certainly provides a natural
and beautiful explanation of one of the most fundamental
experimental facts. At the same time in any unified
scheme we should have magnetic monopoles as stable
elementary particles. This fact is a consequence of a
simple topological consideration: each grand unification
group should be spontaneously broken almost completely,
so that only the unbroken U(l) subgroup remains. This
U(l) has the topology of the circle since it is a part
of some compact nonabelian group. This in turn implies
the angular nature of the vector potential and the
inevitable existence and stability of magnetic monopoles.
A rough estimate of their mass can be obtained as the
energy in the magnetic field:
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so that M v mw/ez. (Here g is magnetic charge, e? the
fine structure constant, and my is the mass of the
heaviest vector boson in the theory.) Of course, there
could be considerable numerical factors in Eq. 1 de-
pending on the detailed strucutre of the theory. A
somewhat disturbing observation has been made by
Zeldovich and Khlopov.l They estimated the number of
relic magnetic monopoles produced in the big bang.

Their result is that this number is about ten orders of

magnitude larger than the experimental limit, almost
independently of the monopole mass. Here I would like
to suggest some mechanism which may be or may not be
relevant for the solution of this paradox. Namely,
monopoles at finite temperature have some suicidal
tendencies which make them unstable. I shall demon-
strate this by an example in one-dimensional field
theory. Let us consider the standard one-dimensional
field theory, described by the Lagrangian

XK= (au¢>2 +V (6% (2)

where V(¢2) is a Higgs potential, such that in the weak
coupling limit the asymptotic value of ¢2 is fixed:

<¢> = £ n. It is well known that apart from the usual
particles, this theory contains kinks as stable objects.
The stability of kinks is of topological nature and can
be explained as follows. Let us consider the transi-
tion amplitude for the possible decay of the kink.
According to general rules it is given by the functional
integral:

out

Amplitude NJ eis(¢) Q¢ . (3)
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(Here S(¢) is the classical action.) The in-state
should present the kink, i.e. ¢j, (-®) = -1 and

$in (+°) = +n. The out-state is topologically trivial:
dout (+®) = doyt () = n. There exists no continuous
interpolating field, ¢(x,t), such that ¢(x,-®) = ¢4,(x)
and ¢(x,+°) = ¢oy¢(x). Because of inevitable discon-
tinuities in ¢(x,t), the action S[¢] is infinite on

all possible classical paths. This proves topological
stability of a kink as a quantum particle. We see that
the most crucial point was spontaneous symmetry breaking
due to which states with and without kinks were readily
distinguishable. Let us now proceed to the case of
finite temperatures. At any nonzero temperature T, the

system is dramatically different from T = 0. Namely,
for any finite T we have:
0 . (4)
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This restoration of symmetry takes place because at
T#0 we have a finite density n of kinks in the system,
given by the Boltzmann formula:
n "N exp [-{Mk%ﬂ}] . (5)
This density creates a finite correlation length in the
system, r, v fi-! , thus destroying the long range order.
One can say that at finite T, kinks play the role of
instantons, while being solitons at T=0. We see that
at T#0 we have no more reasons for the topological
stability, and hence one should expect that as elemen-
tary excitations they acquire finite lifetime. It seems
reasonable to conjecture that the decay rate T is
proportional to the background kink density:

I(kink) v exp |- M(kink)/T] . 6

Of course a more detailed derivation is highly desirable
and, I believe, possible. The resumé of the whole

story is that kinks become suicidal: it is the finite
background density of kinks which causes their decay.

In the real case of the four-dimentional Georgi-
Glashow type model, my conclusions are less definite
at the moment. It is usually believed that the
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restoration of symmetry takes place in this model at
some finite temperature To. This conclusion is based

on perturbation theory and does not take into account
nonperturbative effects coming from monopoles. If we
recall our previous two-dimensional model, we find that
in this model perturbation theory predicts the phase
transition at TC#O, but kinks shift it to T =0. 1Is this
also true in four dimensions? The answer is unclear at
present. The problem is whether monopoles (which become
instantons at T#0) disorder the system enough to restore
the original symmetry. It is a quantitative question.
One should compute the monopole contribution to the
order parameter in WKB approximation. Also, a strong
coupling expansion must be very helpful. This has not
yet been done. If the answer is affirmative, it means
that the symmetry is restored at any T#0 as in our
previous example and that monopoles, as well as kinks,
have suicidal tendencies and their decay rate (i.e.
decay rate of the magnetic charge) is given by Eq. 6.
This instability may resolve the paradox of relic
monopoles. But obviously a certain amount of work is
still necessary to verify our conjectures, and the fate
of monopoles is still unclear.

There are many other interesting questions connec-
ted with thermal effects. One of them is further in-
vestigation of the process of quark liberation - the
effect found in References 2 and 3. An especially
interesting problem is to understand the nature of the
transition when quarks are taken into account. Pre-
sumably it becomes a first order transition because no
symmetry is broken in it. But the question is still
unexplored.

Another problem is the thermal influence on the
6-term, CP-nonconservation and baryon number noncon-
servation through the axial anomalies. It seems that
since temperature alleviates tunnelling, these effects
become stronger at high T. If so, they may play an
important role in cosmology. I think that all these
problems present a very tempting area for future
investigations.

There are also some unconventional properties of
the standard Weinberg-Salam model which I would like to
mention. Namely, this model has a topologically stable
particle in its spectrum. To understand how this
happens, consider a very large sphere s2. To have
finite energy in the Higgs field, the 1sospinor P(x)
should satisfy the condition w*(x)w(x) 1; xe82
thus defining a point on the ghere s? in the 1sotopic
space. All mappings of s? to S° are trivial. However,
one should recall, that due to U(l) gauge symmetry all
points of S® which are connected by the U(l) transfor-
mation have the same energy. So our field is, in fact,
the quotient space:

g3
u(l)

s2 =

which is obtained from S° by identification of all U(l)
equivalent points. As a result we have a topological
charge in the Weinberg-Salam model, associated with the
mappings:

The analytic expression for this charge is:

-]

\Y) +> >
!, W'

Here T denotes the Pauli matrices, ¥  the SU(2) field
strength, and dcuv is integration ovgr a large sphere.

One still has to check that these topological excitations
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have finite energy. Preliminary estimates confirm this

point.
INSTANTONS

There are several important recent results and
misconceptions concerning instantons which I would like
to discuss. First is the computation by Frolov, Fateev
and Shwartz® of the one loop corrections to the many
instanton solution in the 0(3) O-model, and the general-
ization of these results to the cPN_models obtained in
References 5 and 6. I shall describe the result itself,
a method of derivation alternative to the original one,
and general implications of this calculation. Let us
start from the 0(3) 0-model, described by the lagrangian:

:X“ _2 (3un)2 n? = N
8o
The many-instanton solution is given by7:
. n z-a
w = (tan 9/2)e1¢ = rW z—bk , (8)
k=1 k
z = x, + ix s

1 2

with 6,4 polar and azimuthal angles. The result
obtained in Reference 4 is that the contribution of
this classical solution to the partition function Z
is given by:

(n) 1 -4mn/g? n
27 = S eT B | [T] d%a a%b,
k=1
X expdq - EL. 1og[]a.~a,|2 + log |b,~b.|?
i<j i ] i3
+ Z log |a -b, lz} 9

1,3

With great surprise, one recognizes in this expression
the partition function of the two-dimensional Coulomb
gas, taken at the special temperature at which it is
equivalent to free massive fermions. This system does
not have any infrared divergences. Instantons created
enough disorder for symmetry restoration which is the
confinement analog in the 0-model. This destroys the
common misconception that instantons cannot be relevant
for confinement. The latter statement is true only if
one uses the dilute gas approximation and considers
only small size instantons. The mysterious part of

Eq. 9 is why free fermions appeared. I don't know any
satisfactory answer to this question and the best I can
do is to present a derivation in which the Dirac
operator appears naturally. Let us introduce a moving
frame consisting of the background classical field

+
ncl(x) and two orthogonal unit vectors Za(x), a=1,2.

We have the Cartan expansion:

3B () = g B 8,
3 e, (x) = Au"‘)g €apep ~ By (D (10)

Here the connections Au(x) and B2 (x) describe completely
the original background field & e If we write
a(x) = /197

B (O + 5 5,0 3,  an

a=1

and expand up to quadratic terms in ¢ we obtain:



w
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If we take into account the duality condition:

5 > [+ 3 a]

un = eUV n un . (13)
or:

a _ b

Bu B Euv €ab By
and the zero curvature condition for A and B:

- a b

au v -9 A € bBuBV s (14)
we find that the differential operator in Eq. 12 is
just the square of the Dirac operator:

3 +iA )% = (B+HA)2 + Y. F 15
(Y, (3 +HA NP = (3+im)? + v, (15)

and the calculation of the determinant of any self-dual
configuration is reduced to the calculation of the
determinant in the Schwinger model (massless QED in two
dimensions), which in turn is equal to:

det 9 +iA =
log de (Yu( i u))

E% [ Fuv(x) log lx-x" Fuv(x')dzxdzx' . (16)

However, the precise connection between Schwinger
fermions and the fermions in the 0-model is not quite
clear. I feel that understanding this connection will
give us some insight into the structure of the O-model.
In the CPn-l—model, one loop calculations (Ref. 5
and 6) have led to the picture in which the instanton
contains n constituents, so to say instanton quarks.
This model is not as completely investigated as the
previous one. However, it is reasonable to believe that
instantons dissociate in this case also, and we have a
plasma phase as in the 0(3) case. Calculations in the
CPY '-model disprove the misconception that in the large
N limit instantons are irrelevant, their contribution
being exponentially small. This appears to be untrue,
because in the partition function important distances
are such that instantons contribute like powers of N
and not like exponentials. It seems that instantons
and the 1/N expansion are two complementary ways of
describing the system.

CONFINEMENT AS AN EXACT SYMMETRY
CENTER OF THE GAUGE GROUP

It is useful to remember that the question of con-
finement can be formulated as whether or not some exact
symmetry of the gauge theory is spontaneously broken.

It has been derived in Ref. 3 that the self-energy of a
heavy quark in the gauge vacuum is given by the formula:

P L p@E)> . an
Here AMy is the self-energy, B is the inverse tempera-
ture, I is the representation of the gauge group, and
XI(Q(x)) is the trace of the gauge matrix Q(X) in this
representation. Averaging in Eq. 17 means:

71 I%Q(X) o)

< > = (18)

with W[Q(;)] given by the functional integral with the
twisted boundary condition:

)

Da_(x, 1) exp{-[dxdr a2+ 8},

AGB =G0
Q -1 -1
An = QAn(x)Q + Qanﬂ . (19)

From Eq. 19 we see that W[Q(;)]

Q(;) R +2mi/3

is invariant under:

N
Q(x) (20)
If this symmetry is unbroken, then for all representa—
tions w1th nonzero triality we find that <x;> = 0 and
AMy = . Quark liberation in this language is just
spontaneous breakdown of the symmetry in Eq. 20.

Apart from the kinematical considerations given
above, there was an attempt to use dynamical instantons,
associated with the Z3 subgroup of SU(3)7. These
instantons form closed surfaces in four dimensions and
closed rings in three. In my opinion there is a
difficulty in using such instantons because while being
relevant stable minima of the action in the Z(3) gauge
theory, they become unstable extrema when Z(3) is
embedded into SU(3). The only way to stabilize them
is to consider the theory with the Higgs fields in the
zero triality representation8 or to modify the action
in the lattice theory. It may happen, however, that
some other subgroup instantons are important, as we
shall see later.

LOOP SPACE FORMULATION OF GAUGE THEORIES

It has been shown in Ref. 9 that gauge theories
can be considered as chiral theories in loop space.
Physically, this means that bare gluons or glue partons
have the geometry of infinitely thin closed rings.
Mathematically, if we introduce the Wilson loop
functional:

¥(C)

= P expfA dx 21
pé 9% (21)

(here C is a closed path and P is the ordering operation)
it is possible to introduce a trivial connection in the
loop space:

(@)
F (s,C) Gx ) w , (22)
(here x,, = x,,(8) in some parametrization of the contour
C). This connection satisfied the zero curvature
condition:

8F (s,C) GF (s',C)
- V. '
5X\)(S') - Gxu (s) + [FU(S’C)’ F\)(S ,C)] (23)

It can be shown that this zero curvature condition in
the loop space corresponds to the Bianchi identity in
the ordinary space. Next, the Yang-Mills equations in
terms of FU(S’C) are written as:

SF (s,C)
B

qu ) . (24)

Equations 23 and 24 are equations of motion for the
chiral theory in the loop space. Their quantum analog,
Ward identities in the loop space, can also be given.
Instead of going into these details, we discuss here
some possible perspectives on this approach. First of
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all, it is possible that there are infinitely many
hidden symmetries in the gauge theories, since such
symmetries are present in the usual chiral models in
two dimensions, thus allowing their exact solutiom.
For the case of three dimensional space-time it is
indeed possible to find an infinite sequence of func-
tionally conserved currents:

sr ) (s.0)
e

= k=1,2...» ., 25
D) o, ; (25)
!
The form of Eq. 25 is precisely the conservation
equation one expects in the theory of stringsl°. How-

ever, in the four-dimensional case the presence of the
hidden symmetry is still questionable. If it is there,
we may be able to solve Yang-Mills theory exactly.

If we are not so ambitious, the loop approach may
still be useful. Using this approach we are able to
reformulate the usual perturbation theory in a mani-
festly gauge invariant way by considering propagation
of rings of glue instead of usual particles. This new
form of the theory may give us some new approximations.
Another use of the loop space is to consider SU(N)
theory with large N. In this case, as was shown by
Migdal, we have the remarkable decoupling property of
the loop functional

<Tr $(C,) Tr Y(C,)> = <Tr Y(C )><Tr Y(C,)> . (26)
1 2 Noroo 1 2

When substituted into the quantum equations of motion
mentioned above, Migdal's decoupling transforms the
chain of equations for different Green's functions in
the loop space into a closed equation for the <Tr Y(C)>,
thus reducing considerably the complexity of the
problem®!,

Another useful feature of the loop approach is that
it extends our understanding of possible field theories.
One can consider different field theories in the loop
space, for example with non-zero curvature (Eq. 23) or
with fields being elements of homogeneous spaces. Who
knows what king of field theory will be necessary at
the next fundamental level?
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DISCUSSION

H, Thacker (Fermilab) It seems that there is sort
of a two-pronged attack on QCD. One is led by you and
Mandelstam and other people who want to solve the theory
exactly. Another attack is perturbation theory. Do
you think that any of the properties that you could
discover in perturbation theory, for example factoriza-
tion or something like that, have anything to do with
or could give you any insight into the possible exact
integrability of QCD?

A. Polyakov Well, one example was this Midgal
decoupling property which was checked in perturbation
theory and it was very useful. Also I think that the
development might go in the opposite direction. You
can consider perturbation theory in the loop space -
you can consider small loops and represent propagation
of small loops and by expanding, just as in ordinary
perturbation theory, you can do perturbation theory for
the chiral field in the loop space as well. I believe
this perturbation theory will be manifestly gauge
invariant. So my belief is that maybe working in the
loop space will give you a better way of computation
than conventional Feynman diagrams with gauge-fixing
and ghosts, etc. This resembles a little the situation
with QED. O01d QED was not manifestly Lorentz covariant.
Then people invent manifestly Lorentz covariant QED
which was equivalent to the old one, but much more
convenient. I believe that in the loop space we would
have a manifestly gauge invariant perturbation theory,
which might be much more convenient for understanding
and computation than the usual one. Certainly that's
our duty, I think, to check everything in perturbation
theory before it is admitted.

N. Christ (Columbia) I would like to raise a
question about your remarks on the U(l) problem. It
would seem to me that if you consider a very large
sphere for space-time, a 4-dimensional sphere whose
radius was quite a bit bigger than the Compton wave-
length of the massive meson that was causing the U(1)
problem, you would have a context in which the U(1)
problem could be addressed. I think that in that case
the analysis that was done on the CP! model involves
just the superposition of instanton or anti-instanton
configurations with definite topological charge, so the
6 dependence would always have the normal period. I
believe that the difficulties Crewther raised refer to
an unexpected O dependence of the quantum numbers of
the Goldstone particles rather than the need to go
beyond the normal collection of instantons and anti-
instantons.

A. Polyakov Well, let me say that for any finite
volume you would be right. A problem precisely analo-~
gous to what happens when you introduce fermions with
chirality into a gas of instantons is just the intro-
duction of external fractional charge into a plasma.
And what happens there? Certainly we have the Gauss
law. If you take a finite sphere, as you like, then if
you are outside the sphere the total charge will not be
integer, there is no miracle here - the charge will be
fractional, but all the fractional part of the charge
will be situated at the surface of the sphere. So if
you are inside, and presumably we are inside, then what
you would observe is unusual 6-dependence. In a plasma
you have unusual 6-dependence, but it appears only in
the infinite volume limit. It is a fact of infinite
volumes. So you cannot really consider finite volume
as an example. In this case you would have a kind of
spontaneous symmetry breaking which appears only in the
infinite volume limit.
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