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§l Introduction 

The Weinberg-Salam theory of unified weak and electromagnetic 

interactionsl ) has achieved a remarkable success in the neutral current 

phenomena, and no one can deny its excellent features as a fundamental 

theory. In contrast to the simplicity of gauge coupling, however, this 

theory contains too many parameters in the interactions with the Higgs 

boson, which generate the masses of quarks and leptons, the Cabibbo 

mixing angle etc, through the spontaneous breaking of the gauge symmetry. 

Furthermore we do not know how many quark or lepton flavors exist. Thus, 

it can be said that our understanding of the nature still lacks some 

fundamental physical principle which regulates this complication. 

Recent discovery of the T particle, which indicates the existence of the 

b-quark, has raised the importance of this problem. 

The purpose of this lecture is to present a introduction to overcome 

the above problem. We concentrate ourselves to quark masses and mixing 

angles. How to treat them in a certain extended version of the Weinberg­

Salam (W-S) model will be explained in detail. A basic knowledge about 

the W-S theory is assumed, but not necessarily required. All discussions 

will be made in the tree approximation, and no renormalization problem 

will be considered since it does not change the essential features of 

the following discussion except finite corrections. 

In §2, the construction of quark mass terms is discussed and the 

number of mixing parameters in the sequential scheme is given. §3 is 

devoted to some phenomenological analyses in the six-quark case. 

In §4, an attempt to obtain relations between masses and mixing angles 

is explained. 
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§2 Quark masses and the generalized Cabibbo mixing 

2.1 Gauge fields and Higgs fields 

First, we recall the basic quantities of the W-S model. The model 

is the SU(2) x U(l) gauge theory, which requires four gauge fields; 

a
A SU(2), Y 0, (a .. 1,2,3)\.I 

B U(l) , Y 0,U (2.1) 

where Y is the weak hypercharge which describes the transformation 


property under U(l). Spontaneous symmetry breaking is realized by 


introducing a Higgs doublet; 


4> = [:~, Y l. (2.2) 

It is useful to notice that 

~ [~o*1
4> - -~ - , Y - -1, (2.3) 

is also transformed as a doublet. 


The Lagrangian of this partial system is given by 


a
L .. - 1 (Fa )2 _ ! F2 + T a 1 

4 \.1\1 4 U\I - ig z- A\.I - ig' 2 B\.l) V(4)) , 

(2.4) 

where 

Fa _ d Aa _ d Aa + £abcAbAc 
U\I \.l \I \I \.l g \.l \I 

F\.I\I - d\.lB\I - d\lB\.I' (2.5) 
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v 

and 

~2¢+4> _ A(¢+¢)2. (2.6)
V(4)) 

In the tree approximation. the vacuum expectation value of ¢ is 

given by 

o 
<¢> 	 (2.7) 

where 

~2 /A (i2G
F

) -1/2 	 (2.8) 

The last equality follows from the equivalence with the Fermi's theory 


at the low energy. Then, the shifted fields are expressed as follows; 


¢ +-1 	 liX
l 

+ 
(2.9)12 4>­

where xi are the Goldstone modes to be absorbed into the weak bosons 


and 4> describes the physical Higgs boson. The physical gauge fields 


are given by 


+ 
\{"" 1. (AI + iA2). 

~ 12 \1 \1 


1 (gA3 - g'B ),Z~ ~ u 
/g2 + g,2 

1 	 (2.10)(g'A3 + gB ), 

~ u \1 


A 

hT+ g'Z 
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+
where W~, Zu and Au are the charged, neutral weak bosons and the photon. 

respectively. 

2.2 Quarks --- four-quark case. 

In this subsection and the next one. we describe the way of 

constructing the quark parts of the Lagrangian, especially their mass 

terms. We first illustrate it in a simple four-quark case, so called 

G.I.H. mode12), so that notational complexity of the general case which 

is discussed in the next subsection may not prevent understanding of 

physical implications. 

Interactions between the gauge bosons and the quarks are determined 

by the transformation property of the quarks under SU(2) x U(I). Since 

we are conSidering parity violating interactions, there is no need for 

the left and right components of the quark fields to have the same 

transformation properties. The left and right components are defined by 

1 -	 - - 1
1/I L .. 2" (1 + 'Y 5)1/1, 1/I L = 1/1 '2 (1 ± Y5) • 	 (2.11) 

R 	 R 

Note that we have simple but useful relations; 

iiiL1/I L .. iiiR1/I R = iiiL'YUWR = iiiRYUW L == 0 	 (2.12) 

In the G.I.H. model, the assignments of transformation properties 


are as follows 


Y 1/3, d' .. cosS d + sinS s
L 	 c c 

[~,] L , 	 Y == 1/3. s' .. -sinScd + cosScs , 


Y == 4/3,
uR' CR' 
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dR' sR' Y -2/3. (2.13) 

where u, d, s, c are the usual quark fields which diagnalize the quark 

mass terms. For later convenience we note that we can represent two 

left-handed doblets equivalently as 

Y - 1/3, u' - cosS u - sinS c c c 

l[~'1L , Y - 1/3, c - sinScu + cos Scc , (2.14) 

since any linear conbination of doublets is also transformed as a doublet. 

Writing down the Kinetic parts of the Lagrangian, which include the 

couplings to the gauge fields, is straight forward from the-above 

assignment; 

L = i[u, (il .i: a I 1 [u] u+ C l
ig 2 ~ - ig 6 B~) L + ld '+ s~d' 

+ iURY~(d~ - ig' "3
2 
B~)uR + {u -+ c} 

1+ idRy~(d~ + ig' "3 B~)dR + {d -+ s}. 

(2.15) 

Since, as is seen in (2.13), the left and the right components have 

different transformation properties, any scalar density of quark bilinear 

form can not be gauge invarient. Therefore, quark masses arise only from 

the Yukawa coupling to the Higgs field, through the spontaneous breaking 

of the symmetry. Then, we find that the proper form of the Lagrangian is 

{-~+[U) --IL gu uR d 'J L + [u d J L ~uR} (u -+ c) 

{- +ru') -, ­gd dR~ Ld L + [u dJL~dR} - (d -+ s), (2.16) 

- 48 ­

where 

(2.17)gu - 1:2 mu/v • gd - 1:2 md/v , etc. 

Replacing the Higgs field by its vacuum expectation value, we can easily 

check the adequacy of (2.16). Note that other gauge invariant forms, 

such as 

~ + [c) etc. (2.18)uR~ s'L' 

do not appear, since they violate the asumption that u,d,s,c diaganalize 

the mass terms. 

An important fact is that, in this shceme, the requirement of gauge 

invariance does not impose any constraints on the values of masses and 

mixing angles • 

2.3 Quarks --- generalized sequential scheme. 

We have already had experimental indications of the existence of 

more than four quarks. The 1 and 11 are interpreted as qq states of a 

heavy quark, b. A simple and attractive assignment of b-quark is such 

that b forms another left-handed doublet with t-quark which is not yet 

discovered. In view of this proliferation of the quark flavour, we 

give here a general frame work for the sequential left-handed doublet 

scheme. 

Let us assume that we have N sequences of doublet and therefore 

2N quark flavours. Then, they are denoted as follows; 

WiLi Y 1/3 ,1: U 

[j={d,s,b •• J ij 
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Y = 4/3,Ri = $iR ' 

R 	 $ Y ... -2/3. (2.19)
j 	 jR ' 

where $i and $; stand for the physical quark fields and i runs over 

u.c. t ••• and 1 runs over d.s.b... Note that the position of sufficies 

of Land R indicates which set of the flavour indices they should take. 

The generalized Cabibbo-1ike mixing is expressed by an N x N unitary 

matrix U, whose ii-component is denoted as U • The mixing matrix U
ii 

must be unitary in order that the kinetic parts of the quark fields have 

a properly normalized diagonal form (See below). Corresponding to 

(2.14), we introduce the following: 

E Uu i[ -1 -1L = i-{u,c,t ••• } . = I: u-1 Li 
i={u.c,t... } jij $j JL 

j ... d, s, b, •.• 	 (2.20) 

In this notation, the Lagrangian has a simple form: 

a aL = iEi:~ (0 - ig !- A - ig' 1. B )L i + iEiiy (0 - ig' 1 B )Ri 
i ~ ~ 2 -lJ 6 U i ~ u 3 ~ 

- 1+ i ER
j 

Y (d + ig' '3 B ) R
jj . U U J.I 

- Egi{ii;+Li + i:i;Ri} 
i 

- + ­
igj{Rj~ Lj + Lj$Rj } 	 (2.21) 
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where 

gk = !2 ~/v. 	 (2.22) 

The range of summation will be selfevident from the above notational 

convention. 

To make a further investigation, we rewrite the Lagrangiam in terms 

of the physical fields: 

L = I: {{ijj Y 0 - - ~ 
k={u,d,s,c ••• } k ~ ~Wk ~WkWk(l + v) 

- 1 12 ,2 - ~ 
+ eQkWkYuWkAu + zig + g ~Y~QkwkZ~} 

-'- - + *- ­+ I: {Ui/iY~(l - Ys)WjW + UijWj \(1 - Y5>WiW~}
212 	 i={u,c ... } 


j-{d,s ... } 


(2.23) 

where Q is the electric charge of W andk 	 k 

1 k U,c •••-'2 Ys
Q ~ =l}- 2Qk ~ g2 + g,2 


k 

1 1

Z-2Qk ~ 2 + Z Y5 • k = d.s ••• (2.24)
g + g,2 

We have taken the unitary gauge. so that no Goldstone modes appear in 

(2.23) • 

An important fact in this scheme is that flavour changing interactions 

arise only from the last line in (2.23). In such a case. some of the 

phases of U can be absorbed into the phas.e convention of the quarkii 
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fields and do not have physical significance. As an example. let us 

consider the case of N 2. The most general form of 2 x 2 unitary 

matrix is given by 

u u [cose e 
i ~C~ + e) sine eiCa + y)] 

c -sine ei(a - y) cose ei(a - 13) (2.25) 

Then, we change the phase convention of quark fields as 

Uk 
~k ~ e ~k (2.26) 

with 

~u - ~d = a + /3, ~u - ~s = a + y, ~u - ~c = -/3- y. (2.27) 

In the new convention, U looks like 

d 
u cose si:e]u 

[c -sine cose (2.28) 

This is nothing but the G.I.H. model. So, we find that the G.I.H. model 

does not lack any generality in the four-quark (two-doublet) case. 

Now, let us turn to an arbitrary N. An N x N unitary matrix has N2 

parameters. Among 2N phase parameters of 2N quark fields, 2N-l are 

responsible for the reduction of number of parameters of U. Note that 

the overall phase of quark fields does not affect to U. As a result, we 

find that the number of parameters of the Cabibbo-like mixing is given by 

N2 - (2N - 1) (N - 1) 2 (2.29) 
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2.4 CP violation. 

Here. we investigate the CP properties of the Lagrangian (2.23). 

Let us consider the following CP-transformation; 

~kL(R) ~ YoC $~L(R). 

- T-l 
~kL(R) ~ -~kL(R)C Yo. 

w± ~ n w+ 
11 11 11 

z n z 
11 11 11 

~ ~ ~. (2.30) 

where C is the usual charge conjugation matrix with 

T
C = -C , 

cy C-l _ yT
11 - - 11 (2.31) 

and 

-l 11 0 
n = 

11 1t 11 1. 2. 3. 

It is easy to check that the first bracket in (2.23) is invariant 

under the transformation (2.30). Our main concern is the charged current 

interaction part, which is 
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~r + U
1J 
*•. - Y5) (2.32) 

212 i={u,c ••• 

j={d,s ... 


Under (2.30), this is transformed into 

~ - - *- +r {Uij1/liY (1 - Y5H.W + U.. 1/I.Y (1 - \H.W} (2.33)
212 i ={u, c ... } \l 1 \l 1J 1 \l J \.l 

j={d,s •.. } 

Therefore, if all Uij are real, (2.32) is CP-invariant. Here, however, 

we should remind the problem of the phase convention. In general, we 

can multiply an arbitrary phase factor to the right hand side of the 

transformation of each quark field in (2.30). But this phase factor 

can be removed by changing the phase convention of quark fields. This 

implies conversely that we can assume CP-transformation of the form 

(2.30) for the field with phase convention whatever we like. Therefore, 

if we can make all to be real by suitably adjusting the phases of 

quark fields, then, defining the CP-transformation as (2.30) for the 

new fields which make U real, we can see that the system is CP­ij 

invariant. 

As we have seen, in the case of N = 2, U can be made real.
ij 

Therefore we have no CP-violation in this case. For a general N, a 

unitary matrix whose elements are real is nothing but an orthogonal 

matrix. The most general N x N orthogonal matrix has N(N 1)/2 

parameters. This number should be compared with (N - 1)2 in (2.29). 

Thus the number of the parameter responsible for CP-vio1ation is given by 

(N - N(N 1)/2 (N - l)(N - 2)/2 	 (2.34) 

From this we can conclude that for N ~ 3 we have a possibilities of CP­

violation through the Cabibbo-like mixing. 3) 
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In the above arguments, our assumption that the Higgs field is only 

one doublet has played an essential role. If we have many Higgs fields, 

we have possibi1ites of CP-violation through the Higgs boson exchange, 

even for N 2. (For example, see ref. 4) To determine what mechanism 

is true, detailed phenomenological analyses are necessary. 

§3 Phenomenology in the six-quark scheme 

3.1 Parametrization 

As seen from (2.29), we have four parameters to describe the Cabibbo­

like mixing for N = 3. Here we adopt the following explicit parametri ­

d s b 
u c -sl l c3 -sl s3 

10U c - s2s 3e +cl c2c3 
cl s 2c3 + c2s io 

l s 2ct 
3

e c (3.1)3 

where 

c cosS. sinS.i 1 si 1 	 i 1, 2, 3. 

The phase convention is such that the first low and the first column of 

U are made real. If 0 vanishes, then U is an orthogonal matrix and we 

have no CP-violation. 

In the following we investigate to wb?t extent presently available 

experimental imformations can determine the parameters. Systematical 

analysis has been done first in ref. 5). 

3.2 	Nuclear a-decay and I~sl = 1 semileptonic decays. 

6
Recently, Shrock and wang ) made reanalysis of the above processes 

and obtained 
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0.9737 ± 0.0025!Uud 1 

Iu !sin9 coss3 1 = 0.219 0.011 	 (3.2)
us l 

from which they concluded 

+ 0.21 
0.28 

- 0.28. 	 (3.3) 

We note that 9 is essentially the Cabibbo angle, and1 

~ 13.2° 	 (3.4)el 

The magnitude of u-b transition is determined by 

/1 -	 Iu d!2 -!U 12 u us 

;(; 0.06 ± 0.06 (3.5) 

3.3 	~-KS mass difference 

Direct measurement of the other components of U useful to determineij 

the rest of parameters are not yet available. Therefore, we must resort to 

some model dependent arguments. The neutral K-meson system has been 

well investigated for this purpose. 

° -0Let us consider the mass matrix M of K -K system. It can be 

decomposed into the dispersive and absorptive parts; 

i 
M m+lr, 	 (3.6) 

where m and rare 2 x 2 Hermitian matrices. Since we are cosidering a 
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local field theory. CPT invariance should hold. and therefore we have 

<KoIMIKO> <KoIMIKo> 	 (3.7) 

Then, in our phase convention, ~-KS mass difference will be approxi­

mately given by 

o
6m = m(KS) - m(~) ~ 2Re<K 	 (3.8) 

An estimation of <Kolm!Ko> has been made by considering a simple 

diagram of Fig. 1. The result is given by 7)8) 

2 
Bfk~GFa 

<Kolm!Ko> U U* U * (3.9)
2 i,j"u,c, t is id jsUjdAij1212 sin e 

where 

x~J1,nxi Xj J1,nxj
1 + 	 2 ] 

Aij - (1 - xi)(l - xj ) - xj ) [ (1 -	 x )2 (1 - x.)2 (3.10)
i J 

w 

KGKO 

d w 5 

F'i ~.. 1 
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with 

2 2 
xi = m/m ,w 	 (3.11) 

and B is a model dependent factor. The bag model calculation gives 

B ~ 0.4. 

In order to see how this formula works, we consider the limited 

case of sine O. Assuming Xj « 1, we have3 

2
G m 

2Bf2 2 __1__ ....£ c2s 2'" ­~ '" k~12 3sinZe M2 1 1 
w w 

l 
2 2 

4 4 mt Z 2 1 mt ) 
x c 2 + sz 	""2 + c2s Z 2 2 vn 2" 


m 1 - m 1m m 
c c t c 	 (3.12) 

which yields 

2 2 
m 2 2 1 m 

4 4 ~ + c s --Z Z .Q,n 2"t ~ 2.5 (3.13)
Cz + s2 2 2 2 1 _ m Im 

mm cc t c 

where we have used B ~ 0.4, fk ~ 170 MeV, and mc ~ 1.5 GeV. 

For example, setting m = 15 GeV, we havet 

~ 0.33 	 (3.14)\ s2\ 

The value of Is \ decreases with increasing m •2 t 

As seen from (3.3), sinS in not necessarily small. Therefore the3 

required numerical analysis becomes complicated. This, combined with the 

constraint arising from the CP violation effects, has been done recently 

in refs. 9) and 10) (See below). 
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3.4 CP violation 

As we have seen in §2-3, in the six-quark scheme we have a possibility 

of CP violation through the Cabibbo-like mixing. In the following we 

investigate how the observed CP violating phenomena are described in this 

scheme. Allowed regions of the parameters are also discussed. 

It is worth while reminding the follwoing point. Since the effect of 

CP violation is very small, the observed CP violaton may arise from 

other additional interaction which is very weak and practically does not 

change the ordinary weak interaction phenomenology. In such a case, the 

following arguments should be changed substantially. 

o -0Now, we consider again the K -K system. The mass matrix M contains 

informations on the CP violation. However, we can not say anything about 

CP violation from the dispersive part alone. The relevant quantity is 

the phase difference between <K°lmIKo 
> and <K°lrIKo 

>. The latter is 

given by 

-0<Ko IrlKo 
> Z'liEPF<KoIT 1K > (3.15) 

F 

where PF is the phase volume factor. Therefore we must investigate first 

the nonleptonic decay amplitudes. 

The K
O 

+ 'li'li amplitudes can be written as 

i(\ 
<I ITIKo

> = e AI' 
o i(\ * <Ih IK > '" 	 (3.16)e AI' 

where <1\ denotes the final 'li'li state with isospin I, and 01 is the strong 

interaction phase shift. Since we have already fixed the phase convention, 

Ao is no longer a real quantity in general. It is necessary not to confuse 
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with the usual Wu Yang convention in Which Ao is real. 

Let us consider the quark diagrams which contribute to the KO ~ n~ 

decay. The contribution of Fig. 2(a) to AI is real, because no complex 

mixing parameters appear in this diagram. Diagrams (b) and (c) contribute 

only to the 61 1/2 part, and give rise to the imaginary part of Ao' 

Therefore, we can consider that in our phase convention only Ao is complex 

and A2 is real. It has been argued that the contribution of (b) may be 

small because of the OZI rule. Then the diagram (c), so called penguin 

diagram. is important for the phase of Ao' as well as for the 61 1/2 

rule in nonleptonic decays. Theoretical estimate. however. seems to have 

some uncertainty. Here. we consider an experimental upper bound of the 

phase of A • 
o 

i ii. i 

K· 

d u. d d 

( tt) Cb) (e) 

J=i 3' 2.. 
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d 

Let us consider the ratio 

n+­ (3.17) 

where 


<0 
 <2ITI~> <21T IKs> 
e: .. e:' .. W'" (3.18) 

<OITIKs> 12<0 12<o ITIKs> , 

Since e:' « E, we have 

11 - 3 £. + 3wl 
EI~:I ~ 

i(02 - °0) a
"" 11 + i 1 I~I e - (3.19)e:12 Ao 

where a is defined by 

io.
A lAo e (3.20)o 

It is known that the contribution of the penguin diagram gives 0.<0,11) 

which implies In /n+-I < 1. 
00 

From the present experimental value of 

I~:I · 1.02 ± 0.04, (3.21) 

we have 

I~I < 0.2 (3.22) 
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It is critical whether this bound is compatible with the contribution 

of the penguin diagram. Improvement of data on Inoo/n+-I will provide 

more stringent test of this scheme. 

Now we turn to the estimation of the mixing parameters. In terms 

of the mass matrix elements. E is given by 

Im<Kolmlio> _ iIm<Kolrlio>
2 e + ia 


it.m + tllr 


~ Im<Kolmlio> - lima 


~ il\m + tllr (3.23) 


where we have used the approximate relation 

Im<K° I r lio> ~ allr • 	 (3.24) 

which holds because the main contribution to r comes from the I - 0 nn 

state. From (3.22). a in (3.23) may be negligible. In this case. e 

is gtven by in terms of the mixing parameters by using (3.9). and 

experimental constraint on them can be obtained. References 9) and 10) 

made detailed numerical analyses. Results are seen in Fig. 3. which 

show regions allowed by fj1J. and e. According to the sign of cos Q. 

~ = COSQ/lcOSQI. we have two solutions for each mt and s3' 

Although the constraints obtained above are rather loose. we can 

extract interesting consequences on the heavy quark decays. For example, 

we can say. that the branching ratio of b ~ c decay will be larger than 

b ~u. Further discussion is seen in ref. 9) and 10). 
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§4 Relations between masses and mixing angles. 

4.1 Diagonalization of the mass matrix 

In order to understand the close relation between quark masses and 

mixing angles. we investigate again the origin of quark mass terms. 

In §2 we started with the gauge multiplets which are written in terms of 

the physical quark fields. Here we go back to a more fundamental step. 

Let us consider N left-handed doublets and 2N right-handed singlets: 

... 1 ••••• N[::lL , PiR , niR • i 

Y .. 1/3 Y = 4/3 Y == -2/3 (4.1) 

where Pi and n are not yet related to the physical quark fields.i 

Relations should be determined by diagonalizing the mass terms. The most 

general Yukawa interaction with the Higgs field invariant under the 

SU(2) x U(l) transformation is given by 

N + It'jl * - - ­L .. - L {g p i + gij[Pjnj]LtPiR}i,j-l ij iR n.. T 

- N {h ~ •+ It'j I * -­+ hij[PjnjlLtniR}.E 
i,j-l ij iR n.. T (4.2) 

Replacing • with its vacuum expectation value, we have 

v N
L---E {- *­12 i,j=l gijPiRPiL + gijPjLPiR} 

- -
v N

E {h - * ­12 i,j-l ijniRnjL + hijnjLniR} 

- - + - - +
{PRMpPL + PLMpPR + nRMn~ + ~MnnR} (4.3) 
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where we have used a matrix notation with N x N matrices M and M 
P n 

defined by 

v -Y.h • (4.4)(Mp) ij == Ii gij (Mn) ij - 12 ij 

Note that PR and PL' as well as nR and ~, are independent quantities 

and therefore Mp and Mn are not necessarily Hermitian. Diagonalization 

is performed by the unitary transformations 

pi .. UpPL ' pi = vpPR ' 

nL .. Un~ , ni .. VnnR • (4.5) 

The unitary matrices Up' Vp' and V are determined so that M and M 
n p n 

become diagonal; 

+ mu OJ 
V M U" m 

p p p 
l[~d C" O] 

V M U+ - m (4.6)
n n n 0 s~ 

This is possible, since any complex matrices can be diagonalized by two 

unitary matirces as shown below. 

Let us consider an arbitrary matrix M. Since M+M is Hermitian, 

usual diagonalization can be performed by a unitary matrix U as 

UM+H.U+ .. 
:N] = " (4.7) 

It is easy to see that ~i ~ O. For the purpose of simplicity, let us 

assume here that no zero eigenvalues exist. Then, we can define 
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v == )Jl/2UM-l (4.8) 

Since we have 

vv+ = 	)Jl/2UM-l CM-l)+U+)Jl/2 


)Jl/2(UM+MU+)-1)Jl/2 _ 1 
 (4.9) 

V is unitary. Equation (4.8) can be rewritten as 

)J1/2 , 	 (4.10) 

which completes the proof. 

Now the original left-handed doublets are expressed in terms of the 

physical quark fields as 

E (u+) 

i={u,c ••• } p 


!<, = 1, •••• N • (4.11) 
E (U+)[
j={d,s... } n tj 

By taking linear combinations of them, we can rewrite them in the following 

way; 

1/Ii 

(U U+) i .. u, c, ... (4.12)
••• } 	 p n ij 

This is nothing but (2.19) with 

U = U U+ • (4.13)P n 
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From the above arguments, we can see that the original Higgs coupling 

(4.2) completely determines both the quark masses and mixing angles. 

As seen in (4.13), the Cabibbo-like mixing arises from the difference 

between U and 
p 

In the present scheme, however, no constraints are imposed on the 

mass matrices Mp and Mn by the SU(2) x U(l) gauge invariance alone. 

Accordingly it has no predictive powers on the quark masses and the mixing 

angles. It is hard to think that a fundamental theory has so many 

free parameters. We believe that there exists a missing principle 

which governs Higgs interactions. 

An attempt, which may provide a hint to this problem, is to derive 

some relations between masses and mixing angles by imposing higher 

symmetries. This will be discussed in the next subsection. 

4.2 Discrete symmetry and Cabibbo angle 

Gauge symmetry larger than SU(2) x U(l) have been considered from 

many motivations. Another possibility of a larger symmetry is a dicrete 

symmetry, which is fully utilized in the following discussions. The 

basic idea is to obtain constraints on the mass matrices as a result of 

certain discrete symmetries. Below we illustrate it in a simple model. 12) 

Let us consider the SU(2)L x SU(2)R x U(l) gauge theory instead of 

SU(2) x U(l).*) To make a discussion simple, we consider the four-quark 

case. Then, we have 

*) 	We h~ve interesting models within the SU(2) x U(l) gauge theory.13) 

They, however, require rather involved calculations. 
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i 1, 2
Li a (:~)L , Ri -(::) R , 

(~. 1> (!, ~ (4.15) 

where (~, !), for example, implies SU(2)L doublet and SU(2)R singlet. 

Higgs fields are two complex 2 x 2 matrices; 

$ x 

(~, ~ (~, ~ (4.16) 

Note that ¢ '2$ '* '2 and X - '2X'* '2 are also transformed as (~, ~ 

representation. In this system, the most general Higgs-quark coupling 

invariant under SU(2)L x SU(2)R x U(l) is 

2 _ _ _ 


L .. - ~. {gi.Rj~Lj + gijRi~Lj

i,J=l J 

+ hiiiXLj + hiiiXLj} + h.c. (4.17) 

At this stage we have no constraints on the mass matrices for general 

vacuum expectation values of ~ and X. First we assume a discrete symmetry 

under the following transformation; 

R RLj + iLj • 
j 

-+ 
j 

, j '" 1, 2 

~ + -i$ , X + -iX • (4.18) 

From this invariance we have 
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g f .. h' ... 0 (4.19)ij ij • 

Next, we require a further discrete symmetry under the transformation, 

L1 + iLl ' R1 + -i~ , 

L2 + L2 ' R2 4oR:z, 

$ + $ , x + -iX , (4.20) 

from which we obtain 

gll = g12 = g21 = h11 = h22 = O. (4.21) 

Finally we assume the invariance under parity transformation: 

+ +Li+-+ Ri • $ + ~ , X + X • (4.22) 

Then (4.17) becomes 

- - '*­L .. -gR2~L2 - h~XL2 - h R2XL1 + h.c. (4.23) 

where g is a real constant. 

General vacuum expectation values of $ and X are given by 

<$> .. (~1 :), <X> • (~1 :) (4.24)
2 

where Vi and Xi are complex numbers. Replacing $ and X in (4.23) by 

(4.24), we have quark mass terms of the following form: 
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L = - (Pl- -P2)R (0 a)(Pl) - (n- l n- 2)R (0 C') \nl) + h.c. 
a b P2 Lcd n 2 L 

- PRMpPL - nRMnnL + h.c. 

where a, a', b, c, c' and d are complex numbers with 

la \, Ic I \ . 

Special forms of mass matrices should be noted. 

Now we diagonalize these mass matirces in the following way: 

+ 	
(
mu 0)VMU VMU+ (md 0 ) 


P P P 0 m n n nOm 

c s 

It is convenient to devide the transformation into two steps: 

Hp 
e 0 )V i1;; 

e 
U= U' (1 °Upl .. V' 

p p 0 P POe p 

with 

1, l

Wp arg.(b) - arg.(a), l,;p = -argo (a) 


tp .. arg.(b) - arg.(a) - arg.(a'). 


Then 	we have 

V M u+ = v,+{ 0 
p p p p \\al 

Now it is easy to see that 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

V' .. 
P 

U' 
P ( 

cose p 

sine 
p 

-sin ep) 

cose 
p 

(4.31) 

with 

tan e ,Ji.i1JJi1 • puc (4.32) 

Similarly we have 

( 
cose 

u - n 
n - sine 

n 

-sinen~l 
cose 

n 0 °lOn' 
e ), (4.33) 

with 

tanen :l Imims 

'n = arg.(d) - arg.(c). (4.34) 

Then, the Cabibbo mixing matrix is given by 

U U U+ 
P n 

( 
CC 
p n 

c s 
n p 

ill 
+e ss 

p n 
ill 

- e c s 
p n 

c sp n 

s s 
p n 

ill 
- esc )p n 

+ eillc c 
p n 

(4.35) 

where 

1I 'p ­ "'n ' c 
p 

cose 
p 

s 
p 

= sine 
p etc•• (4.36) 
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Reminding the arguments in §2-3, we have 

tan9 - ei~tane 

Itane 1= .~ 

np 

_iu" __.9 tan9c 1 + el. tan"_.. __ 0 (4.37)

I n1" 

Since Imu/mc « 1, we can write this as 

Itan9cl ~ Imims . 

It is well known that this relation is phenomenologically well-satisfied. 

From the arguments on the chira1 symmetry breaking we have an estimation 

(4.38)mdlms ~ 1120 , 

which should be compared with 

Itan9Cl2 ~ 0.055. (4.39) 

In this way, we have obtained a remarkable relation by requiring 

discrete symmetries. Similar discussions on the six-quark case are seen 

in ref. 14). Although these arguments are very suggestive, the discrete 

symmetries which we have considered are rather artificial and their 

physical meanings are not clear. Further studies are required to reveal a 

new physical prinCiple. 
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