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Introduction

Electron and Proton Beams in Absence of Cooling

At the end, we also look at the features of the
electron storage ring which, as one would expect, is
mostly made of wiggler magnets.

The high-energy electron cooling scheme is the
one outlined in Fig. 1. There are two rings: one
could be identified with the Main Ring where protons
are circulating at a constant energy Ep and the other
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High energy electron cooling plan.Fig. 1.

Rubbia's second point was that at high energies,
electrons radiate, so whatever momentum is trans
ferred to them by cooling a proton or antiproton beam
will be carried away as radiation, allowing the electron
beam to preserve its size, though at the cost of some
enlargement.

Electron cooling at high energies with an electron
beam circulating in a storage ring was proposed a long
time ago, 1 but the idea was dismissed with a prema
ture judgment of the impossibility of achieving a
reasonably fast cooling rate with the beam density
available. For instance, the present Fermilab2

scheme has a projected cooling time of 50 msec with
an electron current density of 1 A/cm2 at 13 = 0.566.
At larger energies, because of the strong dependence
of the cooling rate on the beam momentum, a reason
able cooling rate can be obtained only with very high
electron densities. Recently C. Rubbia3 pointed out
that indeed such large densities are available in stored
electron bunches. An average beam current of 100 mA
already would correspond to a peak current of tens of
amperes. The beam transverse size can be made
quite small, down to a millimeter or even less, giving
a local density of thousands of A / cm2 or more.

Finally, the third thing pointed out by Rubbia is
that at high energies fast cooling rates are not neces
sarily required.

There are two possible applications of the high
energy electron cooling:

with an electron storage ring at energy E e • The two
energies are adjusted so that the two beams have the
same velocity. The two rings also share a long
straight section of length J. where proton bunches and
electron bunches travel together in the same direction.
We make the obvious assumption that the two kinds of
bunches are roughly matched in size and length.

1. It could be possible to raise the beam-beam
limit from the canonical number of ~v = 0.005 to, say,
~v = 0.02. This would increase the luminosity by an
order of magnitude. Indeed larger ~ v values cause
shortening of the beam lifetime because of a hypothe
tical Arnol'd diffusion process. The effects of this
process can eventually be balanced with electron
cooling.

In the following we shall denote by subscripts
"e" and "p" the quantities which refer respectively to
the electrons and to the protons.

In the absence of interactions between the two
beams, we can write the following equations for the
rms beam emittance (€ =0- 2 /13)

2. The one-beam lifetime itself, even in the
absence of the second one, could be too small due to
processes like gas scattering. The "heating" of the
proton beam caused by such a process could then be
balanced off by taking the "heat" away from the beam
by means of "electron cooling. "

In the following we shall look in more detail at
the feasibility of high-energy cooling, especially in the
context of an experiment for the Main Ring with the aim
of lengthening the beam lifetime. Although some
approximation in our approach cannot be avoided, we
are nevertheless mostly interested in a self-consistent
solution which takes into account the behavior of the
equilibrium of the proton (antiproton) beam as well as
the electron beam, which we assume is circulating in
a storage ring.

( 1)

(2)

We assume both beams are round, namely, that they
have the same horizontal and vertical emittance.

In the absence of diffusion-like processes and
of damping effects, the emittances are normally con
sidered invariants. The diffusion coefficient Dp on
the right-hand side of (1) is primarily given by gas
scattering and similar effects. This diffusion is not
compensated by damping and will cause a linear
increase of the beam emittance with time. The beam
size increase will stop when the beam edge has
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in the denominator of the right-hand side (4). One
should then also introduce a factor ~ 1 which depends on
the distribution. Since this factor is not much dif
ferent from unity, it will be neglected in the following.

Equation (4) applies to the case of uniform veloc
ity distribution within the electron beam ellipsoid and
for proton transverse velocity less than the transverse
velocity spread of the electron beam. For the other
case, 0Je at the denominator of the right-hand side of
(4) should eventually be replaced with 0 J.P' To repre
sent a more realistic distribution function with slopes,
we shall replace

reached an aperture limitation; after that particles will
be continuously lost. In observations in the Main Ring,
the following was found4

P
5 Torr m/ sec.

2
PGeV/c

-8
At 100 GeV, with a pressure of about 5 X 10 Torr,
this would correspond to D =0.25X10- 10 m/sec.p

In Eq. (2), T is the synchrotron radiation-damping
time and De the quantum-fluctuation diffusion coeffi
cient. The electron beam would have an equilibrium
emittance which is given by

3 2 2 3/2
o ~ (0 + 0 )

e e p
( 5)

(3)

This equilibrium value is reached in the e-folding time
T /2.

Observe that T and De depend strongly not only
on the beam energy but also on the electron-beam
storage ring lattice. 5

An expression similar to (4), combined with (5),
applies also for the electron beam, provided Tp is
replaced with T e , m p with me, but not vice versa, and
l1p ' Ie and a e are replaced respectively with l1e' Ip '
and ap ' Since the electron storage ring is smaller
than the proton ring, and the lengths of the rings are
chosen to synchronize the traversals of bunches, the
ratio l1e/l1p is given by the ratio of the number of pro
ton bunches to the number of electron bunches.

Disregarding any other processes than the inter
action between the two beams, the emittance equations
are

We shall also assume that along the common
straight section the 13 values of the two rings are con
stant and we denote them with 13 e* and 13P:C' From the
definition of emittance (square of rms beam size/13*)
then we have

which we can use in the right-hand side of (4).

(6)and2 *a = E13

The Electron- Cooling Effect

We want now to modify Eqs. (1) and (2) to include
the beam-beam interaction, which is supposed to lead
to "cooling" of the proton beam at the cost of some
"heating" of the electron beam.

Because of the large energy and since the elec
tron beam is already focused by the lattice quadru
poles and rf cavities, we do not have to take into
account space-charge effects on the trajectory of the
electrons, and we do not have to guide their motion
with a solenoid as is done at lower energies. In
addition, one can easily verify that at larger energies

where m is the rest mass of a particle, L is the
Coulomb logarithm, rjp is the ratio 1. / Cp, where Cp is
the proton ring circumference, the fraction of the
circumference over which cooling takes place, Ie is
the electron beam current within the bunch, and a e is
the electron beam radius. We are assuming here that
beam bunches are cylindrical in shape with uniform
particle distributions.

01\ « y01'

where 0 1\ and 01 are respectively the longitudinal and
transverse relative momentum spreads. This is true
for both beams. Thus we are in the situation of a
longitudinal flattened ellipsoidal distribution of veloci
ties. In this case, the transverse-energy exchange
between the two beams depends only on the transverse
emittance of both beams and, therefore, can be de
coupled from the longitudinal-energy exchange. In
this approximation, the usual formula for the damping
rate of the transverse velocity is6

Thus the electron beam "heating" time is at least 2000
times smaller than the proton beam "cooling" time.

Observe that in terms of temperature, the
relaxation times for the two beams would be the same,
but in terms of emittances as shown by (7) and (8) the
dependence on the masses is

( 7)

(8)

2
T ... m .

e e
and

=__2 (E _me E )
T P P m p e

2 (E - m
p E\)

T e m p'e e

dE
P

Cit

T "'m mp p e

where Tp is given by (4) combined with (5) and (6) and
T e by a similar derivation. Equations (7) and (8) are
equivalent to the energy exchange between two gases
put in contact at different temperatures. Equilibrium
is reached when the two temperatures are equal. In
our case the beam temperature is given by mE. The
times Tp and Teare equivalent to the relaxation times
to reach equilibrium.(4)

3 4L rj I / erre p e
4 45 ----:2~-.,3,....'

mmc 13Y a 0pee e

1
T

P
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When (4), (5), and (6) are combined together,
they show that T p and T e depend on the beam emit
tances Ee and Ep.

Self- Consistent Solution at Equilibrium for Both Beams

Let us now coml;>ine Eqs. (1) (2) with (7) and (8).
We obtain

dEP = D _ -.?- (€ _me €) (9 )
dt p T P m ep p

(10)

(16) and TO would represent the proton beam "cooling"
time near equilibrium.

From (13) and (14) we derive

T :: T(mp )2 De f3 e* IP . (17)
o m r] * Ie p f3 e

p

Observe the factor (mp/me )2, which is quite
crucial for our analysis: one power of the ratio enters
because the ratio of proton time Tp to the electron time
T e is proportional to mp/me , and the second power
comes from the last term on the right-hand side of
(12), which represents heating of the electron beam,
which must be coped with by synchrotron-radiation
damping (T).

The solution of these equations will determine € e and
Ep as function of time. Their equilibrium, asymptotic
values Epoo' Eem are calculated by setting the right
hand side of ECJ3. (9) and (10) equal to zero.

Let us rewrite (9) and (10) by putting the depend
ence of Ee and Ep more explicitly

(11)

The balance equations (11) and (12) apply in the
case that the two beams are matched in size and
velocity spread (at least approximately). If one wants
to fulfill this condition, then Ee ... E P and f3e* ... f3 p* :: f3*.
If one also observes that m Ep» meEe (that is, the
proton beam is always "hotter" than the electron beam)
then at equilibrium the electron beam emittance is
given by

(18)

Application to the Main Ring and CERN SPS

Let us consider the example of the Main Ring at
100 GeV. The electron-beam energy is then 50 MeV.
The proton beam emittance, before gas scattering
starts to dilute it, is

(12)

-8
E ;;: 2.2X10 m

p

and the diffusion coefficient

(19)

It is reasonable to assume that at equilibrium
E >> E ; then the proton beam emittance is given by

e e

At equilibrium we have

(22)

(21)-25
K := 1AX 10 m/ sec.

p

-10
D := 0.25X 10 m/sec.

p

after having assumed f3e* ... f3p* ... 70 m. The above is
the peak current within the electron bunch. It is a
reasonable number.

If we want to "cool" the beam so that it preserves its
initial emittance, then the cooling time required from
Eq. (16) is

Let us take £. :: 10 m for the interaction length;
then np :::: 1.6 X 10-3 . In addition, L = 15. Then we
derive from (13) and (21)

3
TO := 1.76X10 sec. (20)

From (18), setting E e :: EO and taking 13*'" 70 m,
as it is in the present Main Ring medium or long
straight section, we derive

(16)

(15)

(13)

(14)

3
6rre L D Iep

3
6rre L r] I

P e
4 4 5 ~~

mmcf3"(f3pee

K
e

K

P

where E is given by Eq. (3) and
e

(

K m)
E = i 7~ -l: D :: i T D .o K m pOp

P e

and

where
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With 1010 protons per bunch, the peak current in
the Main Ring is about 1 A.

Let us assume that the number of proton bunches
equals the number of electron bunches properly
synchronized, so that

"11 /"11 = 1-e p

Then we derive from (17) and (20) the required
radiation damping time

T = 4.4 msec.

This number is rather small.

(23)
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I unit I

j\sf'\J----n
\-

e- ----lp(p) •
----;.. ---- -----':".,.k interaction region, R.-J

Fig. 2. Electron storage ring and wiggler.

(25)

(26)

The same calculation could be repeated for the
CERN SPS. Here it seems that Dp is an order of mag
nitude smaller, because of better vacuum. 7 If all the
other parameters remain unchanged, as effectively
they are, then the required radiation damping time is
also an order of magnitude larger, say around 40-50
msec.

One can repeat the same calculation for larger
proton energies, say 200 GeV rather than 100 GeV. If
one adopts the same procedure, which is to "freeze"
the proton beam emittance to its invariant value, then

(p, beam momentum)

and presumably
2

D - 1/p .
P

From (16) then

TO'" P

whereas from (18) (with E
e

- EO)

1/ 7/2
K p '" P •

From

I 3/2
e'" p ,

and, in conclusion, leaving Ip unchanged, from (17),
we derive that the required radiation-damping time
increases with the beam momentum as

5/2
TN P • (24)

Thus, at 200 GeV, for instance, T = 25 msec. At the
same time the electron beam energy also increases
and reaching the required damping time is easier.
Thus this scheme is better at higher energy.

Electron storage Ring

In order to achieve a reasonable radiation
damping time at low electron energy, wiggler magnets
have to be inserted in the electron ring.

Let us consider the case of E p = 100 GeV which
would correspond to E e = 50 MeV.

The electron storage ring could have the shape
shown in Fig. 2. Let us define one wiggler unit as the
combination of magnets that gives a total bending angle
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of 21T and let us assume that there are n such units.
The radiation damping time is

E
T= T ~,

eU e

where T e is the revolution period and

E4

e{GeV)
U e =88.5 p DkeV/turn

e(m)

is the energy loss per revolution, Pe being the bending
radius in the wiggler magnets. The magnetic rigidity
of the electrons at 50 MeV is 1.67 kG· m; therefore, if
we take a bending field of 10 kG, which might already
be too large for wigglers, then we have

P = 0.167 m.
e

From (24)

U = 3.3 n eV/turn.
e

As is shown in Fig. 2 the circumferential length of the
electron storage ring will be mostly determined by the
space required for the wiggler magnets. We can write

Ce :::: 2X 21T Pe D

C 41TP"l1
T =~= __e_

e c c

Inserting these expressions in Eq. (23), we find that
the radiation damping time is independent of the num
ber of wigglers. The result is that the radiation
damping time cannot be smaller than 100 msec. twenty
times more than what is required (Eq. (21)] for
Fermilab, but only two times larger than what is
required for CERN.

If one takes

C - 30 me

then one would require about 14-15 wigglers.

If the proton beam momentum p is increased,
then obviously the electron beam momentum must also
increase. Then one has the following dependence on
the momentum p



which gives

T'" 1/p. (27)
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