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1. Introduction

In this note we shall make a few observations
and derivations ofthe stochastic cooling theory. We
shall work in the time domain as it was originally
proposed bl Van der ""i\iiE;er:r~d later amplified by
Hereward, This approach is called old-fashioned by
some, a term which I do not understand. The new
fashioned method is to carry out the analysis in the
!!e'L~~.Ldo.:n~in . This I believe to be a matter of
taste and costum, but the two methods are equiva-
lent and ought to give the same result. After all, a
system frequency response can be replaced by an
equivalent Green's function, and impedances and phase
factors can be replaced by amplification and delay
coefficients.

In all papers on stochastic COOling, one finds the
statement that the method does not depend upon beam
momentum. I believe this is not correct; not only does
the mixing have a strong energy dependence, but also
the electronic gain required for a given cooling rate is
reduced at least with the first power of the beam mo
mentum. Mixing also enters again in the cooling rate
itself, since bad mixing leads to lower rates.

I believe these considerations are very relevant
and should be taken into account in de signing a large
p-p colliding device. In this note, we shall look even
tually to the case of good mixing, that is, the low mo
mentum case. I believe that partial mixing can also
be included in the following time domain, old-fashioned
theory, but we shall leave ito'Utfor the-mome-rit~--

- ...

(1)

(2)

where s is the sensitivity and z the beam signal,
which could be the average displacement from a ref
erence orbit of the n particles simultaneously detected
or their off-momentum value as it is measured, for
example, by the notch-filter techinque at CERN.
Because we are interested in the case of full mixing,
we do not have to be specific about the beam signal:
the following considerations apply to either betatron
or momentum cooling. Nevertheless, the signal
could be a combination of stochastic, coherent, and
error contributions which are all function of time.

where To is the revolution period and I the beam cur
rent. From the pickup we expect a voltage V1 which
is modulated with time by the beam with resolution T •

We can write~

Fig. 1 The cooling loop

A fast beam detector PU is located somewhere around
the ring. The pickup and the electronics which supply
it have a characteristic rise time T , so that if there
are N particles uniformly spread around the ring, at
any given time it is possible to observe a sample of n
particles with

Another reason to investigate the low-momentum
case is that because we plan to carry out an exper
iment at Fermilab on the Electron Cooling Ring, we
need to become acquainted with the technique.

The stpchastic cooling loop is shown in Fig. 1.

The ingredients that are required can be sum
marized as follows:

(i) A proper definition of the beam signal. This
includes a single-particle signal as well as the signal
produced by the surrounding ones. Several people like
to distinguish the two contributions and call the latter
beam or Schottky noise. I believe that this is relevant
only up to some point, as we shall see later.

(ii) A proper definition of the noise from the
amplification chain. This is a wide-band noise, also
called "white" noise. Its spectrum is constant and
its effect is completely random. It is quite different
from the beam noise, which is not "white," but has a
preferential frequency distribution. The integration
of the beam-noise spectrum actually leads to a cor
related time -dependent signal. To some, the term
beam noise could be misleading. Thus one can expect
different effects of the system noise and of the beam
noise. It is not obvious that they should be simply
added to each other.

(iii) Systematic loop errors. We give a few
examples: the center of the beam can slowly move
from turn to turn, or conversely the pickup device is
not centered on the beam center; in the case of the
notch filter device, the reference revolution frequency
is not accurately determined. These errors would
eventually lead to beam "heating" in the same way as
the loop noise does.

(iv) Mixing of the signal. This is a crucial
issue. Mixing is strongly beam-momentum dependent.
Good mixing is achieved in the limit of y=1. For
large momentum the focusing of the ring is important;
one would like to have a transition energy as low as
possible. Mixing plays an important role in stochastic
cooling theory and one can draw different conclusions
about cooling beams at diferent momenta that at fir st
might sound contradictory. For example, in a bad
mixing situation (large momentum) it seems preferalie
to work in a higher frequency range and momentum
cooling seems to be more effective than betatron cool
ing. At the other end, in the limit y ...... 1, betatron
cooling and m,omentum cooling are equally effective
because the mixing situtation is better.
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Denoting by A the electronic amplification, we

We do not have to specify the nature of the beam
detector but we remark that, since it has to be broad
band, its response is proportional to the instantaneous
number of particles IT as shown in (Z).

where K is a factor which measures the effectiveness
of the kicker and g is the dynamic gain, which is the
fraction of the signal which is actually damped with
the voltage VZ. On the r. h. side of (3) we explicitly
show the dependence on the momentum p and velocity
!3 of the beam.

In the following, we assume that the delay be
tween the pickup and the kicker is properly adjusted
to guarantee that one is deflecting the same beam
sample that has been detected and by the proper
amount. We also assume the bandwidths of the pickup
and kicker are matched to each other and that, as a
consequence, there is no dependence on either I or T
or any of their conbinations on the r. h. side of (3).

There is a crucial difference between z and r.
In the time domain, this diference can be expressed
by observing that z has a strong autocorrelation,
whereas r, being a white noise, is completely uncor
related in time. By the frequency domain, this is
made even more apparent by noting that r has a fre
quency -independent spectrum, whereas the frequency
contained of z is lumped around harmonics of the
revolution frequency.

The beam signal z ultimately leads to a cooling
time TD which is not expected to depend on the noise
signal r. On the other hand, r causes a beam diffusion
which is made quite visible, for instance, by opening
the circuit on Fig. 1 between the P. U. and the K
locations in front of the amplifiers. The two effects
will eventually balance off to a minimum size that the
beam can reach, which is given by the praluct of the
cooling rate and the 'diffusion constant due to the
noise. The characteristic time required to reach
this final value is still given by 'lb. We emphasize
here the analogy of the two effects of damping and
diffusion to synchrotron radiation in electron storage
rings.

where r is the equivalent beam displacement induced
by the noise voltage Vn - observe that this quantity
does not depend on the dynamic gain g or on the system
amplification A; Eq. (6) represents the only relation
which ties r to Vn . The reader should also note the
fact that the beam current I and the risetime Tenter
the r. h. side of (6).

(3)Vz = K (l3p)(gZ),

The pickup voltage V1 is amplified by a chain of
amplifiers and applied to a beam kicker K. This
could be either an electrostatic or magnetic deflector
for the transverse cooling or a broadband cavity for
momentum cooling. Its effect is to modify the motion
of the same sample of beam that was measured at the
pickup location by an amount which is proportional to
the signal z,

have

Vz = AV1 .

Combining (Z), (3) and (4) gives

KI3P
A=gsr-r'

(4)

(5)

We take a particle in the beam as reference
and follow its motion turn by turn. At one particular
turn, the m-th, it will be crossing the beam pickup
and will be detected together with n other particles
Each particle in the sample gives a signal zi
(i=1, Z, , n) and the total signal is

z. -- z. - g (zm + r),
1 1

('J' Z = ~1_ L zZ.
m n i i

We assume that all the n particles travel to
gether between P. U. and K. That is, that no mixing
occ:urs. Then all the particles are kicked by the same
amount When the kick is translated to the location
of the pickup (we shall always compare the beam at the
same location) the coordinate zi of each particle is
modified as follows

where we have included both the beam signal and the
noise signal. This will have caused the emittance of
the sample to Ch!e to

aZm +1 = ~ i (zCgzm-gr)Z .( 7)

= C1rnZ - (Zg_gZ) zmZ + g2 r Z_(Zg_g Z) rZm

where the index m refers to the m-th turn. This sam
ple at the same time has an emittance which can be
de scribed by

(6)

Equation ( 5) is the re suIt that is crucial to our
considerations and we will return to it later.

which shows the relation between A and g, but also
the dependence of the required amplification
A for a given gain g on the beam mome.ntum and
current and on the system bandwidth. We note,
though, that the gain g itself could depend on the beam
current and the system bandwidth as we shall see later.

In the previous section we have analyzed how
the beam signal is handled; in the present one we
want to deal with another source of signal: the noise
which is generated at the front-end of the amplifica
tion chain. As shown in Fig. 1 the noise figure is
given by a front-end voltage Vn' This voltage is also
amplified and applied to the kicker, and the beam at
location K does not have the capability of di scriminat
ing between the contribution of the beam (VZ) and the
noise contribution (AVn ). The beam will experience
a total voltage VZ + AVn and the system will interpret
it as being caused by an equivalent beam signal z + r
at the location of the pickup. From (Z) we derive

III. Front-End Noise--------------------
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and ~or beam bary center

zm+1 =i- l (zi-gzm-gr )
i

= (i-g) zm - gr. (8)

In this situation, we can disregard Eq. (10)
and replace z2 on the right-hand side of (9) by its
expectation value. This is justified by the approxima
tion that (9) applies in average over several turns We
obtain

where, for the last equation, we have assumed that
the average value of r is zero.

Taking m, the number of turns, as a continuous
independent variable, we derive the following differ
ential equations from (7) and (8).

When the reference particle is back to the loca
tion of the pickup on the next turn, we assume it has
lost its companions during the previous turn and is
surrounded by n new, different particles (full mixing).

(13)

(14)
noise power
signal power

More generally, one should have also included
errors and have written (12) as

~2 0'2 + z2
n r

and assumes that n is a constant. This could be an
approximation at the beginning of the cooling and for
slow cooling, when indeed the beam signal does not
change much. But in fast cooling 0'2 would change
rapidly, whereas r 2 remain s constant. In this
regime, n can no longer be regarded as a constant.

But one can combine the tffect of zr2 with r 2 and prob
ably ignore it as long zr << r 2• We shall assume in
the following that is indeed the case.

Eq. (13) was first derived by Hereward, 2 but
he integrates it in a curious way. He introduces the
quantity

(9)

( 10)

dO'Z 2 2 _ (Zg_gZ) z2
dm = g r

dz = -gz,
dm

In this way, a new signal is generated and the
cycle is repeated again. Since the reference particle will
enter different beam samples, one can assume that
(7) applies as an average over several turns to the
entire beam. In this approximation one does not
expect any correlation between rand z and therefore
the last turn at the right-hand side of (7) does not give
any contribution.

Eq. (13) can in fact be integrated to give the
general solutionWe have not specified what z is. For instance,

it could be caused by a coherent beam oscillation
with no relation to the beam size a In this case, one
integrates (10) to get

2
(12 = (1 - (rr 2 - (r 2) e -Q'I'rl

c:o c:o 0 '
(14')

Fig. 2. Stochastic Cooling.

It is still an exponential decay with a cooling
rate given by cr, which does not depend on the noise
figure r. But the cooling saturates at a final value
O'c:o which depends on the noise When the noise dis
appears the final size also vanishes

(15a and b)

is also plotted in Fig. 2

_ 2g_g 2
and cr - --

n

L--------------.m

2 ngr2
(J =~-

c:o 2-g

where
z = Zo e-gm ,

which is the usual coherent-oscillation damping for
mula. The damping rate is given by the gain g, as
one would have expected by definition. Insertion of
(11) into (9) gives

2 2 2 2 2 -g - 2 ( .;.2gma =0'0 +g r m+-Z- Zo e -1).

Note that the turn g2z2 on the right-hand side
of (9) has also been called the beam noise turn be
cause it adds positively to the systemnoise g2 r 2.
This definition is arbitrary; this term will also be
there when z is a coherent oscillation, which. we can
hardly qualify as noise.

The second turn at the right-hand side is the diffusion
term due to the noise, the last the damping of the
apparent emittance due to coherent oscillations (the
actual beam emittance does not change).

The case of interest is when z is a pure stoch
astic signal due to the finite number n of particles in
the beam sample. This signal will change randomly
from sample to sample with an expectation value
given by

It is possible that the factor f'I, Eq. (14), is
relatively small at the beginning of cooling, because
the beam signal is larger. But toward the end of the
cooling, the situation reverses; the noise signal
predominates and the factor,., cannot be ignored.

(12)
Inspection of (15) shows conflicting require

ments for the gain g. From one side, one would like
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to have fast cooling which requires a large g, possibly
g=1. On the other side, if cooling has to be effective,
the final size 0" 2 should be small which require a

OJ

small g. The case g=1 would work if

nr2 2.
0" 2 =-- « 0"0 •

CD 2

This requires small front-end noise Vn and large
bandwidth.

The theory we have outlined above applies only
to the case of good mixing. Nevertheless, we may
expect that some of the conclusions, at least qualita
tively, apply also to the case of bad mixing. For
instance, the solution should still have the form of
Eq. (14')as sketched in Fig. 2, provided that the cool
ing r ate a and the final beam size 0" co 2 are properly
defined to include a mixing coefficient. One would
expect the cooling rate to become smaller and the
final beam size to become larger. Thus good mixing
represents the optimal situation.

The se are all the equations that are required to
design a cooling loop. They give the cooling time and
the final beam size in terms of the machine revolution
period To, the beam momentum p, the system band
width 1 IT , the front-end noise Vn' the electronic gain
A and the two parameters sand K which are the sensi
tivity of the pickup and the effectiviness of the kicker.
These equations are quite general.

One has cooling when s KA > 0 and I < la, in which
case also a=~ o.

Observe that in the limit of small current, the
cooling time is independent of the beam intensity and
the system bandwidth

'Ib K13P (23)
To lesA

and

a 2 = (j2 for I < < 10 •
CD

It should be possible to treat the bad mixing case
with the approach outlined here by splitting z in Eqs.
(9) and (10) in two contributions, one from the old
particles which still remain with the test particle
and one from the new ones which are ju st refilling
the sample under consideration.

V. Consequenses of our Analysis

When I approaches 10 the cooling time becomes in
finite and there is no more cooling. The final beam
size also diverges because of the diffusion caused by
the noise. Observe that there are some conflicting
requirements on the electronic gain A, as one can see
by inspecting (22) and (23): faster cooling is obtained
with larger A, which also causes a larger final beam
size. In the limit of small current there is also no
dependence on the system risetime.

The conclusion of our analysis can be drawn by
combining Eqs. (1). \5). (6) and (15). and

_V_I_._T_he Experiment at Fermilab

0<g<2.

For practic al purpose s g is given by (5). Since A is
usually a large number, it is the quantity that is kept
constant, so that g increases with 1. When I> 10 then
g> 2 and one does not have cooling anymore.

Our result (19) might seem strange and in con
tradiction with previous results. This was known
under the form of Eq. (15 b): for a constant dynamic
gain g the cooling rate is proportional to the system
bandwidth and to the inverse of the beam intensity.
One has cooling only if

(18)

(17)

2
2 _ gVn

- (2-g)s2 eT Ia
OJ

and

T = cooling time = To/a.

Several of these equations can be combined to
give the following

w~p
A = g sIT (16)

T = T ITo/e
D g (2-g)

The next step is to eliminate g from (16) and

The two loops for damping betatron oscillations
have the following parameters:

An experiment on stochastic cooling has been
proposed at Fermilab, to be carried out in the Elec
tron Cooling Ring at a momentum of 644 MeV Ic. The
three loops, horizontal (H). vertical (V) and momen
tum-wise (P) are shown in Fig. 3.

(20)

(19)

and (18)

2a
co

two equations from (17)

T D T I02/4e
To 10 -1

_2
a 10 ,
~::-J

derive

with s = 200 viA' m·nsec
k = 0.05 V I m'(eV Ic)

and

(21) and
T = 2nsec (200 MHz bandwidth)
A = 10 6 (120 db)

V r = 10 jJ.V,

(22)
which gives
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10 =91mA
Tn =228 sec for 1«10

CT = 4.6 mm.

The final beam size corresponds to an emittance of
31T10-6 m (for 95% of the beam). The initial one could
be 10 -20· 'iT. 10 -6m . The sensitivity figure s given above
is for a standard pair of electrode s 6 in. long with a
45 0 cut. The kicker could also be made of a pair of
deflecting electrodes of the same length.

as one can derive from (6) and (20). Thus in the limit
of I < < 10 , one has '11 > > 1 and most of the power re
quired is given by the contribution of the noise. If
the deflecting plates are matched to a'J. impedance of
50 ohms, with a gain of 120 db and a front end noise
of 10/J.V, the power required is 2W, probably marginal.
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Fig. 3. The stochastic cooling loops for the electron cooling ring.
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