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Part I. Introduction 

§l. Historical Development 

History of particle accelerators started when Cockcroft and Walton 

succeeded in artificially disintegrating nuclui by the bombardment of a 

proton beam in 1932. Since then, accelerators attaining higher and higher 

energy and producing higher intensity have been developed. We classify 

the accelerator development into the following five phases and briefly 

sketch the basic principles. 

1) direct voltage accelerator 

2) resonance accelerator 

3) synchronous accelerator 

4) alternating-gradient focusing 

5) colliding beam machine (storage ring) 

1) Direct Voltage Accelerator 

A first type of accelerator, which is the simplest in principle, is 

to apply a DC potential between the ion source and beam exit as shown 

in Fig.l. Let the potential difference be V, then the energy gain is eV, 

where e is the electronic charge. It is convenient to express energy in 

terms of eV (electron volt) and the following auxiliary units are used 

as shown in Table 1. 

Table 1 

1 eV (electron volt) 

103 KeV (kilo-) 

106 MeV (mega-) 

109 GeV, BeV (giga-, billion-) 

1012 TeV (tera-) 

This type of accelerators include a Cockcroft-Walton accelerator, 

a Van de Graaf accelerator etc. In these accelerators, special methods 

are used to produce a high DC potential. The maximum attainable energy, 
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however, is limited by the insulation breakdown to about 8 MeV. 

2) Resonance Accelerator 

A proposal to cope with the insulation breakdown of the DC accel­

erator is to apply a high frequency (radio frequency or RF) electric 

field in series in resonance with the particle motion. The first type 

of such an accelerator is a linear accelerator as shown in Fig.2. An 

array of coaxial cylindrical electrodes of increasing length is aligned 

along the axis of a long glass vacuum chamber. The electrodes are con­

nected alternately to two bus bars extending along the length of the 

chamber and supplied by the radio frequency power source. The separation 

L between accelerating gaps is the distance traversed by the particle·s 

during the half-cycle of the applied electric field whence 

L = ! y (1.1)2 f ' 

where v is the particle velocity and f is the frequency. Each time a 

particle of charge e crosses a gap, it sees a field which gives it an 

energy increment eV sin$, where V is the maximum gap voltage and $ is 

the phase at which the particle crosses the gap. The early machines 

were designed to accelerate only the particles which arrived at a 

phase close to 90°, so the energy gain at each gap was about eV. If 

the length of the accelerator can be made long, the maximum attainable 

energy is limited only by economical considerations. 

Further development of linear accelerators must have awaited the 

development of microwave technology during World War II from a technical 

point of view and the detailed ap~lication of the principle of phase 

stability from a theoretical point of view. 

Another application of the principle of resonance acceleration is 

to use a magnetic field in addition to an RF electric field. The motion 

of a particle in a magnetic field is determined by the balance between 

the Lorentz force and the centrifugal force 

2 
mv 

evB = p (1.2) 

where B is the magnetic field, m is the particle mass andp is the radius 

of curvature. Then, the angular frequency ~ is expressed as 
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v eB 
w = (1.3)p m 

and constant as long as Band m are constants. Such a machine is called 

a cyclotron and shown in Fig.3. If an RF field is applied in resonance 

with the particle motion, a single accelerating gap called a "dee" can 

accelerate a particle beam to a final energy. 

The maximum energy of the cyclotron is limited to about 20 MeV for 

protons because the resonance condition w = constant in eq.(1.3) breaks 

down as the particle energy becomes relativistic. The condition also 

breaks down because the magnetic field is made weaker at the periphery 

of the magnet than at the center to provide vertical focusing. This 

difficulty was overcome by the invention of the principle of "phase 

stability". 

Before going to a discussion of phase stability, we remark a general 

theorem inherent to circular accelerators. Consider an accelerator as 

shown in Fig.4. We asks whether it is possible for a static electric 

field to accelerate a particle. In a static field, 

rot E = 0, (1.4) 

from the Maxwell equation. Then, the energy gain ~E for one revolution is 

E = fE ds = frot EdS = 0, (1. 5) 

so that the energy increase in the accelerating gap is completely can­

celled by the field outside and there is no net energy change. Thus, 

to increase a particle energy, a high frequency electric field based 

on the principle of resonant acceleration is essential. 

3) Synchronous Accelerator 

In a cyclotron, as the relativistic mass increases, the angular 

velocity decrease as indicated by eq.(1.3). In order to cope with 

this, the radio frequency should be decreased in phase with the particle 

motion. Further in this case, the accelerating phase should be on 

the falling side of the RF electric field to ensure "phase stability". 

This principle of phase stability invented by Veksler and McMillan is 

clearly exhibited in a paper of McMillan. "Consider, for example, a 
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particle whose energy is such that its angular velocity is just right 

to match the frequency of the electric field. This will be called the 

equilibrium energy. Suppose further that the particle crosses the accel­

erating gap just as the electric field passes through zero, changing in 

such a sense that an earlier arrival of the particle would result in an 

acceleration. This orbit is obviously stationary. To show that it is 

stable, suppose that a displacement in phase is made such that the par­

ticle arrives at the gaps too early. It is then accelerated: the in­

crease in energy causes a decrease in angular velocity, which makes the 

time of arrival tend to become later. A similar argument shows that a 

change of energy from the equilibrium value tends to correct itself. 

These displaced orbits will continue to oscillate, with both pahse and 

energy varying about their equilibrium values~ These oscillations are 

called synchrotron oscillations or longitudinal oscillations. 

The cyclotron based on this principle is called a synchrocyclotron 

(or an FM cyclotron). Another machine using this principle is a synchro­

tron, in which the magnetic field also changes with time. Since the 

volume of magnets required for the synchrotron is smaller, the synchrotron 

is quite suitable to produce high energy. Present linear accelerators are 

also based on the principle of phase stability. The equilibrium phase 

should be on the rising side of the electric field in this case. 

4) Weak Focusing and Strong Focusing 

Particles injected into an accelerator have a finite spread in 

position and angle, so that it is very important to confine the par­

ticles during the acceleration period. Otherwise, particle will be 

lost and the final intensity will be quite small. In general, particles 

will oscillate about some equilibrium orbit and thus stability is obtained. 

This oscillation is called a "transverse oscillation" or a "betatron 

oscillation" because this oscillation mode was first analyzed with a 

machine called a betatron. 

A betatron does not use an RF electric field, but an induced elec­

tric field due to changing magnetic flux. From the Maxwells equation 

dB 
rot E = - dt (1.6) 
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the 	energy gain per revolution ~E is given by 

d<P (1.7)
dt 

where <P is the magnetic flux enclosed by the particle trajectory. An 

important feature of the betatron is to shape the magnetic field so 

that 

nB(r) a: r-	 (1.8) 

where o < n < 1. (1.9) 


The condition (1.9) ensures stability both in horizontal and vertical 


planes. 


This principle of transverse focusing was adopted in synchrotrons 

and is now called the principle of "weak focusing". It was later dis­

covered that a stronger focusing could be achieved if sections of large 

positive n-values and large negative n-values (focusing and defocusing 

sections) were provided alternatingly. This scheme is called "alter­

nating gradient or AG focusing" or "strong focusing". This possibility 

will be studied in detail in this lecture. 

5) Colliding Beam Machine (Storage Ring) 

In a stationary target experiment, the available center of mass 

energy W is expressed as 

W2 	 = _(p + q)2 (1.10) 

= 2ELM + 2M2 (1.11) 

where p,q are four-momenta of incident and target particles, EL is the 

energy of the incident particle and the two particles are assumed to 

have the same mass M. If the two beams are made to collide head-on 

with energy E, the available center-of-mass energy is 

W = 2E • 	 (1.12) 
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So, the colliding beam machine of energy E corresponds to a conventional 

machine of a corresponding energy EL given by 

(1.13) 

The biggest conventional accelerator is the FNAL 500 GeV proton syn­

chrotron, whereas the biggest colliding beam machine is the CERN 

30 GeV x 30 GeV ISR. The latter corresponds, in energy, to a conven­

tional accelerator of about 1.8 TeV. 

§2. Scope of This Lecture 

This lecture is concentrated on the principle of alternating 

gradient focusing in synchrotrons, beam transport systems and storage 

rings and its consequences on synchrotron oscillations. The effects 

of various perturbations such as magnetic field imperfections, gas 

scattering etc. are outside of the scope of this lecture. Further, 

the particles are treated independent; the effect of mutual inter­

actions between particles, related to space charge effects and insta­

bilities, are not dealt with. For further reference, a list of ref­

erence books on accelerator theory is given selectively at the end 

of this note. 
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Part II. Betatron Oscillation 

§l. Equation of Motion 

The basic equations which determine the motion of charged particles 

in an accelerator are the (relativistic) Newton's equation of motion 

~= F (2.1)
dt ' 

and the Lorentz force equation 

F = e[v x B] + eE. (2.2) 

Since the magnetic force (the first term of eq.(2.2» is directed per­

pendicular to velocity, it does not change the par.ticle energy. The 

electric field (the second term) is applied in a direction of particle 

motion, and it increases the particle energy. In all existing synchro­

trons, the energy gain per revolution is much smaller than the particle 

energy so that, in treating the dynamics of particle motion in a mag­

netic field, the particle energy can be considered to be constant and the 

magnetic field can also be considered to be constant. The small change 

of a particle energy is taken into account as a perturbation (which causes 

an adiabatic damping of oscillations). Further, the transverse oscil­

lations (betatron oscillations) governed by the' magnetic force term. 

and the longitudinal oscillations (synchrotron oscillations) effected 

by the electric field term can be treated independently because their 

oscillation frequencies differ considerably from each other. Thus, the 

effect of the magnetic term and particularly the stability of particle 

motion in a static magnetic field will be treated in this part. 

We first consider a particle moving in a uniform magnetic field. 

The Lorentz force is constant and the motion is a circular one with 

radius P. The motion is determined by the balance between the magnetic 

Lorentz force and the centrifugal force 

2 
mv = evB. (2.3)

P 

Thus 

p = mv = eBp, (2.4) 
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where p denotes the momentum of a particle. A useful numerical relation 

worth memorizing is 

p(GeV/c) ~ 0.3 B(T)p(m), (2.5) 

4where p is measured in GeV/c, B in T (1 Tesla = 10 Gauss) and p in m. 

In actual accelerators, and magnetic field is not always uniform, 

but all the accelerators are designed so that the trajectory is circular 

for a given momentum (design momentum) as determined by eq.(2.4). In 

addition to circular portions, all the modern accelerators comprise 

straight sections. Thus, the trajectory of a particle having the design 

momentum is circular in some parts and straight in the other parts. The 

trajectory of particles which have a momentum other than the design value 

is complicated and should be determined by solving the equation of motion 

as will be shown later. 

To go further, it is convenient to introduce a cylindrical coordinate 

system (r, e, z) for a curved section and a cartesian coordinate system 

(x, z, s) for a straight section as shown in Fig.5. (Note that the sign 

of e is opposite to the usual definition. This definition is used because 

the magnetic field in the z-direction and the positive charge moving in 

the S direction appropriately define the radius vector r.) The equations 

of motion (2.1) and (2.2) are written in the cylindrical coordinate sys­

tem in the form 

.d 2(mr) - mre = -ereB + eZBe + eE (2.6)
dt z r 

.d (mZ) = -erB + erSB + eE (2.7)
dt e r z 

1 d (mr2e) = -ezB 
. 

+ e;B + eES (2.8)
~ dt r z 

In the cartesian coordinate system 

d . 
(mi) ezB e;B + eE (2.9')

dt s z x 

d (mz) = e;B - eiB + eE (2.10)
dt x s z 

.d (ms) exB - eZB + eE (2.11)
dt z x s 
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The third equations (2, 8) and (2, 11) are related to acceleration 

and will be discussed in Part III. The electric field is applied in the 

direction of motion so that 

E x 

Further, it is convenient to use eand s as independent variables instead 

of t. Then 

.d • dr dz
(m ede) -I1J-ttJ -erB + Bede z ede 

(2.12) 
d • dz dr 

(m e de) -ecm- Be + erBr ,de 

and 
d (ms dx) = e¥B - eBds ds ds s z 

(2.13) 

d ( • dz) dx ms - eB - e;y-B.ds ds x s s 

We now consider the properties of the magnetic field. We put r = 
p + x, where p is the design value, and consider x and z to be small. 

Then, 

aB dB 
+ __z x + _z_ zB (r, e, z) = Bz (p) +. . . z dr dZ 

dB dB 
Br(r, e, z) Br(p) 

r • (2.14)+--x +--1':.z + . . 
dr dZ 

dBe dB . . . Be (r, e, z) = Be (p) +--x .dr +a!z +. 

These fields must satisfy the Maxwell equations 

div B 0 
(2.15) 

rot B 0 

The last equation results because there is no current in the vacuum chamber 

where the beam travels and the induction current can be neglected since the 

change of the magnetic field is very slow. Then, 
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dBr dBz 
- 0dZ dr 

1 dBr 

r 1 

dr 
d 

(rB e) - ~ as= 0 . 


We assume that the magnetic field is independent of 8. We further assume 

that 

Be (r, e , z) 0 

Br (p) = 0 

dBz dBr 
--- = o. 

dZ dr 

All these assumptions are consistent with eq.(2.l6), and a relation 

dB dBr _ z (2.17)az--ar­

results. Similar considerations can be made in the cartesian coordinate 

system to give 

dB dBx _ z (2.18)az - dX 

This field gradient is utilized to focus the particle beam. Further, in 

all accelerators, the magnets are designed so that only this gradient 

appears and the expansion of eq.(2.l4) is strictly valid except for un­

avoidable errors. 

The field is independent of e or s, and the problem is a two-dimensional 

one. Further, the curvature of the orbit can be neglected in the present 

problem and we can use a cartesian coordinate system. The desired field 

is given by 

Bx az 


B = ax
z (2.19) 

dB dB x z 
a = az = dX • 
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Since rot B = 0, B is expressed bY'a scalar potential 

B = -grad '¥ (2.20) 

and 

'¥ = -axz. (2.21) 

We produce this potential by a suitable boundary shape of iron yokes. 

The boundary condition at the iron yoke is from the equation rot H = 0 

and divB = 0 (see Fig.6), 

(2.22) 

where t designates a transverse component and n designates a normal com­

ponent. Since the permeability of iron is very large H2t in iron can be 

taken to be zero. Thus, the boundary condition is that the transverse 

field is zero at the boundary. The problem is identical to the problem 

of an electrostatic field bounded by a conductor, and the desired field 

is obtained by the iron yokes whose shape is the equipotential surface 

given by eq.(2.2l). Such a magnet is called a quadrupole magnet and 

is shown in Fig.7a. 

To bend a particle as well as to focus it, it is possible to pass 

a beam off-axis as shown in Fig.7(b). The bending field is 

dB
B=+__zx 

z -ax 0 

and the effective gradient (often called a profile parameter nIp) is 

dB _ 1 n z = - --=+- (2.23)
p Bz dX Xo 

In this case, the left half is unnecessary and is replaced by a neutral 

pole as shown in Fig.7(c). Further, since the neutral pole is incon­

venient for injection, extraction, replacement for vacuum chambers etc., 

the neutral pole is replaced by "shims" as shown in Fig.7(d). Computer 

programs to calculate proper pole face shapes for producing a desired 

field have been developed in the laboratories around the world. These 

include SIBYL, LINDA, RINDA, TRIM, MAGNET,etc. and are available at KKK. 
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We now go back to the equation of motion. Firstly, the velocity 

v of a particle is expressed as 

or 

. .
Since we consider the first order theory, r, x, and z are neglected com­.pared to r~ or s. Then 

v C! r8, or v C! S 

We further assume that the mass is constant (the effect of change in mass 

will be discussed in §6). Then in a cylindrical coordinate system, 

2 dB 
• d x zme - - mv = -epB (p) - exB (p) - ep - x (2.24)

de2 z z dX 

2 dB
• d z r 

me dd 2 = ep a;- z. (2.25) 

We put 

p = mv = PO + 6p, 

where Po is the design momentum given by Po = eBz(p)p. Then eq.(2.24) is 

Po dBz 
= - x p - ep dX x. 

Now, me = Po and the transformation gives 
p 

2 
d x + (1 - n)x ~ (2.26)

2de

where 
n = _ .fL. dBz 

dXBz 

The suffix 0 in Po will be omitted in the followings for brevity. The 

quantity n is called a field index. Similarly, eq.(2.25) is trans­

formed as 

(2.27) 

The equations of motion in a cartesian coordinate system are derived in 

a similar way. For a quadrupole magnet 
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2 dB 
dx+ e z 

x = 0 
ds2 PdX 

(2.28) 

d2z e dBx--- z .=0
ds2 - P dE 

For a drift space 

d2x 
--= 0 
ds2 

(2.29) 

d2 z --= 0 .2ds

We introduce a variable s = p8 for a curved section, where s consistently 

denotes a path length of the central design orbit in a machine. Then, 

eqs.(2.26) and (2.27) are rewritten as 

(2.30) 


Eqs. (2.28) - (2.30) are the basic equations of motion in a linear theory. 

§2. Motion in an Azimuthally Constant Field 

We now solve the equations of motion (2.28) - (2.30) under the 

assumption that p, ~ etc. are constant azimuthally, i.e. dependent 

of s. This assumpti~n is correct for all practical accelerators and 

transport systems in that all elements, though they may differ from
dB

element to element, have specified values of p, dXz etc. The most 

difficult equation is the first of eq.(2.30), i.e. 

!~ 
p p 

where 
K = I - n 

p2 
We assume K>O and first solve the homogeneous equation 

- 93 ­

http:eq.(2.30
http:eqs.(2.26


2 
dx+Kx=O. 

2
ds

The solution is 

x = A cosYK s + B sinYK s, (2.32) 

where A and B are arbitrary constants. Since eq. (2.31) is a second order 

differential equation, its solution is completely specified by giving 

the initial values x(sO) and x'(sO) at s = sO. Then 

A = x(sO), 


B = -
1 

x' (sO) · (2.33)

Ii{ 

We then solve the inhomogeneous equation by the method of variation 

of constants. Put 

(2.34)x' = -AvK sinvK s + BvK cosvK s , 
with a subsidiary condition 

A'coslK s 	+ B'sinlK s = 0 • (2. 35) 

Then, the 	equation of motion is 

-A'vK sinvK s + B'IK cosvK s = ! -E. . (2. 36)P p 

Combining eqs. (2.35) and (2.36), we obtain the equations for A and B 

1 
A' =-! ~ vi{ sinvK s 

p p 
1

III ­
B' = - ~ 	Ii{ cosvK s.

P p 

The solution is 

x = (+ ..!.. ~ cosvK s + a) coslKs + ( lK ~inlKs + b) sinlKs,
PK p P p 

where a and b are arbitrary cpnstants. The initial conditions x(sO) = 

x'(sO) = 0 determine a and b, and the solution is 

x = ..!.. ~ {I - coslKs} • (2. 37)
pK p 
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The complete solution is thus 
, 

x = XOCOSvKS + ~invKs + plK ~{l - coslKsl • (2.38 )Ii{ ... p 

As is easily seen, the general form of the solution for y (y is a generic 

symbol of x or z) is written in the form 

y = a(s)yo + b(s)yO' + e(s)~ 

y' = a'(s)yo + b'(s)yO' + e'(s)~ (2.39 )
p 

= c(s)yo + d(s)yO' + f(S)~ 

It is convenient to express a solution in a matrix form 

a(s) b(s) 
e(s)) ( Yo ) 

c(s) d(s) f(s) yO' (2.40) 
( 

o o 1 k 
p 

This matrix is called a transfer matrix and denoted by M(slso). It is 

easily verified that 

(2.41) 


so that the tracing of a trajectory can be done easily by matrix multi ­

plication. The transfer matriees for various elements are summarized in 

Appendix. It is to be noted that 

det M = 1. (2. 42) 

This is a general law derived from the fact that the equation of motion 

has no damping term (a term proportional to the first derivative y'), 

and expresses the fact that the phase space area in (y,y') is conserved 

by the transformation. (This point will be discussed later~) 
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§3. Stability of Motion 

We first neglect a momentum spread of the beam and assume that all 

the particles have a design momentum. The effect of momentum spread will 

be discussed in §7. For a particle of design momentum, there is a closed 

curve called an "equilibrium orbit". For a particle to lie on the equi­

librium orbit, however, the particles should be injected strictly into 

the equilibrium orbit. The inejcted particles have a finite spread of 

position and angle, and those particles should oscillate around the 

equilibrium orbit in order for the motion to be "stable". If the par­

ticles depart form the equilibrium orbit as they travel in the machine, 

the motion is called "unstable". The oscillation mentioned above is 

called the "transverse oscillation" or the "betatron oscillation". We 

consider the stability of such an oscillation in this section. 

First, take a case of an azimuthally symmetric machine (weak-focusing 

machine). The equations of motion are, from eq.(2.30), 

2
d x + 1 - n~ = 0 

2 2
ds p 

d 2z n--+-z=O 
2 2 ' ds p 

where nand p are constants. It will be easily seen that the motions 

are sinusoidal and stable in both planes if 

o < n < 1 . (2. 43) 

It is a great invention of Christofilos and Courant, Livingston 

and Snyder that the stability of motion is obtained if sections of large 

positive n and large negative n are alternately provided in a periodical 

manner. This principle is called the "alternating-gradient" or "AG" 

principle. In discussing the stability of motion based on the AG principle, 

it is quite profitable to use the matrix formalism described in §2. 

Now, the machine is divided into N identical sectors called a 

"period" or a "cell". Denoting the total circumference of the machine 

by C and putting L = C/N, the periodicity condition is expressed as 

M(s + LI s) = M(s + 2LI s + L) 

and 

(2.44) 
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We define 

Referring to eq.(2.40), we separate the matrix M as follows. 

(2.46) 

where 

o = (0, 0) • 

The matrix multiplication is done as follows. 

(2.47) 

Since the 2-by-2 matrix multiplication is influenced only by the matrix 

M and not by D and since we neglect the momentum dispersion, we can discuss 

the betatron oscillation in terms of only the 2-by-2 matrix M. We omit 

the bar from Min the followings for brevity. 

To study the stability of motion, it is conveninent to introduce an 

eignva1ue of M(s). We put 

MY = Ay. (2.48) 

The eigenvalues are the solutions of the determinantal equation 

1M - All = 0, (2.49) 

or 

1..2 - (a + d) + 1 = O~ (2.50) 

where we have made use of the fact that detM = ad - bc = 1. 
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If we write 

cos~ = 21 
TrM = 1zea + d), (2.51) 

the two solutions of (2.50) are 

A = cos~ ± i sin~ = e 
±i~ (2.52) 

The quantity ~ will be real if la + dl ~ 2 and imaginary or complex if 

la + dl > 2. 

Let us now assume la + bl ~ 2. We define the variables a, Band 

Y by 

a - d = 20. sin~ 

b = Bsin~ (2.53) 

c = -Ysin~ 

The condition detM = 1 becomes 

By - 0.2 = 1. (2.54) 

For la + dl = 2, sin ~= 0, and Band yare indefinite, but this case 

does not occur in actual accelerators (except a long straight section 

for matching) and we do not consider this case. We resolve the ambiguity 

of the sign of sin~ by requiring 8 to be positive if Icos~1 < 1 and by 

requiring sin~ to be positive imaginary if Icos~1 > 1. The definition 

of ~ is still ambiguous to the extent that any multiple of 2n may be 

added to ~ without changing the matrix. This ambiguity will be resolved 

later. 

The matrix M may now be written as 

cos~ + o.sin~ Bsin~ 
M = ( ]= Icos~ + Jsin~, (2.55) 

-Ysin~ cos~ - o.sin~ 

where I is the unit matrix and 

(2.56) 

is a matrix with zero trace and unit determinant, satisfying 

J2 = -I . (2.57) 
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It should be noted that the trace of M , and therefore ~, is independent 

of the reference point s. For, by virtue of eq.(2.4l), we have for any 81 

and s2 

so that 

(2.58) 

Thus M(Sl) and M(S2) are related by a similarity transformation, and therefore 


have the same trace and the same eigenvalues. On the other hand, the matrix 


M(s) as a whole depend on the reference point s. Thus the elements a, B, 

Y of the matrix J are functions of s, periodic with period L. 


Because of eq.(2.57), the combination Icos~ + Jsin~ has properties 

similar to those of the complex exponential ei~ = cos~ + isin~; in particular, 

it is easily seen that, for any ~l and ~2 

(2.59) 

The k-th power of the matrix M is thus 

Icosk~ + Jsink~ , (2.60) 

and the inverse is 

-1M = Icos~ - Jsin~. (2.61) 

It follows from eq. (2.60) that if ~ is real, the matrix elements 

of Mk do not increase indefinitely with increasing k, but rather oscillate; 

on the other hand, if ~ is not real,cos k~ and sink~ increase exponentially, 

and therefore the matrix elements do the same. Therefore, the motion is 

stable if ~ is real, i.e. if ~ + dl < 2 and unstable if la + d/ > 2. 

In alternating gradient synchrotrons, the simplest magnet arrangement 

is an FD structure, where F denotes a radially focusing sector and D 

denotes a radially defocusing sector: 
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p = const = R 


1TR 

n , 0 <- (2.6Z)= n < s

l N 

1TR Z1TR 
n = -nZ , < s < .

N 

Computing the trace of this structure, 

n
l 

- n Z (Z.63)cos~z = cos¢zcosh~z - Z(nlnZ)l/Z sin¢zsinh~z ' 

lIz l/Zwhere ¢z = 1TU1 IN and ~z = 1fD.Z IN 

and Z - n + n Zl = cos¢xcosh~x - I sin¢xsinh~x' 
Z[(nZ + l)(nl - 1)]1 Z 

lIZ l/Z
where ¢x 1T(nZ + 1) IN and ~x = 1T(nl-l ) IN. (Z.64) 

If nl » 1 and nZ » 1, the stability criteria depend only on nl/NZ and 

nz/N~. Both modes are stable provided n1/NZ and nZ/NZ lie within the 

shaded region of Fig.S. This diagram is called a "necktie diagram" 

because of its shape. 

§4. Amplitude of Betatron Oscillation 

The general form of the equation of motion is a Hill's equation 

y" + K(s)y = 0, 
. (Z.65) 

with K(s + L) = K(s), 

which is a linear second-order differential equation with a periodic 

coefficient. We attempt to find solutions of (Z.65) which have the form 

i~(s)Yl(s) = w(s)e . (Z.66) 

Another linearly independent solution is naturally 

-i~(s)
YZ(s) = w(s)e (Z.67) 
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Since the Wronskian ~ defined as 

(2.68) 


is constant in s, we normalize Yl and Y2 in a way 

~ = 2i • (2.69) 

Then '¥' = J:.. (2. 70)2w

Inserting eqs.(2.66) and (2.67) into eq. (2.65), we obtain 

wit + Kw - 31 
= o. (2.71) 

w 

Eqs. (2.70) and (2.71) are the equations determining wand '¥. 

Any solution of eq.(2.65) is a linear combination of Yl and Y2 so 

that 

y(s) = aYl(s) + bY2(s), 
, , (2. 72)and 

y'(s) = aYl (s) + bY2 (s) • 

Then 

(2.73) 
, , i'¥ ' '-i'¥2

y'(s2) = a(w2 + i'¥2w2)e 2 + b(w2 - i'¥2 w2)e , 

and 

(2.74) 

Solving a and b in eq.(2.74) and inserting into eq. (2.73), we express 

y(s2) and y'(s2) in terms of y(sl) and y'(sl). Then, the transfer matrix 

is expressed as 

(
w2 lIJ , • \II -- COST - w2Wl S1nT
WI 

(2.75) 
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where '1' stands for '1' (s2) - '1' (sl)' wI for w(sl} etc. 

We now consider the case where s2 - sl is just one period of K(s), 

i.e. s2 - sl = L. The matrix M is then identical with the matrix (2.55). 

If we now require that w{s) be a periodic function of w (This is a con­

sequence of the Floquet's theorem), then wI = w2 and wIt = W2', and the 

forms (2.75) and (2.55) are identical provided we make the identifications 

'¥(s2) - '¥(sl) = ~, (2. 76) 

w2 = 8, (2. 77) 

ww' = -a, (2.78) 

from which follows 	automatically 

2
1 + (w'w) 

= y.= 
2 

w 

2This identification is legitimate if we can show that 81/ - which 

is, of COUL-se, periodic - satisfies lhl~ differential equation (2.71) and 

that 

8 t = -2a 	 (2.79) 

To prove this, consider the matrix for the transformation from s + ds 

to R + L + ds. This matrix is, byeq.(2.58) 

M(s + ds) = M(s + dsJs) M(s) [M(s + dsls)]-l. (2.80) 

For infinitesimal ds 
1 

(2.81)M(s + dsls) =(
-K(s)ds 

Substituting (2.81) and (2.55) in (2.80) we find 

(K 8-y) sin~ ·2asin~ )ds, (2.82)
M(s + ds) = M(s) + ( 2 i 

- KCt s n~ -(K 6-y )sinu 

so that (2. 79) is indeed valid, and furthermore 

1 + 0.2a' = -!8" = K 8-y = K8 - 8 	 (2.83)
2 
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and 

Y' 2Ka. (2.84) 

2
With the aid of (2.79) and (2.83) it is easily verified that 61/ does 

indeed satisfy (2.71), and is therefore a periodic solution of that equa­

tion. Now (2.77) and (2.78) are justified, while (2.76) becomes the very 

important relation 

l L .Q~
lJ = (2.85 )o B· 

Eq. (2.85) may be regarded as the definition of~. It is consistent with 

the previous definition (2.51), but has the advantage of being unambiguous, 

while (2.51) only defines ~ modules 2n. 

If we consider an accelerator of circumference C = NL with N identical 

unit cells (periods), the phase change per revolution is, of course, N~. 

A useful number is 

N~ I s+C dsv=-=-/ - (2.86 )
2n 2n s f3 • 

This is the number of betatron oscillation wavelengths in one revolution. 

(In the European literature on accelerators this number is often denoted 

by Q.) A useful intepretation of V is as the frequency of betatron ~sci1-

lations measured in units of the frequency of revolution; we shall refer 

to V simply as the frequency of betatron oscillations. 

The two particular solutions YI and Y2 may now be written a 

YI 
_ 
-

81/2()
s 

±iv$(s)
e , (2.87) 

2 

where 

$(s) = / ds
v8 (2.88) 

is a function which increases by 2n every revolution, and whose derivative 

is periodic. The general solution is 

y(s) = a 8(s)1/2 cos [V$(s) + 0] , (2.89) 
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where a and 0 are arbitrary constants. This is a pseudo-harmonic oscil­

lation with varying amplitude B~/2(s) and varying instantaneous wavelength 

A = 2TIB(s). (2.90) 

In the treatment given here it has been tacitly assumed that B(s) 

never vanishes, so that there are no singularities or ambiguities in the 

integral fds/B. This is the case when the motion is stable, i.e. when 

Icos~1 < 1. For then ~ , Band yare real and finite: it then follows 

from (2.52) that B (and y) cannot vanish. 

From the form (2.89) of the solution of the equation of motion it 

follows that the quantity 

1 2 222 2
W = - [y + (~y + By') ] = y y + 20. yy , + By' a (2.91)

B 

is constant, independent of s. (This is a consequence of a more general 

theorem called the Liouville's theorem.) In the space- (y, y') (the phase 

space), the particle lying on the ellipse (2.91) is transformed onto 

another ellipse (2.91) with different ~, Band y, but the same W. The 

ellipse expressed by eq.(2.9l) is shown in Fig.9. Now, TIW is the area 

of the ellipse so that the area of the ellipse is conserved during the 

particle motion. The maximum beam size is given by ISW and the maximum 

beam divergence is given by;YW. The particles in the beam occupy the 

points in the ellipse of the phase space. In proton accelerators,. the 

area TIW is determined by the properties of the injector and the operating 

energy while B, ~ and yare determined by the lattice structure. The 

quantity TIW is thus very important in discussing the properties of the 

beam as a whole and is called an "emittance" of the beam. 

In a given accelerator, the motion is restricted by the walls of the 

vacuum chamber or other obstructions to a certain region around the equi­

librium orbit, let us say to IYI < a. Then all particles whose initial 

conditions are such that 

2 

W<W =--a


o Bmax 

will perform oscillations that remain within the vacuum chamber. We 

define the "admittance" or "acceptance" of the system as the area of that 

region of (y, y') phase space for which any particles injected with 
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initial values within the region will remain within the vacuum chamber. 

In accelerator design, the acceptance of the machine should equal to or 

larger than the emittance of the beam. 

In order to decrease the aperture of magnets for a given acceptance, 

it is required to make S small. A useful approximate relation, valid 
max 

for many accelerators, is 

6 ~ C/2rrv = R/v, (2.92)av 

where R = C/2n is the average radius of the accelerator. In the general 

case, the maximum value of 6 will exceed 6 by some factor, which we av 
call the "form factor" 

F = 6 /6 ~ v6 /R. (2.93)max av max 

The form factor F can generally be kept fairly small (say about 1.5 - 2), 

and therefore the acceptance of an alternating gradient machine is mainly 

governed by the oscillation frequency v. 
In conventional accelerators V = nl / 2 for vertical and (1 _ n)1/2 

for horizontal oscillations; both these frequencies are less than 1. In 

alternating gradient accelerators, we can make V large, thus achieving a 

larger acceptance for a given aperture or alternative,ly a small aperture 

for given acceptance. 

§5. Twiss Parameters 

Notion of the emittance and the functions 6, a and yare quite useful 

in accelerators, beam transport systems and storage rings because we can 

treat the properties of the beam such as a beam size as a whole and not 

by tracing the individual particles. To apply this concept to beam trans­

port systems and storage rings, the functions S, a and y which are defined 

in the periodic system should be genera~ized to nonperiodic systems. In 

this case, these functions are called "Twiss parameters". 

We assume that 6
1

, a l and Yl at point s1 are defined and consider 

the values 6
2

, a
2 

and Y2 at point s2' where the transfer matrix from 

sl to s2 is 

(2.94) 
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The values 82, a2 and Y2 are defined by eq.(2.75) with the replacement 

w2 = 8, ww' = -a and 1 + a 2 = 8y. 

Determining equations are 

(2.95) 

Solving (2.95) for w2 , w ' and ~, we obtain2 

(2.96) 

a2 = -ac81 + (2bc + l)al - bdY1 • (2.97) 

b 
tan~ = ---­ (2.98)

a81 - ba1 

That ~ given by (2.98) is consistent with the previous definition 

~ = fS ds (2.99)
'8 

is shown by taking the derivative of (2.98) 

(2.100) 

This is consistent with eq.(2.99). 

We now inquire whether the expression (2.91) is still valid. 

Introducing the matrices 

y 
y ( y' ) 

eq.(2.91) is expressed as 

(2.101) 
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Now Y2 = M(s2/sl)Yl' and inserting into (2.101) 

(2.102) 


Putting 

eq.(2.l02) is an equation of an ellipse. From eq.(2.l03), it follows 

that 

2 
a 8 - 2abo. + b 2y ,82 1 l 1 

0.2 -ca81 + (1 + 2bc)o. - bdy
l 

,
l 

= c 
2 

- 2dcO,l + d 
2 
Yl •Y2 81 

These are consistent with eqs.(2.96) and (2.97) and it is shown that the 

Twiss parameters introduced in this section have all the properties of 

the functions 8, a. and y described in §3 and 4. 

§6. Adiabatic Damping 

We now consider the effect of slow variation of energy or mass of a 

particle. Going back to eqs.(2.6) through (2.11), the change of energy 

is taken into account by the replacement 

v ~ (mv~)
ds ds 

= ~+v~~ 
vp ds2 ds ds 

Then, the general equation of mition becomes 

2 ~ 
~ + ds ~ + K(s)y = 0 (2.104)
ds3 p ds 

We solve this equation by the method of variation of constants and averag­

ing. Put the solution in the form 
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y = AlB sin (~ 	+ 0) 

(2.105) 

.Qy = ~ {~;.sin('1'+.O) + cos('I' + a)}
ds /B 

with a subsidiary condition 

A'/s sin('I' + 0) + A!8 o'cos('I' + 0) = 0 • (2.106) 

The prime denotes differentiation with respect to s. Inserting (2.105) 

into (2.104), we get 

.9..E. Q'
ds {IJ 	 2A + P A "2sin ('I' + o)cos('I' + 0) + cos ('I' + o)} o (2.107) 

We consider the effect averaged over s. Then, using 

1 L 	 1 L S' .
1.1 6' sin ('I' +o)cos ('I' + o)ds l:fo '2 Sln 2('1' + o)ds

0 

L 
= f{[ ~ sin 2('1' + 0)]0 - J~ cos 2('1' + o)ds} 

= 0 

and 

1 L 2 1 
1.10 cos ('I' + o)ds = :2 

we get 

(2.108) 

The 	solution of (2.108) is 

AO 
A = - • 	 (2.109)

IP 

Eq. (2.109) shows that the amplitude of betatron oscillation decreases with 

energy as p-~ and that the emittance of the beam decreases as p-1. This 

- 108 ­



is a consequence of a more general theorem called the Liouvillews theorem, 

which states that the phase space area expressed in terms of canonically 

conjugute variables is conserved in a Hamiltonian system. The quantity 

nByW, where Band yare relativistic Lorentz factors, is conserved during 

the acceleration period and is called a "normalized emittance" of the beam. 

§7. Dispersion Function and Momentum Compaction Factor 

We now consider the effect of momentum spread. The general equation 

of motion is (we assume only horizontal bending) 

x" + Kx = ! .!fI!.. (2.110)
p p 

The general solution of eq.(2.ll0) is a sum of a. particular solution 

which expresses a displaced equilibrium orbit and a general solution of 

the homogeneous equation which expresses betatron oscillations about the 

displaced equilibrium orbit. The displaced equilibrium orbit is periodic 

and can be obtained by solving the matrix equation 

where the transfer matrix refers to one period. The solution is 

de) 
(2.112) 

f + ce - af 

-,.._.......-_~ e+ bf ­

The quanitty x = x /~p/p is called a dispersion function (or momentum 
p eq 

compaction function). 

Another quantity of interest is the path length difference ~C. 

Referring to Fig.lO, the path length is expressed as 

dC = ~s + x'2 ds ~ ds (2.113)
eq 
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in a straight section, and 

x 
(1 + ~)ds ( 2.114)

P 

in a curved section. The total path length difference is 

!J.C = 1 
f xeqds (2.115)

p curved section 

A more relevant quantity is the momentum compaction factor defined as 

(some authors, e.g. Livingood, defines the inverse) 

I1C/Cex =-- (2.116)!J.p/p 

From eq. (2.115) 

1 1ex=--- fXpds (2.117)
2ifR p curved section 

A useful approximate relation 

(2.118) 

holds for most accelerators. The momentun compaction factor is a measure 

of the spread of the beam due to momentum error. In a weak-focusing accel­

erator 
1ex = -~- (2.119)

1 - n 

so that the beam size due to momentum spread as well as that due to betatron 

oscillations are much smaller in AG synchrotrons. This is the origin of the 

name "strong focusing". 

We further consider the case where the magnetic field has an error 

!J.B. The basic equation is then 

x" + Kx = _ 1 !J.B (2.120)P B 
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The particular solution is naturally 

x 

so that when there are errors in momentum and magnetic field, the dis­

placed equilibrium orbit is 

x x (~ i1B) (2.121)
eq p p B 

and 

t:.C (~ t:.B (2.122)
B ).C p 

§8. Resonances 

In an actual magnet system, the fields will differ somewhat from the 

ideal design. Therefore a particle which originally starts out on the 

ideal equilibrium orbit will, in general, not stay on that orbit, but 

will deviate from it. In this respect, there should exist a closed orbit, 

the "displaced equilibrium orbit", which the particle can follow, and 

which is located well within the aperture of the machine. Further, oscil­

lations about this displaced equlibrium orbit should be stable. 

Since the particle revolve around the machine many times, the re­

peated action in phase called a "resonance" should be avoided. The 

condition of resonance is 

pV + qv integer, (2.123)
x z 

where k = Ipl + Iql is the order of resonance, and Vx and V designate fre­z 
quencies of betatron oscillation in the horizontal and vertical planes. 

Resonances with k = 1 and 2 are "linear" resonances and treated in 

detail by Courant and Snyder. Higher k values designate "non-linear" 

resonances and these are treated by Schoch. Linear resonances are 

dangerous and shoule ba avoided in any accelerator. Nonlinear resonances 

with order k = 3 and 4 are also dangerous, but higher order resonances 

are not so important in accelerators. In storage rings, still higher 

order resonances should be taken into consideration. The method to 

avoid resonances is to employ frequencies of betatron oscillations 

V and V which do not satisfy the condition (2.123).
x y 
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§9. Computer Programs 

In designing an accelerator, the V-value should first be determined. 

Higher V-value is preferable for focusing, but the tolerances on magnets 

and alignments are severer. Further, higher v-values require higher field 

gradients of quadrupole magnets or high profile parameters (nIp) of gra­

dient magnets which are technically limited. Thus, a compromised value 

must be chosen. The phase advance per cell (or period)~ is usually chosen 

between i and~. Then, from eq.(2.86) the number of identical cells is 

determined. For a given value of ~, the pa~ameters of the magnet such 

as the profile parameter should be determined by use of the equations 

such as (2.63) and (2.64). The orbit parameters such as 8, a, y, xp etc. 

should then be calculated. 

In a beam transport system or an insertion of a storage ring, the 

initial values of 8, a, y, xp etc. are usually given and we intend to 

"match" these functions to desired final values. These are done by using 

bending (dipole) magnets and quadrupole magnets and we should determine 

the parameters of these magnets. Further, the beam sizes etc. should be 

calculated along the beam line. 

All these calculations are based on a matrix calculation as described 

above, and the procedure is quite cumbersome. Thus, computer programs are 

inevitable in these calculations. Computer programs such as SYNCH, 

TRANSPORT, MAGIC, etc. have been developed in the laboratories around the 

world. These programs are available at KEK. 
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Part III Synchrotron Oscillation 

§l. Standing Wave and Travelling Wave Pictures 

The electric field appearing in an accelerating cavity is a standing 

wave, but a travelling wave picture, in which particles ride on the travel­

ling wave, is more relevant for mathematical description. This is because 

a discrete energy gain is replaced by a continuous one and thus a difference 

·eguation is replaced by a differential equation. 

We consider a single accelerating gap as shown in Fig.4. Generalization 

to many gaps is straightforward.. Neglecting the length of the gap, the 

electric field E is expressed as 

(3.1) 


where wrf is the angular frequency of the RF and Op is a delta-function 

periodic with period C (circumference of the machine). The accelerating 

gap is placed at s=O and particles pass at phase ¢s at t=O. The voltage 

V of the RF system is defined by the energy gain ~E per revolution in the 

following way. 

(3.2)liE = e 1Eds = eVsin<Ps • 

Denoting the angular frequency of the particle by w, and the particle 

velocity by v, 

27TVc=­
w 

21TV=--·h, (3.3)
wrf 

where the resonance condition 

wrf = hw (3.4) 

is assumed. The integer h is called a "harmonic number". 

Since the function 0p(s) is periodic with period C, it can be expanded 

into a Fourier series, 

2 2nn
I: C cos C s. (3.5) 
n 
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Inserting this into eq.(3.l), 

nWrf2V~ - . ( + ~ ) cos sE = t... Sln W t 't' -­
n C rf s vh 

= 

(3.6) 

This is a representation in terms of travelling waves. 

Now, the particles move with s ~ vt, so that only the term containing 

sin(W ft + ¢ - hwrhf s) will contribute to acceleration when averaged over r s v 
many revolutions. Other terms will accelerate and decelerate particles 

alternately and the net effect will be neglected. Thus, only a term with 

n=h is retained and 

E V sin(w ft + ¢ (3.7)
C r s 

where vs is the velocity of a "synchronous particle" which satisfies the 

resonance condition (3.4). In general, eq.(3.7) is expressed as 

(3.8) 

§2. Equation of Synchrotron Oscillation 

1) Phase equation 

hws and e = i's 
eq. (3.7) is expressed as 

VE sin¢ ,
C 

¢= wrft - he + ¢s . (3.9) 

Now, 
v w= e = , (3.10)
R 

and we expand w around the synchronous energy Es in terms of ~E = E - Es 

in a way 

- 114 ­



W = W + dw I liE + · · · · (3.11)
s dE s 

From (3.10) 

(3.12) 


Using 

and 

l1R. ex ~ = .J!.. ~E-= 
R P 82 E 

eq. (3.12) is 

8w 1 1 - ex) (3.13)=2" ( ­
w y2 E8 

Taking the derivative of (3.9), using the expansion (3.11) and using the 

relation (3.13) 

d th hW 1 l1 
'f' W - hw ___s (- - ex) ~ 


dt = rf s 82 y2 E 

s s 


hWs 1 l1E 
- - (ct - -2) -E ' (3.14)- 8; Ys 

where the relation wrf = hws is used. 

2) Energy Gain of Synchronous Particles 

Particles gain energy from an RF electric field or from an induced 

electric field due to changing magnetic flux (betatron acceleration). 

They lose energy, for example, by synchrotron radiation in electron machines. 

In this lecture, we consider only RF acceleration and betatron acceleration. 

Betatron acceleration is due to the induced electric field given by 

the Maxwell's equation 

aB 
rot E = - at • (3.15) 

now 
= + aeI>fEds = frotEdS at 
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where ~ is the magnetic flux enclosed by the particle trajectory and the 

sign is chosen so that the direction of flux coincides with that of B. The 
a~ energy gain per revolution is e Es ·2rrR = eat. The energy gain due to 

RF field is eVsin~s. 

Now, from the equation p = eBp 

~ _ 1 dE _ dB + dP 
(3.l6)dt - v dt - ep dt eB dt · 

. 2rr dES1nce -- -- is the energy gain per revolution,
W dt 

a~ dB. dp
eVsin<Ps + e at = 2rreRp dt + 2neRB dt • (3.l7) 

Usually, ~ = 0 and the betatron acceleration is much smaller than RFdt 
acceleration so that 

dB
eVsin<Ps ~ 2neRp dt (3.l8) 

3} Energy equation 

From the energy balance, the following equations result 

2n dE = eV sinA- + a~ 
W dt 't' e at ' 

(3.l9) 
2rr dE a~s 
{~c dt

S = eV sinA- + e ­-s 'IS at' 

where s refers to synchronous particles. These equations are derived 

naturally from the equations of motion (2.8) and (2.ll). Taking a 

difference of (3.19), we obtain 

We now let E = Es + 6E, assume that E is small, and expand (3.20) in 

terms of ~E. Firstly, 

! dE _ -1... dEs = ~ dEs _ ~(a~ ~E dEs + d~E ~ dEs 
W d t Ws d t w 

s 
d t 2 aE 

Wg 
s d t Ws d t - Ws d t 

= 
I 

II\­

~ 

d~E 
dt -

I a lu.. dE s 
2" (ai) ~E dt 
Wg s 

(3.21) 
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Further, 

d4> 
~ {d4> __s} 

21T dt dt 


e {d f d 
= 21T at Es+ilE BdS - at f Es BdS} 

ef dB 
= 21T ilE at dS 

tdB 

e s iln
= - - X .=c.. ds

21T dt P P 

= ~ dBs ~ f x ds
21T dt P Pmagnet 

ePRet ilE dBs (3.22)= -2-"Eat' 

Bs 


where the relation tmagXpdS = 2~R pa given by eq.(2.ll7) is used. 

Inserting (3.21) and (3.22) into (3.20) 

dilE 
Ws dt 

Now, W = i and R is a function of E and B, so that 

dw dW dE a~ dB (3.24)dt = dE )Bs dt + dB Es dt • 

From (3.12) and (2.122) 

ilw ilv ilR -=--­
w v R 

= ilv _ et(k _ ilB) 

v P B 


so that 

au)" w 1 3w.. w 
dE)B = -2- (Y2 - et) and dB)E = Bet 

s B E s (3.25) 
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Thus, 

= 

Inserting 	this into (3.23), 

(3.26) 

Now 

Since the 	equilibrium orbit does not change, 

dx) dz= -) = 	0
dt s dt s ' 

so that dB aBss-=-­
dt at 

Then, by use of (3.24), eq. (3.26) is transformed as 

dfj.E _ ~	 d W hE = eV {S1"n rf.. _ ""'} 
u 2 'Y S1n'f's ' Ui; dt 2 d t Tr 


Ui; 


and finally we obtain the energy equation 

.JL( liE ) = ev {sin<p - sin¢s} • (3.27)dt Wg 2Tr 

The phase equation (3.14) and the energy equation (3.27) are the basic 

equations of synchrotron motion. 
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§3. Transition Energy 
C

We consider a revolution time T = -. Now, 
v 

T c v 

(3.28) 


Since a is usually less than unity in AG accelerators, there is an energy 

where hT = 0, i.e. a revolution time does not differ for different momenta. 

This energy is given by 

1
Yt = ---....­ (3.29)

la 

and is called a "transition energy" (divided by particle rest energy). 

Below transition energy, a particle having a larger energy revolves 

faster, while above transition energy, that particle revolves slower. 

As explained in Part I, this influences phase stability. Below transition 

energy, the stable phase is on the rising side, while above transition 

the stable phase is on the falling side of the RF field. At transition, 

phase stability breaks down and the RF phase should be switched quickly. 

We will not discuss the problem of transition crossing in this lecture, 

but merely state that transition energies have been successfully crossed 

in all existing synchrotrons. 

§4. 

put 

Small Amplitude Oscillation 

The equations of synchrotron oscillation are nonlinear, but if we 

~ = ~s + ~~ , (3.30) 

and assume that ~~ is small, the equations are linearized. From eq. (3.14) 

and (3.27) 

and 
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Solving for ~E in the first equation and inserting into the latter, we 

get 

d 
dt 

f32E 
(~

2 
d~<P )
dt 

heV= - 2IT cos<p ~<ps (3.31) 

where nsws 

ns = ex. 
1 

- ­ 2 (3.32) 

Ys 

If we assume that the kinematic factors such as Ss' Es ' etc. are con­

stant, the solution of (3.31) is exprossed as 

~<p = A sin(v t + 0),s 

when ns cos<Ps < 0, and the motion is stable. If ns cos<Ps > 0, the solution 

is of an exponential form and the motion is unstable. This is consistent 

with the discussion of §3. Here, A and 0 are arbitrary constants, and 

(3.33) 


is the "frequency" of (small amplitude) synchrotron oscillation. The 

corresponding energy spread is 

2 


~E = f3 sV s _ A cos (V t + 0)

E hn w s 
s s 

= (3.34) 

. i h (h~, ~EE) i 

ellipse. 

It i s to be noted t hat t he trajectory nap ase space u~ s an 

§5. Adiabatic Damping 

We now consider a slow (adiabatic) change of the kinematical factors 

and the RF voltage appearing in eq.(3.3l). We put 

f32E 
s s 

c = --2 (3.35) 

nsws 
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and the equation becomes 

0, (3.36) 

where the prime denotes differentiation with respect to t. We solve eq.(3.36) 

by the method of variation of constants and averaging. We put 

(3.37) 

(3.38) 

with a subsidiary condition 

amd 

(3.39) 

Inserting (3.37) and (3.38) into (3.36), we obtain 

o. 
(3.40) 

Eliminating 0' from (3.39) and (3.40), we get 

(3.41) 

Now the change of A, VS and c is much slower than the period of synchrotron 

oscillation, so that we average (3.41) over synchrotron oscillations. With 

<cos2 (Vst + o»av = 
1 
2 

, (3.42) 

we obtain ,
1 Vs At 1 c'--+- + - -= O. (3./~3 )
2 Vs ,... 2 c 

The solution of eq. (3.42) is 
1 

nsA = const a: ]4 (3.44)
VEscos<t>s~Vsc 
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where (3.33) and (3.35) are used. The effect on energy spread is, from 

eq. (3.34) 

E Vcos<t> 
~E ex: [ 

s 
ns 

s (3.45) 

Eqs.(3.44) and (3.45) show the adiabatic damping of the amplitude of syn­

chrotron oscillation. It is to be noted 

(~<t» (M) 
____=m=a=x____ma==x~ = 

hLUs 

R8 s 
= hc8 

s 

= const. (3.46) 

This is a relation derived from the Liouville's theorem as decribed later. 

§6. Hamiltonian Formalism 

The equations of synchrotron oscillation is nonlinear. To treat non­

linear problems, it is quite useful to apply the theorems of classical 

dynamics. To this end, the canonical or Hamiltonian formalism is essential. 

We must choose appropriate variables to express the equations of motion 

in a canonical form. To this end, we recall that the phase space desity 

expressed in terms of canonical variables is conserved in a Hamiltonian 

system and that energy E and time t are canonically conjugate. Then, 

~E~t is in variant. Since <t> = Wrf t , 

so that 

(3.47) 


is invariant. This ia a general representation of the result (3.46). 

Introducing a variable W defined by 

W(E) (3.48) 
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it will be guessed that ~ and Ware canonically conjugate. Actually, 

equations of motion (3.14) and (3.27) are expressed as 

d~t\f eV ( . '" . '" )= 2TIh sln~ - sln~s ' (3.49)
dt 

and 

~W • (3.50) 

These equations are canonical, i.e. 

(3.51) 

d~W = aH 

dt - a~ 


if we choose the Hamiltonian H(~W, ~) to be 

h2 2n w1 s s eVH(AW ,~) = (~W)2 (cos~ + ~sin~s). (3.52)2 + 27fhS2E 
s s 

If the variation of parameters such ns' V etc. with time is neglected, 

the Hamiltonian does not contain time exp1icite1y and is Lhe constant of 

motion. The trajectory in the phase space is expressed as 

H'(~W, ~) = const. (3.53) 

From the form of (3.52), the motion is considered to be one in a potential 

U(~) given by 

U(~) = (cos~ + ~sin~s) • (3.54) 

§7. Stability of Motion 

We assume that the parameters such as n, V etc. are constant in time. 

Then,the Hamiltonian (3.52) is constant and 

(~W)2 + U(~) = C = const, (3.55) 
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or by (3.50) 

7TE B2 
s s 

( :: )2 + U(<P) = c, (3.56) 
hevoln 

s s 

where U(<P) is given by (3.54). 

The potential U(<P) is shown in Fig.11(a). We consider a r.ase where 

ns>O, i.e. above transition. For case a, the motion is bounded by $min 

and <Pmax and is stable. For case c, the motion is bounded only one side 

and is unstable. The case b is a boundary case for stable and unstable 

motions. The values of C are given for cases a and b in the following 

way. 

for case a, 

for case b and ~ = 0 at these points.dt 
At <P1' the potential is maximum and <P1 is obtained by solving the 

equation 

= sin<ps - sin<p O. (3.57) 

The solutions are 

<P = <Ps or 7T - <Ps 

and 

(3.58) 

At <Ps or 7T - <Ps ' 

dLlWdt = 0, 

and (3.59) 
~-dt - 0 , 

so that the motion does not occur at these points and these points are 

"fixed points". 
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The motion about ¢ = ¢ is sinusoidal and stable as described in §4,s 
so that this point is called a "stable" fixed point. We put ¢ = ¢l + 

~¢ and consider a motion about ¢ = ¢l. From eqs.(3.4l) and (3.50), 

d~W eV { . }- = - sin(1T - ¢ + ~¢) - sl.n¢dt 21Th s s 


eV 

- 21Th cos¢s~¢ 

and 

Thus, eliminating ~W, 

2 
d2~¢ heVTi W 
---- + s s cos¢s~¢ = 0 (3.60)

dt 2TrS2 E 
s s 

Since Tis cos¢s < 0 for stable phase angle, the motion is exponential and 

unstable. The point ¢ = ¢l is, therefore, called an "unstable" fixed point. 

The trajectory in phase space is shown in Fig.ll(b). The curve b 

which passes through the unstable fixed point ¢l is a boundary curve 

between stable and unstable motions and is called a "separatrix". 

The separatrix is given by the equation 

or 

It is, in general, difficult or impossible to obtain analytic solutions 

of the nonlinear problems and the phase-space considerations given above 

are quite useful. 
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Reference Books on Accelerator Theory 

A) Those written in Japanese 

1) ~~"Kfilfl"I.::lt, A\~~: 9juH... 

~!fflJf~U b (1iJl\~/ 1960) 


2) ~~"fk -t1:t/~~ : 9JaU-..l 

~.~.WJ4.~.ffi 2i("1L~1f:K/ /~7S-) 


B) General 

3) M.S. Livingston and J.P. Blewett: "Particle Accelerators" 

(McGraw-Hill, 1962) 

Historical developments are fully described. Technical pro­

blems as well as underlying physics are presented. 

4) S. Fliige, ed. "Nuclear Instrumentation I" in "Handbuch der Physik", 

volume XLIV, (Springer Verlag, 1959) 

C) Cyclic Accelerators (particularly AG machines) 

5) J.J. Livingood: "Principles of Cyclic Particle Accelerators" 

(D. van Nostrand, 1961) 

Introductory description of the theory of cyclic accelerators. 

Suitable for a beginner. The equations of synchrotron oscillation 

are wrong, however, and should be corrected as done in this lecture 

note. 

6) H. Bruck: "Accelerateurs Circulaires de Particules", (Press 

Universitaires de France, 1966) 

Though written in French, this is a standard text book on 

the theory of AG synchrotrons. 

7) A.A. Ko10mensky and A.N. Lebedev: "Theory of Cyclic Accelerators" 

(North-Holland, 1966) 

Highly mathematical. Suitable for the study of non-linear 

oscillations. Suitable for advanced readers. 

8) E.D. Courant and H.S. Snyder: "Theory of the Alternating-Gradient 

Synchrotron", 	Ann. Phys. 1, 1 (1958) 

A classical article describing the theory of AG synchrotrons. 

Should be read once by an accelerator physicist. 

D) Beam Transport System 

9) K.G. Steffen: "High Energy Beam Optics" (Interscience, 1965) 

10) A.P. Banford: "The Transport of Charged Particle Beams" (E & 

F.N. Spon Ltd., 1966) 
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E) Collection of Papers 

11) M.S. Livingston: "The Development of High-Energy Accelerators" 

(Dover, 1966) 

Collects papers of historical importance in accelerator develop­

ment. 

F) Instability 

Beam instability, the phenomena which appear at high intensity, 

was not treated in this lecture. The last part of ref.6) is devoted 

to this subject. 

12) E.D. Courant:' "Accelerators for High Intensities and High Energies" 

in Ann. Rev. Nucl. Scie. 18, 435 (1968) 

G) Electron Storage Rings 

13) 	 M. Sands: "The Physics of Electron Storage Rings. An Intro­

duction" in "Physics with Intersecting Storage Rings, Proc. of 

the Intern. School of Physics, Enrico Fermi, Course XLVI" ed. 

by D. Touscheck (Academic Press, 1971) 

H) Non-linear Oscillation Theory 

Mathematical problems of nonlinear oscillation theory are given, 

for example, in 

14) N.N. Bogoliubov and Y.A. Mitropolsky: "Asymptotic Methods in 

the Theory of Non-linear Oscillations" (Hindus tan Publishing 

Corpn., India, 1961). Japanese translation 

$.J-'.iE-~ ~ "'~,*-~~"/J ~ - ;tf~e1~ ;~J 
(" :tt Ji~ 

./ 
r tf 6 J ) 

Nonlinear oscillations in AG synchrotrons are treated in 

15) 	 A. Schoch: "Theory of linear and non-linear perturbations of 


betatron oscillations in alternating gradient synchrotrons", 


CERN 57-21 (1958) 


16) 	 P.A. Sturrock: "Nonlinear Effects in Alternating-Gradient 


Synchrotrons", Ann. Phys. ,l, 113 (1958) 


- 127 ­



- -

Appendix Transfer Matrix 

1) definition 

(A.1) 

2) Drift 	Length ~ 

i 
Mi = (~ 1 ~) 	 (A.2) 

0 0 1 

3) Pure Sector Magnet 

( cosS psine p(1 - COSS») 
sine = --- cose sine 	 (A.3)~ 	 p 


0 0 1 


i e = 
p 

i 

~ (
1 

0 1 ~) 	 (A.4) 

0 0 1 

4) Gradient Sector Magnet 

a) Focusing Plane 

1 - 1cos'/Ki -= sin/Ki
II< PK 

M = -/Ksin/Ki cos/KiF pv'K 

(A.5) 

-.L sinlKi 

0 0 	 1 
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l

ln' + 1 


p2 

K = hl 
2 

P 

b) Defocusing Plane 

cosh/KR, ._!. sinh/KR, 
K 

coshli{R, 

o o 

(In) 2- 1) 

K = p 

{ hl 
2 

P 

5) Quadrupole Magnet 

a) Focusing Plane 

cos/KR, ~ sinIK 
IK 

coslKR, 

o o 

b) Defocusing Plane 

coshrn ~ sinhrU 
v'i 

Ii sinhlit coshlK.tMD = 

0 0 

aB 
K = Ip~ a~ 
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vertical plane 

p~ (cosh·/i{R, - 1) 


-.L s inhli{R, 
 (A.6) 
pli{ 

1 

horizontal plane 


vertical plane 


o 


o 


1 

0 

(A.B)0 

1 

-
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+V 0 


Fig. 1. Principle of direct voltage accelerator 


ion source rf oscillator 

beam 
- ­ - ­ - ­ \. 

I 

Fig. 2. Schematic diagram of early linear accelerator 
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<Xl magnetic field B 

rf oscillator (Dee) 

Fig. 3. Cyclotron 

E t __ 
/

------.--/ 
. accelerating gap 

Fig. 4. Schematic diagram of accelerating system 
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o 

Fig. 5. Coordinate system. 

2 
iron II = 

I ( l I I 'tl"l'("1''';'' c ,,} 

00 

1 vacuum II = llo 

Fig. 6. Boundary of iron yokes 
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( center of beam 

b) 

c) 

\ 
/ Xo, '" 

center of beamneutral po1e"-::' 

center of beam 

d) ~ /

Shir:" ~ 
~ 

Fig. 7. Quadrupole and gradient magnets. 
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.20 .30 .40
n./N I 

Fig. 8. Necktie diagram (after Courant and Snyder). 

y' 

y 

Fig. 9. Phase space ellipse 
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~X'dS x 

xt~_____ 
ds 

x'ds 

Fig. 10. Path length difference. 
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a) Potential 

u(q,) 

c 
b 

a 

------~----~~~~~--.---~~--Ih--------· q, 

b) Phase space trajectory 

c 

Fig. 11. Potential and phase space trajectory 
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