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Abstract

The design of a beam transport sys­
tem which will de~iver a beam with a speci­
fied emittance profile is frequently troubl­
ed by lack of convergence of the beam
transport calculation. A method is described
which uses a thin lens approximation to find
all solutions in the region of interest;
these can then be used as approximate solu­
tions for the more accurate thick lens
calculation.

A beam matching problem is equivalent
to solving 4 non-linear equations in 4
unknowns. If the thin lens approximation
is used these equations are polynomials and
the problem can be reduced to finding the
intersections of two 8th order equations.

Introduction

The task of designing a beam trans­
port system to deliver a beam with a
specified emittance profile arises frequent­
ly with accelerator beam lines. Elaborate
computer programs have been written to
follow beam through a proposed transport
system; a subroutine to modify the trans­
port system to improve the fit to some
requirement can be included. The SLAC pro­
gram TRANSPORT as described in SLAC-91 is
a good example (1). This technique has its
limitations, for unless the trial system
is sufficiently close to a solution the
iterative process may not converge. In
many cases no solution can be found, and in
others only impractical solutions are found
(quadrupole magnet strengths too large or
component spacing too large or small). The
existence of other solutions is uncertain
and it is not apparent how to modify the
system so that useful solutions will occur.
This paper describes a technique for ob­
taining a thin lens solution which can be
used as a starting approximation in a thick
lens program like TRANSPORT.

Waist to Waist Matching

A problem that arises frequently is
that of matching from a double waist to
double waist using quadrupole lenses.
Four variables are needed to permit the
required matching and the following dis­
cussion treats four lenses in fixed posi­
tions with variable strength; a similar
calculation could be done using for example
two lenses with variable strength and
position. Four equations in 4 unknowns may
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be written down and these can be reduced
to 2 equations in 2 unknowns containing
polynomials up to the 8th power. These
equations can be plotted and solutions
will correspond to intersections. In
cases where the curves do not intersect
in a desired region it may be possible to
adjust them so that they do by changing
the lens spacing.

The beam transformation matrices
~, Ry are 2 x 2 matrices which change
trajectory coordinates from Xi' Xi' to
Xf , Xf

l and Yi , Yi
l to Yf , Yf

l

(X:) (RXII ~l2) (XX~)
Xf RX21 Rx 22 •

(:~) = (%~~ %~~) (:~)
If this transforms a beam with a double
waist I/J~Xi' l/J~yi to a double waist
l/J~xf' l/Jyf where 'Y is the Twiss beam
ellipse parameter, R is of the form

R
x

= (/~Xil~~fCOS8 (1//~Xf~Xi)Sin8)
-/~xf~xisin8 /~xfl~xicoS8

(
/~Yil~YfCOS~ (l//~Yf~Yi)Sin~)

Ry=
-/~yi~Yfsin~ /~yfl~yiCOS~

where the angles 8, ~ are arbitrary.
This is equivalent to saying that the
matrix elements must satisfy the
relations

RXll
~xi

R
X22

~xf

I
RX12

~xf~xi
Rx21

Ryll
~Yi

Ry22~yf

R
y12

1

~yf~yi
Ry2l •

If we write M ~i/~f P -l/~i~f

the relations become RXll - Mx Rx22
0

RX12 - Px Rx2l
0

R
Yll

- My R
Y22

0 (1)

Ryl2 - Py RY2l
0



where

Matching with 4 Thin Lenses

Consider a system of four thin quad­
rupole lenses in fixed positions

d l d~ d s d 4 d s
A-------------------B

d. are distances
~

F. are thift lenses with focal
~

lengths -l/F.
The transformation matrices from A to Bare

Rx = G~s)~~ ~)G ~4)~~ ~)G; ~s)
X ( 1 0-) (1 d a ) (1 0) (l d l )

\Fa 1 \0 1 F I 1/ \0 1

R = ("1 d s ) (1 0) (1 d 4 ) (0 0) (1 d s )
Y \.0 1 -F4 1 \0 1 -Fs 1 \0 1

x " 1 0 ) (l da) (l 0) ('1. dl )
~-Fa 1 \0 1 -F I 1 'D 1

Multiplying out, these become

1

+ F4 (d s )

+ Fs (d4 + d s )

+ Fs F4 (d4 ) (ds )

of Fa(ds + d 4 + d s )

+ F ~ F 4 (ds + d 4 ) (ds )

+ F ~ Fs (ds ) (d4 + d s )

+ Fa Fs F 4 (ds ) (d4 ) (ds )

+ F I (da + ds + d 4 + d s )

of F IF4 (da + ds + d 4 ) (ds )

of F I Fs (d~ + ds ) (d4 + d s )

+ F I Fs F4 (d~ + ds ) (d4 ) (ds )

+ F 1 Fa (del) (ds + d 4 + d s )

+ F 1 Fa F 4 (da ) (ds + d 4 ) (ds )

+ F 1 F ~ Fs (da ) (ds ) (d4 + d s )

+ F I Fa Fs F 4 (da ) (ds ) (d4 ) (ds )

RX12 = d l + d~ + ds + d 4 + d s

+ F 4 (d 1 + del + d s + d 4 ) (ds )

+ Fs (d l + d a + ds ) (d4 + d s )

+ Fs F4 (dl + d a + ds ) (d4 ) (ds )

+ Fa (d I + d a ) (ds + d 4 + d 5 )

+ F a F4 (d 1 + d a ) (ds + d4 ) (ds )

+ FaFs (d l + d a ) (ds ) (d4 + d s )

+ Fa Fs F 4 (dl + d 2 ) (ds ) (d4 ) (d s )

+ F I (dl ) (da + ds + d 4 + d s )

+ F I F 4 (dI) (da + ds + d4 ) (d s )

+ F I Fs (d l ) (da + ds ) (d4 + d s )

+ F I Fs F 4 (d l ) (da + d3) (d4 ) (ds )

+ F I F~ (d l ) (da ) (ds + d 4 + d s )

+ F I F 2 F4 (d l ) (da ) (ds + d 4 ) (ds )

+ FIFaFs (d l ) (da ) (ds ) (d4 + d s )

+ F 1 F~ Fs F 4 (dI ) (d~) (ds ) (d4 ) (ds )

o

+ F 4

+ Fs

+ Fs F 4 (d4 )

+ Fa

+ Fa F 4 (ds + d 4 )

+ FaFs (ds )

+ Fa Fs F 4 (ds ) (d4 )

+ F I

+ F I F4 (da + d s + d 4 )

+ F 1 Fs (d~ + ds )

+ F 1 Fs F 4 (d~ + d.3) (d4 )

+ FIF~ (da )

+ F I Fa F 4 (da ) (ds + d 4 )

+ F I F el Fs (da ) (ds )

+ F I Fa Fs F 4 (da ) (ds ) (d4 )

1

+ F 4 (d l + d a + ds + d4 )

+ Fs(d l + d a + ds )

+ F 3 F 4 (d l + d 2 + ds ) (d4 )

+ Fa (d l + d a )

+ Fa F 4 (d l + d~) (ds + d 4 )

+ F 3 F 3 (d1 + da) (d3 )

+ Fa F s F 4 (d1 + d a ) (ds ) (d4 )

+ F I (d l )

+ F 1 F 4 (d1 ) (da + d s + d 4 )

+ F I Fs (dl ) (d~ + ds )
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The resulting equations are

(4b)

(c 11 + C 1 2 F4 + + c l ?F4
S) +

(C 21 + C22 F4 + + Ca7F4s)Fs +

(C7 1 C77F46)Fs
S

0+ C72 F4 + +

write B7 b 2b e - b s b 5

Be b s b 4 b1bs

Be bIbs - b;2b4
and eqns 4 become

b 7B7 + beBe + bgBe 0

Bs
2 - B 7Bg = O. ( 5)

The individual c .. are functions
of the lens spacings d 1~io d 5 and in
principal all 130 of them could be
written out.

which can be scanned easily. Typically
F = 0.2 corresponding to a focal length

max
greater than 5 cm. F4 is scanned in 100
steps and at each step all values of Fs
in the range which gives zeros for each
equation (5) are determined. They are
printed on the line printer as a graph
with 100 x 100 positions. Intersections
are noted and the solutions are refined
to the required accu~acy.

These equations can be expressed as poly­
nomials in Fs each coefficient being a
polynomial in F4 . Eqn (4a) contains
powers up to the 6th and is of the form

Eqn (4b) is similar, containing powers up
to the 8th.

Eqns (4) cannot be solved analyti­
cally but can be handled graphically.
Graphs of values of Fs ,F4 which satisfy
each equation are drawn and points common
to both curves are solutions. F 1 , F2
are found from

Fa Be/Be
F l -a2/a l

These values can then be tested in
eqn (1) to reject extraneous solutions.

computer Evaluation

The expressions which arise in the
solutions contain a large number of terms
and are most easily evaluated numerically
by a computer. subroutines have been
written which build up 9 x 9 matrices
representing the coefficients of Fs ,F4 in
eqn 4 in terms of the transformation
matrix R.

The use of F as a lens strength
rather than using focal length allow the
region of interest to be written

(4a)o

write eqn (1) as

alFl + a 2 0

as F l + a 4 0

aSF 1 + 0
(2)

as

a7 F l + as 0

b 7 be be I
A second condition needed to ensure that
y = xC! is

a 2 as - a l a 4 0

a4 as - asae 0

aSa? - a5ae O.

where a l ,a2 ••• as are functions of F2 , Fs ,

F4 •

Eliminate Fl.
a 2 a4

-F l = - =
a 1 as

;:. F 1 Fs F4 (d1 ) (d2 + ds ) (d4 )

+ F 1 F 2 (d l ) (d2 )

+ F 1 F 2 F4 (dl ) (d2 ) (ds + d4 )

;:. F 1 F 2Fs (dl ) (d2 ) (ds )

+ F 1 Fa Fs F4 (d1) (d2) (ds ) (d4 )

The R terms are similar with -F for F. In
practrce the rule for writing down these
terms is obvious so it is not necessary to
do the actual matrix multiplication.

Analytical solution

Equations (1) are 4 simultaneous
equations in 4 unknowns F l , F 2 , Fs ' F4 •
A complete analytical solution is not feas­
ible but they can be reduced to 2 equations
in 2 unknowns Fs , F4 which can be presented
graphically. A solution to eqn (1) must
lie on both graphs (i.e. at an intersection)
but all intersections need not be solutions.
These superfluous intersections can easily
be identified and rejected.

The a's are linear in Fa so the above equ­
ations can be written as

b 1 F 2
2 + bClFa + b s 0 (i)

b 4 F 2
a + b 5F g + be 0 (ii) (3)

b? Faa + be Fa + be 0 ( iii)

Write y for Faa, x for Fa and the condition
which must be met for solutions to exist is
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consider the waist to waist matching problem
with the beam at A satisfying

A Fi d.--i 1 t B
d 1 d3 d4 w d 5

with d 1 65.24 cm
d 2 50.8 cm
d3 46.59 cm
d4 25.4 cm
d 6 16.35 cm

Graphs of eqns (4) are normally
plotted together to determine intersections
but for this presentation they are shown
separately.

Fig. 1 is I b I 0

and Fig. 2 is Be
2

- B7Be = O.

Note that the curves are unchanged in
this problem if all F i are replaced by -Fi
because Xmax = Ymax at both A and B, but
this symmetry is not a general property.

The curves on figs. 1 & 2 intersect
in 13 pairs of points, only 4 pairs of which
satisfy eqn (1). The complete thin lens
solution is

(1) K.L. Brown, B.K. Kear, S.K. Howry,
TRANSPORT/360, SLAC-9l

General APplicability of the Method

The thin lens approximation was
studied to solve a particular problem
but appears to be generally useful and can
be modified to include a range of related
matching problems. I found it a bit
disappointing that the solutions corres­
ponded to regions on the graph where the
curves coincided for some distance, rather
than to a sharp intersection but that is
not fundamental and could probably be
altered by the appropriate scale change.

The advantage of this method is
that an approximate solution is not
required so all the solutions in the
region of interest can be found. This may
give alternative values for a known beam
line, possibly with a superior feature.
Conversely the non-existence of a thin lens
solution, while not guaranteeing that a
thick lens solution does not exist, sugg­
ests that a search would.be futile and a
modified configuration should be sought.

References

A thick lens solution can be obtained by
using TRANSPORT to follow the solutions
to successively thicker lenses. This
yields the values

F
1

±.0122, ±.03l4, ±.0244, ±.0158 cm- 1

F 2 =F. 0 27 8 , =F. 0 313 , =F. 0 281, =F. 0 265 cm- 1

F3 ±.04l6, ±.0477, ±.042l, ±.0387 cm- 1

F4 =F .0721, =F .0946, =F .0287, =F .0372 cm- 1
B

radians,
Q1 ±. 0 59, ±.183, :£.105, ±.085, kgauss/cm

(30.48 cm)
satisfy Q2 =F .138, =F.168, =F .142, :F .138, kgauss/cm

(30.48 cm)
Q3 ±.492, ±.581, ±.465, ±.453, kgauss/cm

(12.7 cm)
Q4 =F .805, =F 1.396, =F .332, =F .401, kgauss/cm

(12.7 cm)

find a solution
values which
= ymax = . 5 cm.
thin lens

.9 cm

= 12.5 m

sample Problem

xmax Ymax
Xl - yl

max max
and the beam at B required to

xmax = Ymax = .4 cm.

The drift spaces are

L1 50 cm
L., 20.32 cm
L 3 25 cm
L4 12.7 cm
L6 10 cm

and magnet lengths are

Q1 30.48 cm
Q2 30.48 cm
Q3 12.7 cm
Q4 12.7 cm

TRANSPORT failed to
using as a starting point,
gave a beam at B with Xmax

consider the corresponding
problem

A---
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Figure 2




