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1. Introduction 

It is well kn6wn that high energy scattering shows fairly 

smooth energy dependence and can be described qualitatively in 

terms of the crossed channel exchange. There are a lot 

of analyses oT high energy scattering above = 3 ~ S GeV/cPLab 

along this line.[l] Recent experiments, however, suggest that 

the properties of Regge exchange persist even in the intermediate 

(or low) energy region such as = 1 ~ 3 GeV/c.PLab 


For example, the polarization in ± p scattering at =
n PLab 

1.6 ~ 2.3 Gev/c[2] shows a remarkable similarity to the polarization 

at higher momentum which is attributed to the interference 

between 'the p and P + P Regge exchanges. Furthermore, the low 

energy extrapolation of the phenomenological Regge fit[3] can 

reproduce ~his polarization fairly well (fig.l). Similarly the 

polarization in K+p[4] and K-p[S] scattering at PLab 2 GeV/c 

has a strong resemblance to that expected from the interference 
, 

between the p + A2 and P + P Regge exchanges. Besides these 

examples, there are many cases which indicate the validity of 

the Regge exchange picture in such low energy region. 

At low and intermediate energies, from threshold to 

2 GeV/c, inelastic scattering such as charge exchange 

reaction is dominated by direct-channel resonances (e.g. fig.2). 

[Elastic scattering, of course, contains the large nonresonant 

background contribution from diffraction scattering]. Although 

this description by resonances appears very different from the 

description by Regge exchanges, two descriptions are related 
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through the analyticity of scattering amplitudes.* Actually, the 

contribution of resonances (and possible background) on the 

average over low energies are already contained in the Regge 

exchanges.[6] In terms of the finite energy sum rUles,[7] the 

sum of low energy amplitude builds the Regge exchange. Further­

more, it is believed that the sum of resonances builds the 

ordinary Regge exchange and the sum of the background the pomeron 

Regge exchange.[8J 

The validity of the Regge exchange picture in the resonance 

region, however, implies the existence 01" more direct relations 

between resonances and Regge exchange. In this energy region up 

to 2 GeV/c many partial wave analyses have been performed to 

determine the resonance parameters. Partial wave solutions 

enable us to determine the scattering amplitudes in the resonanCt 

region and to investigate to what extent the duality actualy 

holds.[9J 

In this note we mainly focus our attention on the resonant 

part of the amplitude which is considered to build the ordinary 

Regge exchange. We present the results of the analyses by makinp 

use of partial wave data, and discuss their implications to the 

model of hadronic reactions at higher energy. 

* 	 The relation between direct-channel (s-channel) description 

and crossed channel (t-, or u-channel) description is called 

duality. 
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2. 	 Analysis of K±N scatter [9J 

We begin with the analysis of kaon-nucleon scattering. 

In terms of Veneziano model, 
[lO~

J the gross features of kaon­

nucleon scattering amplitude are expressed as 

r(l-o(s))r(l-a(t)) 


r(l-o(s)-a(t)) 


* ~ apart from the background part. Where &(s) and aCt) are YO,l and 

p-A 2 , f-w trajectories, respectively. The simplicity of this 

+
expression suggests us that K-N scattering may be the most 

appropriate case to test the duality. 

We now summarize briefly the procedure of the analysis. 

In order to study the relation between the s-channel description 

and t-channel Regge exchange picture, we work with the t-channel 

isospin combinations of the s-channel helicity amplitudes without 

the kinematical factors, 

We mainly study the behaviour of the imaginary parts of these 

amplitudes, reconstructing the resonant and background amplitudes 

separately from partial wave solutions, in which partial waves 

are given by the sum of resonances and background contributions. 

As the imaginary parts of the ~on-diffractive scattering amplitudes 

are expected to be dominated locally by the nearby resonances, 

the imaginary parts are more appropriate for our aim to test the 
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duality_ Before making the analysis, we have selected partial 

wave solutions obtained by several groups, by comparing them with 

new accurate data as far as possible. In table 1, ~e exhibit 

the partial wave solutions which are used in the following 

analysis. 


Test of the Harari-Freund conjecture 


Before arguing the nature of the resonant part, we briefly 

mention the properties of the background part, in order to test 

the Harari-Freund conjecture which permits us to treat the 

resonant and background parto separately. 

B G B ~ In fig.3, we present the t-dependence of qImf+~ . and qImf+~J· 

constructed from the background parts of KN partial wave solutions. 

The It = 0 and It = I amplitudes show a remarkable contrast; 

the It = 0 helicity nonflip amplitude has a large forward peak 

and exhibits a diffraction-like t-dependence, wh~reas the It = 1 

amplitudes are considerably smaller in the small t-region. The 

- + +t-dependences of qImf++ constructed from the K p and K n partial 

waves are shown in fig.4. We can see that the properties of KN 

amplitudes are very similar to those of KN background amplitudes. 

To make quantitative studies, we present in fig.5 the forward 

amplitude of qImf~~G., It = 0 calculated from the background part 

of KN partial waves. This value corresponds to 0tot ~ 20 (mb) 

which is considered to be the total cross section at high energ¥, 

i.e., approximately the cross section of pomeron exchange. In 

addition to this the slope of the background amplitude shows the 

shrinkage as is seen in K+p, pp and ~p scattering. [18] 
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These results are in excellent agreement with the conjecture[8] 


that the background part builds the pomeron exchange. 


Imaginary part of the resonant amplitude 


The t-dependence of the imaginary parts of the resonant 

amplitudes at various incident momenta are shown in fig.6. The 

following features can be read from the figures. 

(i) qImf~!s., It = 0 and qImf~:s., It = I show a fairly energy 

independent pattern in the small It I region: their signs are 

definite at t = 0 and in accord with those expected from the 

crossed channel pole exchange; They pass through a zero at 

approximately fixed t, i.e., at t ~ -0.2 and -0.45 (Gev/c)2, 

respectively. These features are interpreted as demonstrating 

that the t-channel Regge exchange picture persists even at 

PL = I ~ 2 GeV/c, though the total cross section has large 

fluctuation in s in this en~rgy region. In Regge pole language, 

the zero at t ~ -0.5 (GeV/c)2 is usually attributed to the 

passing of the p-A2 trajectory through a nonsense point (ap(t) = 0). 

The other zero at t ~ -0.2 is introduced empirically in the Regge 

residue function, in order to explain the crossover effect, in ~ 

conventional Regge pole models. * 

* 	 From the viewpoint of Regge-cut models, this ~~ossover zero 

is also interpreted as the nonsense zero which is moved to the 

forward direction by the absorptive correction. 
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( -res -res
ii ) For It = 0, qImf+_ and qImf++ change their shapes when 

PLab is varied;. zeros are missing at some values of P and
Lab 

even the signs of the amplitudes at t = 0 are not definite. 

Further, these amplitudes are much smal r than the other two, 

when they are averaged over a momentum interval. 

Previously, Dolen, Horn and Schmid[19] have pointed out that 

we can affirm that the first zero of Legendre polynomials in the 

resonance summation occurs at a fixed t if we assume a tower of 

direct channel resonances with spin tR and momentu~ qR which 

satisfy the relation ~R~ R·qR· In the case of KN scattering, 

at least in the energy region of this analysis, two series of 

leading resonances, Aa-Ay and La-LS' which lie on the line 

R ~ 1 fm,[20] dominate the imaginary part of the amplitudes 

(See fig.7). The series Aa-Ay and La-LS' add for Imf++, It = 0 

and Imf+_, It = 1, hence these amplitudes exhibit the fixed t 

zeros at t ~ -0.2 and ~-0.45, respectively, as the first zeros 

d l
J
/ 2of the d-functions 1/2(cos8) ~ P~(cos8) ~ JO(R/-t) (helicity 

nonflip) and d_i/2 1/2 ~ Pi(COS8) ~ Jl(RI=f) (helicity flip). 

On the other hand, a large cancellation occurs between the 

contributions of the two series, Aa-Ay and La-LS' to Imf+_, It = 0 

and Imf++, It = 1. As a consequence these amplitudes are quite 

small and the zeros of these amplitudes vary irregularly as the 

energy changes. Then they do not exhibit regularities expected 

from Regge exchange in the low energy region such as PLab = 1~2GeV/c. 

This correlation among the direct channel resonances accounts 

for the helicity conservation of the f-w Regge exchange and helicity 

flip character of the p-A 2 Regge exchange. 
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Real part of the resonant amplitude 

We now briefly mention the real part of the resonant amplitude. 

Since the real part is not controlled locally by the nearby 

resonances, we cannot separate the full amplitude into background 

and resonant parts as in the case of the imaginary part. Then 

we take the inelastic scattering amplitude which is considered to 

consist only of resonant amplitude. 

We present the t-dependence of the It = 1 Re f+_ in fig.8 at 

several values of PLab. When averaged in incident momenta, they 

show the t-dependence as ~ cosna(t) which is expected from the 

p-A2 exchange degenerate Regge pole exchange. 

In order to make comparison, we show, in fig.9, Re[f+_(K-p) ­

f+_(K+p)], exhibiting the t-dependence as ~ -sin2 na~t) when 

averaged in PLab. This behaviour is also expected from the 

vector (p and w) Regge exchange. 
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3. Correlation of resonances and Regge exchange 

In the resonance region such as PLab ~ 2 GeV/c, large 

fluctuations are obviously seen in total cross sections of 

hadronic reactions, as the energy varies. However, as we have 

seen in the preceding section, the imaginary parts of the 

amplitudes, which consist essentially of the sum of the 

contributions of a few nearby resonances, * already show, particu­

larly in their t-dependences, the properties of Regge exchanges, 

if we take the amplitudes in which the prominent resonances 

correlate constructively with each other. When energy increases 

and the widths of resonances become larger as compared with 

their intervals, we expect that the sums of resonances at that 

energies will show the smooth energy dependence, while the t-

dependence still remains unchanged if we assume the towers of 

resonances with tR~ R·qR. [In reality, as implied by the 

original Veneziano model,[lO] there may exist** resonances near 

the energy IS, with spins from J R = 1/2, (3/2), 5/2, ---, pro­

bably to J = a(s), while the coupling strengths of theseR 

resonances take their maximum at JR~ R-qR. Hence the resonances 

* 	 For the real parts, since the contribution from the tails of 

far-off resonances is important, we cannot make a simple 

discussion. 

** 	A single or several towers of resonances are insufficient to 

satisfy the finite energy sum rule .. [35] 
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with large coupling strengths may form a peripheral band* along 

J ~ R·q (i.e. impact parameter b ~ R).] From this viewpoint, 

we can easily understand the conjecture[2 3J that the partial 

wave expansion of the Regge amplitude makes resonances. 

On the other hand, the imaginary parts of the amplitudes in 

which a large cancellation between resonances occurs exhibits 

large fluctuations in the low energy regions. As the widths of 

resonances grow sufficiently 
/ 

large, the amplitude will show 

Regge-like t-dependence and the smooth energy dependence, though 

the magnitude of the amplitude will be quite small. 

We have assumed, in this argument, the existence of resonances 

at high energies such as PLab = 5 GeV/c. At present, resonances 

are established only up to PLab = 2.5 GeV/c or so. As energy 

increases, the resonance becomes more collective, ** the widths 

of individual resonances become larger, and what is worse they 

become more inelastic. Therefore the search for resonances 

becomes exceedingly difficult. In addition to this, the rise of 

many high partial waves makes it almost impossible to perform 

* ** To assure the Regge behaviour sa(t), the width of peripheral 

band ~b must increase as ~b ~ (log s)1/2 with increasing 

energy. We should not confuse the width of the peripheral 

band with the width of individual. resonances. The former 

has little to do with the latter. 
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partial wave analyses by usual method. The method to trea: 

several partial waves collectively, i.e., the phase hand method[24] 

might provide the way to search resonances, at least to give the 

partial wave profiles at such energies. Investigations in this 

direction, anyhow, are very important to understand hadron 

dynamics. 

We present, in the next section, examples of the results 

to support the above mentioned picture. 
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4. Further examples exh1biting the aspects of duality 

Local duality of wN scattering[2l] 

We make the partial wave projection of phenomenological Regge 

fit[3] for w-p ~ wOn reaction after SChmid,[23] and compare the 

partial wave profile with that calculated from the partial wave 

solution by Almehed and Lovelace~25] The fig.lO shows these two 

profiles of q Imf~_ (f~_ = fi+-f Ci +l )_ with i = J - 1/2) at two 

different energies. The former profiles which are drawn by the 

p Regge exchange have the peripheral peaks, but they are not in 

agreement with the latter which includes the contribution from 

backward baryon exchanges as well as the p exchange. As is easilj 

understood, the partial waves of the backward baryon exchanges, 

where N is dominant, will contribute constructively to the a 

combination of direct channel resonances ~o+Ny' and destructively 

to the combination of Na-N • Hence the partial waves of the p
S

exchange will be smaller than actual partial waves in magnitude 

at J = 3/2, 7/2, •••• and larger at J = 5/2 9/2, The 

features seen in the figure are qualitatively in good agreement 

* with the above expectations except for J = 1/2. 

* 	 We need information over th~ whole angles, when we make a partial 

wave decomposition for low partial waves, particularly for J = 1/2. 

Therefore the partial wave J = 1/2 (possibly J = 3/2, ••• ) should 

not be taken too seriously. 
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p 

The helicity properties of Regge couplings to NN are deter­

mined by the correlations of direct channel resonances. At the 

end of Sect.3, we have considered the case of KN scattering. 

=n table 2, we summarize the prominent series of resonances in 

seve processes and their correlation in each amplitude. 

The properties of Regge couplings obtained by this observation 

show qualitative agreement with the results which are obtained 

from the photon coupling under the assumption of vector dominance, 

as well as the results of phenomenological Regge fits.[26] 

In this table, KN ~ TIA shows somewhat different situation, 

i.e., the contributions of La and LO have trends to cancel those 

of Ly and LS respectively * in both helicity amplitudes. Indeed, 

the magnitude of La is roughly equal to Ly and LO to L ,[28]
S

and this cancellation (See fig.ll) is regarded as the evidence 

of the anti-exchange degeneracy required by the duality diagrams. [29] 

Although this cancellation makes the imaginary parts quite small, 

the real parts owing to the far-off N* resonances in the u-channel 

build the forward peak in this channel. 

Rel ive phases among La' L ' LO and LS are determined by the* 	 y 

partial wave analyses.[27J 
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Nucleon exchange[3 0 ] 

So far we have delt with the case of meson exchange. We now 

refer to baryon exchange. In the baryon exchange processes,. we 

can easily obtain informations about the crossed channel reactions, 

while it is difficult in the meson exchange processes. 

For example, we take the nucleon exchange (i.e., Iu = 1/2) 

in TIN scattering. Applying the method mentioned in Sect.3 to 

this process, * we have obtained the following results. 

(i) The signs of helicity nonflip and flip amplitudes are definite 

and in agreement with the N exchange at u' = 0 (u' = u - u ) in a max 

the energy range from PLab = 1.0 to 2.0 (GeV/c). 

(ii) Both amplitudes have a zero at u' = -0.1 ~ -0.3 (Gev/c)2 and 

considered to be the wrong signature nonsense zero (a(u) = -1/2) 

of the N Hegge exchange.a 

When the amplitude which consists of direct channel resonances, 

2essentially N , NS' Ny and ~o' is extrapolated to u = MN, we maya 

obtain the nucleon Born amplitude of crossed channel scattering. 

Under the assumption of the nucleon Hegge exchange, we have 

~[da]-l 1 Im<B(s,u = 
31T du 4TI 

* 	 We have used the partial wave solution of Almehed and Lovelace,[25J 

which reproduces recent data of TIN backward scattering fairly well. 
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We present the right hand side of this equation in fig.12 

as a function of The value obtained is quite consistentPLab . 

with the TINN coupling constant g 2/4TI = 14.6. 
r 

The exchange degeneracy in KN scattering 

The coupling strengths of Aa and La are approximately equal 

to those of Ay and LS' respectively, owing to the exoticity of 

KN channels.[3 1 ] Since direct channel resonances AaCIa) make the 

backward peak in the positiue sign, while AyCIS) do it in the 

negative sign Cfig.13),[3 2 ] large cancellation occures in the 

backward amplitude of KN scattering as the widths of the resonances 

increase. Therefore the backward peak of KN scattering falls 

off rapidly with increasing energy,[33] in contrast to the 

nonexotic cases, say, TIN backward scattering. 
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5. Difficulties of Regge exchange description 

In the previous sections, we have observed the qualitative 

features of scattering amplitudes in terms of the s-channel 

resonance deScription. Although we have often refer to Regge 

exchange, we have so far set aside the problem of zero-systematics 

of Regge amplitude. In the resonance picture, the position of 

the first zero of the imaginary part of the scattering amplitude 

is given by the first zero of the resonances aominant at that 

energy. Namely the zeros of helicity nonflip and flip amplitudes 

are given by the first zeros of pt(cose) and Pt'(cose), respectively. 

As the partial wave profile of the helicity nonflip amplitude is 

not too different from that of flip amplitude, at least at inter­

mediate energies, the first zero in the nonflip amplitude is 

usually closer to the forward direction than in the flip amplitudt? 

This means that the spin structure of the direct channel resonances 

breaks the exchange degeneracy of the t-channel Regge exchange.[3 4 ] 

On the other hand, in explicit models incorporating exchange 

degeneracy, e.g., Veneziano model in which the zeros made by the 

resonances coincide with the nonsense zeros of the Regge pole 

exchange[35J, low partial wave daughter resonances (t « q·R, with 

R ~ 1 fm) strongly contributes to the nonflip amplitude, while, 

in the flip amplitude, the contribution of daughter resonances 

are appropriately suppressed so that both zeros in flip and 

nonflip amplitudes occur at the same position. Regge pole amplitude * 

* We consider the amplitude such as 

1 +l_e-ina(t) [~]a(t) 

F(s,t) ~ f[a(t)] sinna(t) So 
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with exchange degeneracy, of course, inherits these features. 

Several amplitude analyses, however, exhibit the considerable 

suppression of low partial wave (~ «q-R) contribution to the 

imaginary parts of both helicity amplitudes at high energy too. 

The imaginary part of helicity nonflip amplitude as well as that 

of helicity flip amplitude shows distinct peripheral peaks, as 

seen in fig.14. As for the helicity flip amplitude, the Regge 

pole model with exchange degeneracy or Veneziano model, gives a 

good description for both re and imaginary parts of the 

amplitudes. 

It is widely believed that the morbid behaviour of Regge 

pole amplitude can be remedied by taking account of the Regge cut 

contribution, although no credible method of calculating Regge 

cut is yet known. There have been many trials along this line,[37J 

but all of the calculations so far carried out seem to fail to 

present the correct behaviour of scattering amplitudes, particularly 

in their real part and the energy dependence at large angle. 

In this note, we have seen that the sum of direct channel 

resonances has the qualitative features of crossed channel Regge 

exchange. Therefore, resonances does not mearly playa dominant 

role in describing the scattering amplitude at low energies, 

but they also describe the scattering amplitudes even at high 

energies where no individual resonances are observed experimentally. 
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The problem of resonance spectra, i.e., how to derive 0ue 

coupling strengths as well as the masses of the resonances, is 

very important to understand the dynamics of hadronic interactions. 
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Table 1 

momentum 

range (GeV/c) method 

highest partial 

waves I 

! 

KN -+­ KN Bricman et al. [llJ 0.98 - 1.34 energy dep. F15 , G07 I 

Conforto et al. [12J 0.80 - 1.20 energy dep. F
15 

, G07 

Litchfield et al. [13J 1.26 - 1.84 energy dep. G19 , G09 

+ +K P -+­ K P Albrow et al. [14J Sol.y 0.14 - 2.50 energy indep. Hl 11 

KN -+­ KN Giacomelli et al. [15J Sol.III 

Wilson et al. [16J Sol.D 

0.14 - 1.50 energy dep. 

-­

D15 

D05 
-

I 
I'\) 

I'\) 


I 

Table 2 

t-ch.exchange f++ f+_11S 

KN -+­ KN I =0t 

I =1t 

f + W 

P + A2 

A~+Ay+3(L:<5+L:8) 

Aa,+Ay-(L:<5+L:8) 

-(A +A )+3(L: +L: )a, y <5 8 

-(A +A )-(L: +L: )
a. y <5 8 

f ++ 

f++ 

»f+ lIS-

« f+_118 

1TN -+­ 1TN I =0t 

I =1t 

f 

P 

Na,+Ny+2ll <5 

N +N _il<5a. Y 

-(N +N )+2il<5a. y 

-(N +N )-ila..y <5 

f++ 

f ++ 

» £1+_118 

«f+ lIS-

KN -+­ 1TA I 
t 

=1/2 * **K - K L: -L: +L: -L: a, Y <5 8 -L: +L: +L: -L: a. y <5 8 

.' ., 
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Figure captions 

Fig.l TI 
+

P (a) and TI 
-

p (b) polarizations at all angles from 1.60 

to 2.31 GeV/c.[2J The solid and dashed curves represent 

the reconstructions from the previous partial wave analyses 

of CERN (exper.) and Berkeley respectively. The dotted 

curve (a) and dash-dotted curve (b) represent the low energy 

extrapolations of the FESR Regge pole fit[3] with P, P', P", 

p and p'. [Figure from ref.2] 

-0Fig.2 Comparison of the imaginary part of K-p + K n scattering 

amplitude (dashed curves) with those of the resonance 

contribution (solid curve) in the forward direction. We 

take the amplitude f+_ = f+_/sin ~ calculated from the 

partial wave solutions.[11-13] [ref.9J 

Fig.3 t-dependence of the imaginary parts of the s~channel 

helicity amplitudes constructed from the background parts 

of the KN partial wave amplitudes of ref.ll (a) (b) and 

ref.13 (a') (b'). The figures on the curves represent the 

values of the incident momentum PLab in GeV/c units. [ref.~J 

Fig.4 t-dependence of the imaginary parts of the s-channel 

helicity amplitudes at 1.5 GeV/c constructed from the KN 

partial wave amplitudes of ref.15 and 16. [ref.17J 

Fig.5 Energy dependence of the imaginary parts of the It=O KN 

forward background amplitude (solid curve) as compared with 

+that of the It=O forward amplitude calculated from K p and 

K+n total cross section data. Also shown is the extrapolation 

(linear in s) of the high energy amplitude corresponding to 

0KN(OO) = 18 mb. [ref.9] 
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Fig.6 t-dependence of the imaginary parts of the s-channel 

helicity amplitudes (solid curve) at PLab = 1.0 (I), 1.1 (II), 

1.2 (III) and 1.3 (IV) (GeV/c) constructed from the 

resonant parts of ref. 11. Total amplitude (= resonant part + 

background part, dashed curve) at PLab = 1.0 GeV/c are also 

shown for comparison. [ref.9J 

Fig.7 Partial wave profiles of the imaginary parts of the 

resonant parts of the KN helicity amplitudes at PLab = 0.8 

~ 1.8 GeV/c. Where the impact parameter b is defined as 

J = b.q (q ; c.m. momentum). [ref.21J 

Fig.8 	 t-dependence of the real part of the s-channel helicity 

- -0flip amplitude of K p ~ K n (rt=l) at several values of 

P The partial wave solutions of refs.[ll, 13J are used.Lab . 

[ref.9J 

Fig.9 t-dependence of the real part of the s-channel heliclty 

flip amplitude corresponding to f(K - p) - f(K+p). at several 

values of PLab' The partial wave solutions of ref.[13, 14J 

are used. [ref.17J 

Fig.lO Partial wave profiles of the imaginary part of the hellclty 

flip amplitude of n-p ~ nOn at PLab = 1.2 and 1.6 (solid 

curv~ calculated from the CERN partial wave solution[25J. 

The dashed curve represents the partial wave projection of 

phenomenological Regge fit[3J at each energy. [ref.21J 
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.F'.lg.ll P.artial wave profiles of the imaginary parts of ttn.. 

helicity amplitudes of K-p ~ nA at PLab = 1.0 - 1.8 GeV/c 

calculated from the partial wave solution of ref.27 

(Litchfield). (b = J/q) 

Fig.12 TINN coupling strength calculated by the extrapolation 

of the I = 1/2 TIN scattering amplitude to the nucleon poleu 
2 u = MN . [ref.30] 

Fig.13 The imaginary and real parts of the backward scattering 

- -0amplitude of K p ~ K n. The solid curves are computed 

from the partial wave analyses and the dashed curves are 

contribution coming from resonances only. [ref.32] 

Fig.14 The impact parameter profile of the imaginary part of 

the helicity nonflip amplitude calculated as 

do - do( + )crt(K p) - crt K P 
Imf++ ~ 

2 Jdo (K+p)
dt 

at 5 GeV/c. [ref.36] 
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