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III. 1>PJ\RI'IAI.J \vAVE'DEroMPOSrrION AT IITGli ~ill1GIES. 

We saw in Section II that. by using an optimized expansion it might be 

possible to decrease the nunber of pararreters that need to be determined at 

a given energy to· characterize the partial \>-lave structure of a particle 

reaction. Even so, however, the number of pararreters will increase as we 

go to higher and higher energies, and soon thenUITtJer of -parameters, whether 

opt.1mized or not, becQ'Tles excessive in terms of the conventional methods of 

detennination. 

At the same time" the need 'for '3. partial wave decomposition at higher 

energies is no less than at lower energies. One of the central questions 

in particle physics 1s whether the resonances that daninate strong interac­

tions up to 2-3 GeV~ continue to higher energies or not. One of the vers... few 

practical ways of ans\'lering this question is through partial wave analyses. 

In th~ past, sCaI"'city of data' and the lack of analytical techniques precluded 

arlSl'lering the question, but this is likely to change during the next decade. 

~e method I \'d~l now discuss, which permits, at least in principle, 

the -Partial wave decanpositlon (or, for th..-=tt matter, the parametrization' in 

tenns of o~timized. coefficients) of particle reactlons at arbitrary hip")1 

energies is called phase-band analysis1 ,2 I said tfjn pr:inciple tl , since 

the method has so far been .applied only in one real case, and that \1.3.5 at 

not too hig,h energJes. This one application ylelded very favorable results, 

but only more extensj.ve uses" at higher energies will definitely establish 

whether one can in fact make a partial wave uectrnposition at arbitrary ener­

gies. It is there:fore .hoped that) as the set of 'data becane more car:plete 

and more extensive at higtler ertelgles, new analyses will be made. 

The phase band C?..nalysls is based on a statistical view of angular roo-

mentum pararncters 2t h"l gil energies. At th(.:se eP..ergies there will be Tr.any 

such parameters., ar:K! the 'a'Brnln1ptj.nn :1s therefore made that the ve.ry 'caJ¥)lex 
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network of dynamic correlations among these parameters can be approximated 

very well by sUt'Tj3;esting that in fact each angular momentum parameter can be 

determined by itself from the data, indepe~dently of the other parameters. 

It will nO\'I be undoubtedly objected that this assumption is obviously 

wrong, since we just showed in Section II, when we discussed optimized ex­

pansions, that each optimized parameter in fact contributes to many partial 

wave parameters and hence analyticity does establish dynamical correlations 

bet\,leen partial wave amplitudes. 

To clear up this apparent paradox, let me discuss the similar situation 

of making a Fourier expansion of a given !\mction. The various Fourier 

coefficients in this expansion are highly correlated in a tldynamical way". 

In fact, once the function is gtven (i.e. the tldynamics" is fixed») all 

coefficients are canpletely determined and hence the "correlation" 1s 

absolute. At the serne time, it is also true that each Fourier coefficient 

can be canpletely determined absolutely independently of the other coeffi­

cients, by simply using the \Vell-lmown formula based on the completeness 

and orthogonality of Fourier functions. 

The analogy can be carTied a bit fur"ther. If the expansion of the above 

fUnction were to be carried out in terms of a finite series of Fourier 

functions, the above procedure would not work as well, since the set of 

functions \'lould not be complete. '!he longer finite series we use" however, 

the better approximation we get using the formula which detennines the co­

efficients independently of the other coefficients. 

Similarly in a partial wave expansion, if we have a large number of 

angular manentum states.) we can in a good approximation determine the partial 

wave parameters one by one. As we will see, a good approximation is all one 

will need, since an iteration procedure will then assure a quick convergence 

toward the exact values. 

The partial wave parameters being related to experimental observables 
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through bilinear relations, the actual determination is of couroe not in terms 

of a single inversion formula as it is for a Fourier expansion of a f\mctJon, 

but that difference is not essential for understanding the ba:dc idea of the 

phase band method. 

The above observation forms the main basis of the phase band method. 

There is also a second observation that is helpful, thoug.'1 not indispensible, 

which is perhaps more debatable than the first one. It pertains to the ave­

rage behavior of a partial "lave amplitude as Vie increase the energy. 'Ihe 

claim 1s that first the partial wave amplitude goes through the regular thre­

shold behavior, then enters an energy region in which it is still primarily 

elastic and exhibits one or several resonances, and finally reaches the high 

energy range in which it is predanlnantly absorptive and non-resona..'1t. 

Based on these two conslderations, the phase band method consists of 

two parts: the single-state phase band decomposition, and the iterative process 

utilizing it. 

Let me first discuss the single stages. Treating as an example the 

1 
spinless case, the scattering amplitude is written as 

.10 
fee, E) = l (21 + 1)(2 ik)-1[n(l.)e2io (1)_ 1 ]pt(cose) 

1.=0 

1max 2i6 
+ l (21 + ~)(2 ik)-l(n e 1._ l)pt(cose)

t
1=10+1 

Here PI. (cose) is the usual Legendre function, k is the center-or-mass mo."1lentum 

Q the scattering angle, E the energy of the incident particle, 0 I. and n.2. the 

usual phase shifts and absorption parameters, and 0 (I.) and n(R,) tVlO functions 

of the angular manentum t. 


The second sum represents the angular rromentum contributions in the 


The I. is selected in the usual way, for
usual way from 10 + 1 to .tmax· m3.X 
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example by a semi-c.1assical estimate of the largest :important angular 

manentum. I will dlscuss the choice of 9.. 0 later. The first sum represents 

the contributi~n of the lower 9.. + I angular mO!'l'entum states, but not in0 

terms of individual partial wave parameters, but in tenns of a collective 

description of the partial waves in that range of 1, using the two functions 

6 (1) and n(1) • These two functions, in turn, are constructed with the help 

of a few free parameters, to be determined by the experiments in the same way 

as the 0 t t S and n1 's are determined. 

Thus the total scattering amplitude is described in terms of two bands 

of partial \'laves: the lower, collective band and the higher , individual band. 

\Vhen such an expression is compared with experiment to obtain the optimal 

values of the partial wave parameters, detailed information is obtained about 

the parameters in the individual band, but the !ndividual values of the various 

partial wave parameters in the g.ollectiye band, as predicted by the functions 

6(t) and n(1) (with the optimal values of their parameters) will most likely 

be incorrect. The total contribution of the collective band is, however, 

expected to be approximately correct, and since it·is assumed that the partial 

wave parameters in the individual band can be determined largely independently 

of the lmo\'lledge of the other parameters, even an approximate lmowledge Of the 

contribution of the collective band will suffice. 

The advantage of the above s cherne, of course, is that one can thus 

detennine the upper partial waves using many fewer parameters than if one 
,~ 

had carried out a full-fledged partial wav;e~.ysis. For exampl~, consider 

the case with 1max = 20, and 10 = lI"Pli':,: €6hventional analysis would require 

42 parameters. Using 3 parameters each to describe 6 ( 1) and n(1,), the phase, 

band method requires 16 parameters, a dramati c reduction. 

The reason why the higher partial waves were singled out for being 

placed in the individual band is that our second initial assumption favors 

tIns course for several reasons. First, the higher partial waves should be 
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the most interesting ones if we want to study resoances. Second, the lower 

partial waves (in the collective band) should be further damped by their 

being very absorptive. Finally, the 21, + 1 factor also favors the higher 

phases. 

'!he choice of .to is governed by the following considerations.. '!he 

broader the individual band is, the more parameters vie have to deal with, 

but at the same time the partial wave pararneters can be expected to be 

detennined to a better approximation that wa:j. As a check, the values 

of the parameters in the individual band can be determined using several 

neighboring values of to and ascertain whether the values of the parameters 

depend on to or not. 

This concludes the conceptual discussion of the single stage. Let me 

now turn to the discussion of the iterative process based on it. It is 

schematically shO't'lI'l in Figure 3.1. '!he first step there represent the 

single stage discussed above. In the second step the individual parameters 

detennined in the first step are held constant, and the remaining lower 

partial waves are redivided into a new individual band and a collective 

band, on which the single stage is then repeated. '!he third step is a 

self-consistency check between steps 1-2 to see if the individual parameters 

change if they are all released at the sarre time. Such changes are expected 

to be minute if the procedure works at all, and therefore this step should 

take very little computer time. Step 4 is then similar to step 3 except for 

pushing the botton of the individual band even lower. Step 5 is again a 

consistency check, etc. Finally, the last step is also a consistency Check, 

releasing all phases to allow small readjustments in the values. With this 

step, a complete partial wave decomposition bas been accomplished. 

What is the advantage of this iteraction process over performing the 

analysis in the traditional way? 

First, the iterated phase band is likely to represent a considerable 
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reduction is computing time. To make a quantitative estimate ot the extent 

of this reduction is difficult because the tlIn.e used in different search 

techniques varies differently \'1ith the number of pararreters, and because the 

reduction of time originates in several different factors. Thus, sane ex­

amples will suffice. If, for example, the time f0r one search goes as the 

square of the number of parameters N, and one uses k bands, with the collec­

tive band being characterized, on the average, by c parameters, the time 

for the conventional search is N2 while for the iterated phase band it is 

2 
~ + c(2N + ck). For N = 40, k = 10, c = 4, this represents a three-fold 

reduction in the canputing time. In addition, a large saving is achieved 

in random searching. If for each of the N parameters one uses m values. in 

the random search, the conventional analysis would require tr searches, 

while the phase band only k( ~ )m searches. For 1<: = 10 and m = 3 (which is 

a very modest number for m), the reduction in canputing tiIr~ for the randan 

searches is a factor of 100. 

Second, the phase band method is likely to reduce the uncertainty of' 

our knowledge of the partial \'1ave parameters, since at each stage of the 

process we deal \,,'1th many fewer parameters, and given a data pool of a g1ven 

size, one can detennine fran it fewer parameters with a greater accuracy. .. 

Third, the phase band method might reduce the ambiguities of partial 

wave solutions, since those solutions of a conventional search which could 

not be obtained by a stable successive iteration of the single stage of the 

phase band method would not appear. It is possible that such spurious so­

lutions would appear at certain stages of the procedure, but they would 

soon be eliminated because they would not show an approximate self-consistency 

insteps 3, 5 etc. 

Finally, the phase band method allows us to select certain "interestingll 

parameters and determine only those without an overall partial wave decan­
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position which would yield al~o much "wunterest1ng" infonnation. For 

example, if we are interested only in the top quarter of the partial wave 

parameters, for trna.x = 12 and a(t) and n ( t) each containing three parameters, 

we can reduce the canputing time to one quarter of what it would be in the 

conventional analysis (if the previously discussed dependence on N is 

quadratic) . 

In sunmary, the phase band method allo\'IS one to take a huge problem of 

perhaps canpletely mmanageable size, and divide it into a sequence of small 

problems, the sizes of wh:tch can be almost arbitrarily small. Thus, in sane 

practical cases, the use of the phase band method mlght mean the difference 

between what can and what cannot be done. 

But are all these sanguine expectations actually fulfilled in the de 

facto applications of the phase band method? One cannot answer this question 

fully at this time, since there have been only two applications of the phase 

band method so far: One to a hypothetical set of data artifically generated; 

and one to pion-nucleon scattering2 at 2.5 and 2.75 GeV/c. 

lrrhe first of these used tmax = 20 and "0 = 15 and tested only the single 

stage of the phase band method. Partial "'lave parameters were artificially 

chosen, !'ran them amplitudes were calculated, artificial errors were assigned 

to them, and then these amplitudes were subjected to a phase band analysis to 

see if one can reobtain the partial wave parameters one started with. The 

following conclusions were obtained: 

a) It is possible to reobtain the 1nitial parameters to a high degree 

of accuracy. 

b) The procedure is stable with respect to variations in the value of to. 
c) The functional form of o(t) and n(t) does not matter very much. 

d) The presence or absence of small angle data points does not seem to 

have a serious effect on the accuracy of the fit. 
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e) The success of the scheme does depend to a large extent on plaqing 

the hie-pest partial waves into the individual phase band. 

f) As expected, the initial values of the individual partial wave 

parameters in the collective band do not agree well with the individual values 

predicted by the final functions 0(1) and n(1) of the collective band. 

2The second application of the phase band method was to real data, but 

unfortunately at energies which \'lere too low for the phase-band method to 

show its full power. 'Ihus a number of questions asked above could not be 

answered. We do not know whether ambiguities are reduced, whether uncer­

tBinties of the partial wave parameters are reduced, or exactly what the .. 

saving is in computer time. 

We do know, hO\'lever, that the application of the phase band method to 

these data resulted in a statistically very good set of partial wave para­

meters, that this solution was reached on a small canputer in a very short 

time, and that the solution was later successfully checked against an energy 

dependent conventional phase shift analysis reaching up to those energies, 

and perfonned after the phase band analysis was canpleted. The agreement was 

very good indeed. This second application also perfonned the i terative 

procedure based on t.he single 'stage, and found it stable and easy to handle. 

Finally, it is clear that the phase band method is by no means restricted 

to partial wave parameters, but can be applied to any decomposition. In 

particular, it could be used with the optimized parameters discussed in 

Section II. Indeed, since both the use of the optimized expansion and the 

use of the phase band method result in an economization of the parametrization 

and in an increase in the precision of the parameters, a combination of the 

two methods would indeed be a powerful phenanenological tool, which could 

easily result in revealing the partial wave structure of particle reactions 

up to tens of BeV' s. 
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What is needed' to realize such a promise of progress? We need experi­

rental data. They should consist of as many types of experiments as possible, 

since, as we saw in Section I, no amount of data of a given ldnd (e.g. differ­

ential cross section) and of no degree of precision can make up for the 

absence of other types of experimental observables, which represent different 

bilInear canbinations of the ampIitudes. It is only after the various am­

plitudes are disentangled by the different types of experiments that expansion 

methods like the optimized series or the phase band scheme can take over. 

Even just a few, not very accurate data points at a few angles of the more 

difficult types of experiments can be of great value. Furthermore, a relative­

ly large angular range should be covered by these experiments, other than just 

the very small and very large angles which at high energies, from our point of 

view, are highly uninteresting. One would expect that eventually the se~ond 

~neration meson factories (that is, high current accelerators at 20-30 GeV) 

would be helpful in collecting such data, but progress even with Present day 

maChines is quite possible. 
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Figure 3.1 


Schematic diagram of the iterated phase-band method. 
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