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IIT. 'PARTIAL WAVE DFECOMPOSITION AT HIGH ENERGIES.

We saw in Section II that.by using an optimized expansion it might be
possible to decrease the nurber of parameters that need to be determined at
a given energy to-characterize the partial wave structure of a particle
reaction. Even so, however, the number of parameters will increase as we
g0 to higher and higher energies, and soon the numer of parameters, whether
optimized or not, becomes excessive in terms of the conventional methods of
determination.

At the same time, the need Tor a partial wave decomposition at higher
energles is no less than at lower energles. One of the central questions
in particle physics is whether the resonances that daminate strong interac-
tions up to 2-3 GeV, continue to higher energies or not. One of the very few
practical ways of answering this question is through partial wave analyses.
In the past, scarcity of data and the lack of analytical techniques precluded
ansvering the question, but this is likely to change during the next decade.

The method I will mow discuss, which permits, at least in principle,
the 'par'tlal wave decamposition (or, for that matter, the parametrization in
terms of cptimized. coeffitients) of particle reactions at arbitrary high
energies is called phase-band analysisl’z. I said "in principle", since
fhe method has so far been .applied only in one real case, and that was at
not too high energles. This one application yielded very favorable results,
but only more extensive uses at higher energies will definitely establish
whether one can in fact make a partial wave decompositicn at arbitrary ener-
gles. It is therefore hoped that as the set of Gata become more carplete
and more extensive at higher erergies, new analyses will be made.

The phase band analysis is buserd on a statistical view of angular mo-
mentun paraneters ot high energies. At thuse ensrgles there will be many

such parameters, amd the assumption is therefore made that the very camplex



http:a'Brnln1ptj.nn
http:extensj.ve

194

network of dynamic correlations among these parameters can be approximated
very well by suggesting that in fact each angular momentum parameter can be
determined by itself from the data, independently of the other parameters.
Tt will now be undoubtedly objected that this assumption 1s obviously
wrong, since we just showed in Sectlon II, when we discussed optimized ex-
pansions, that each optimized parameter in fact contributes to many partial

wave parameters and hence analyticity does establish dynamlcal correlations

~ between partial wave amplitudes.

To clear up this apparent paradox, let me discuss the similar situation
of making a Fourier expansion of a given function. The various Fourier
coefficients in this expansion are highly correlated in a “"dynamical way".

In fact, once the function is given (i.e. the "dynamics" is fixed), all
coefficients are completely determined and hence the "correlation" 1s
absolute. At the same time, it is also true that each Fourier coefficient
can be completely determined absolutely independently of the other coeffi-
cients, by sinply using the well-known formula based on the completeness
and orthogonality of Fourier functions.

The analogy can be carried a bit further. If the expansion of the above
function were to be carried out in terms of a finite series of Fourier
functions, the above procedure would not work as well, since the set of
functions would not be complete. The longer finite series we use, however,
the better approximation we get using the formula which determines the co-
efficients independently of the other coefficlents.

Similarly in a partial wave expansion, if we have a large number of
angular momentum states, we can in a good approximation determine the partial
wave parameters one by one. As we will see, a good approximation 1s all one
will need, since an iteration procedure will then assure a quick convergence
toward the exact values.

The partial wave parameters being related to experimental observables
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through bilinear relations, the actual determination is of course not in tenms
of a single inversion formula as it is for a Fourier expansion of a function,
but that difference 1is not essential for understanding the baslc idea of the
phase band method.

The above observation forms the main basis of the phase band method.
There is also a second observation that is helpful, though not indispensible,
which is perhaps more debatable than the first one. It pertains to the ave-
rage behavior of a partial wave amplitude as we increase the energy. The
claim is that first the partial wave amplitude goes through the regular thre-
shold behavior, then enters an energy region in which it is stiil primarily
elastic and exhibits one or several resonances, and finally reaches the high
energy range in which it is predominantly absorptive and non-resonant.

Based on these two considerations, the phase band method consists of
two parts: the single-state phase band decomposition, and the iterative process
utilizing 1t.

Let me first discuss the single stages. Treating as an example the

spinless case, the scattering amplitude is written as1

,20
£(o, B) = § (22 + 12 10 n(2)e? M) 1 1P (cose)
220
£
max 2,
+ ] e+ D@1k (nye - l)Pz(cose)
p=fj+1

Here Pl(cose) is the usual Legendre function, k is the center-of-mass momentum
Q the scattering angle, E the energy of the incident particle, Gz and ny the
usual phase shifts and absorption parameters, and 5(2) and n(&) two functions
of the angular momentum £.

The second sun represents the angular momentun contributions in the

usual way f{rom 20 + 1 to lmax‘ The lmax is selected in the usual way, for
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example by a semi-classical estimate of the largest important angular
momentum. I will discuss the choice of Lq later. The first sum represents
the contribution of the 1ower’20 + 1 angular momentum states, but not in
terms of individual partial wave parameters, but in terms of a collective
description of the partial waves in that range of 2, using the two functions
6(2) and n(2). These two functions, in twm, are constructed with the help
of a few free parameters, to be determined by the experiments in the same way
as the 62'3 and nn‘s are determined. }

Thus the total scattering amplitude 1s described in terms of two bands
of partial waves: the lower, collective band and the higher, indlvidual band.
When such an expression is compared with experiment to obtain the optimal
values of the partial wave parameters, detailed information is obtained about
the parameters in the individual band, but the individual values of the various
partial wave parameters in the collectiyve band, as predicted by the functions
6(2)_and n(2) (with the optimal values of their parameters) will most likely
be incorrect. The total contribution of the collective band is, however,
expected to be approximately correct, and since it.is assumed that the partial
wave parameters in the individual band can be determined largely independently
of the knowledge of the other parameters, even an approximate knowledge 6f the
contribution of the collective band will suffice.

The advantage of the above scheme, of course, is that one can thus
determine the upper partial waves using many feQer pérémeters than if one

had carried out a full-fledged partial Waveiﬁf} ysls. For example, consider

..

the case with ¢ =20, and 2 & éonventional analysis would require

0
42 parameters. Using 3 parameters each to describe 8(2) and n(2), the phase
band method requires 16 parameters, a dramatic reduction.

The reason why the higher partial waves were singled out for being
placed in the individual band is that our second initial assumption favors

thls course for several reasons. First, the higher partial waves should be
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the most interesting ones if we want to study resoances. Second, the lower
partial waves (in the collective band) should be further damped by their
being very absorptive. Finally, the 22 + 1 factor also favors the higher
phases.

The choice of Lo 1s governed by the following considerations. The
broader the individual band is, the more parameters we have to deal with,
but at the same time the partial wave parameters can be expected to be
determined to a better approximation that way. As a check, the values
of the parameters in the individual band can be determined using several
neighboring values of 20 and ascertain whether the values of the parameters
depend on 2.0 or not.

This concludes the conceptual discussion of the single stage. Let me
now turn to the discussion of the iterative process based on it. It is
schematically shown in Figure 3.1. The first step there represent the
single stage discussed above. In the second step the individual parameters
determined in the first step are held constant, and the remaining lower
partial waves are redivided into a new individual band and a collective
band, on which the single stage is then repeated. The third step is a
self-consistency check between steps 1-2 to see if the individual parameters
change if they are all released at the same time. Such changes are expected
to be minute if the procedure works at all, and therefore this step should
take very little computer time. Step U4 is then similar to step 3 except for
pushing the bottom of the individual band even lower. Step 5 is again a
consistency check, etc. Finally, the last step is also a con_sistency check,
releasing all phases to allow small readjustments in the values. With this
step, a camplete partial wave decomposition bas been accamplished.

What 1s the advantage of this lteraction process over performing the
analysis in the traditional way?

First, the 1terated phase band is likely to represent a conslderable
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reduction is computing time. To make a quantitative estimate of the extent
of this reduction is difficult because the time used in different search
techniques varies differently with the number of parameters, and because the
reduction of time originates in several different factors. Thus, some ex-—
amples will suffice. If, for example, the time for one search goes as the
square of the number of parameters N, and one uses k bands, with the collec~-
tive band being characterized, on the average, by c parameters, the time
for the conventional search is N2 while for the iterated phase band it is
g? + c(2N 4 ck). For N = U0, k = 10, ¢ = 4, this represents a three-fold
reduction in the computing time. In addition, a large saving is achieved
in random searching. If for each of the N parameters one uses m values in
the random search, the conventional analysis would require N searches,
while the phase band only k( g—)m searches. For k = 10 and m = 3 (which is
a very modest number for m), the reduction in computing time for the randam
searches is a factor of 100.

Second, the phase band method is likely to reduce the uncertainty of'
our knowledge of the partial wave parameters, since at each stage of the
process we deal with many fewer parameters, and glven a data pool of a glven
size, one can determine from it fewer parameters with a greater accuracy.

Third, the phase band method might reduce the anmbiguities of partial
wave solutions, since those solutions of a conventional search which could
not be obtained by a stable successive iteration of the single stage of the
phase band method would not agppear. It 1s possible that such spurious so-
lutions would appear at certain stages of the procedure, but they would
soon be eliminated because they would not show an approximate self-consistency
in steps 3, 5 etc.

Finally, the phase band method allows us to select certain “interesting"

parameters and determine only those without an overall partial wave decom-
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position which would yield also much "uninteresting" information. For
example, 1f we are interested only 1n the top quarter of the partial wave
parameters, for nax = 12 and 6(2) and n(2) each containing three parameters,
we can reduce the camputing time to one quarter of what it would be in the
conventional analysis (if the previously discussed dependence on N is
quadratic).

In sumary, the phase ﬁand method allows one to take a huge problem of
perhaps campletely uwmanageable size, and divide it into a sequence of small
problems, the sizes of which can be almost arbitrarily small. Thus, in some
practical cases, the use of the phase band method might mean the difference
between what can and what cannot be done.

But are all these sanguine expectations actually fulfilled in the de
facto applications of the phase band method? One cannot answer this question
fully at this time, since there have been only two applications of the phase
band method so far: One to a hypothetical set of data artifically generated}
and one to pion-nucleon scattering2 at 2.5 and 2.75 GeV/c.

The first of thesel used zmax = 20 and 20 = 15 and tested only the single
stage of the phase band method. Partial wave parameters were artificially
chosen, fraom them amplitudes were calculated, artificial errors were assigned
to them, and then these amplitudes were subjected to a phase band analysis to
see if one can reobtain the partial wave parameters one started with. The
following, conclusions were obtained:

a) It is possible to reobtain the initial parameters to a high degree
of accuracy.

b) The procedure is stable with respect to variations in the value of 10.

¢) The functional form of §(2) and n(2) does not matter very much.

d) The presence or absence of small angle data polnts does not seem to

have a serious effect on the accuracy of the fit.

199



200

e) 'The success of the scheme does depend to a large extent on placing
the hi@' est partial waves into the individual phase band.

) As expected, the initial values of the indlvidual partial wave
parameters in the collective band do not agree well with the individual values
predicted by the final functions 6(2) and n(2) of the collective band.

The second application2 of the phase band method was to real data, but
unfortunately at energies which were too low for the phase-band method to
show its full power. Thus a number of questions asked above could not be
answered. We do not know whether ambiguities are reduced, whether uncer-
talnties of t;he partial wave parameters are reduced, or exactly what the
saving is in camputer time.

We do know, however, that the application of the phase band methed to
these data resulted in a statistically very good set of partial wave para-
meters, that this solution was reached on a small camputer in a very short
time, and that the solution was later successfully checked against an energy
dependent conventional phase shift analysis reaching up to those energies,
and performed after the phase band analysis was completed. The agreement was
very good indeed. This se;c;nd application also performed the iterative
procedure based on the single stage, and found it stable and easy to handle.

Finally, it is clear that the phase band method is by no means restricted
to partial wave parameters, but can be applied to any decamposition. In
particular, itv could be used with the optimized parameters discussed in
Section II. Indeed, since both the use of the optimized expansion and the
use of the phasé band method result in an economization of the parametrization
and in an increase in the precision of the parameters, a combination of the
two methods would indeed kbe a powerful phenomenological tool, which could
easily result in revealing the partial wave structure of particle reactioris

up to tens of BeV's.
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What is needed'té realize such a promise of progress? We need experi-
mental data. They should consist of as many types of experiments as possible,
since, as we saw in Section I, no amount of data of a given kind (e.g. differ—
ential cross section) and of no degree of precision can make up for the
absence of other types of experimental observables, which represent different
bilinear cambinations of the amplitudes. It is only after the various am-
plitudes are disentangled by the different types of experiménts that expansion
methods like the optimized series or the phase band scheme can take over.

Even just a few, not very accurate data points at a few angles of the more
difficult types of experiments can be of great value. Furthermore, a relative-
ly large angular range should be covered by these experiments, other than just
the very small and very large'angles which at high energles, from our point of
view, are highly uninteresting. One would expect that eventually the second
generation meson factories (that is, high current accelerators at 20-30 GeV)
would be helpful in collecting such data, but progress even with Present day
machines is quite possible.
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Figure 3.1

Schematic diagram of the 1terated phase-band method.
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