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JI. PARTTIAL WAVE EXPANSTONS AND CONIORMAL MAPPING

Partial wave expansions in the description of particle reactions have
constituted the single most powerful phenomenological tool in micro-scopic
physics. There are basically two main reasons for this.

First, angular momentum, which is the paramcter of these expansions,
is a physical quantity, and is conserved, so that the terms in the expansion
have physical meaning and the truncation of the expansion can be made using
physical arguments in addition to mathematical ones. PFurthermore, the
anltted terms can be sometimes estimated, using physical arguments.

Second, empirical evidence has revealed to us that angular manentum is
not merely one physical quantity of the many that characterize the structure
of particle reactions, but is perhaps the most crucial one, in as much as
resonances, which clearly dominate much of particle physics, have the one
single common feature of occurring in a given angular momentum state. Thus,
partial wave expansions are ideally tailored to describe particle reactions
in a highly relevant fashion.

There are two difficulties that have been encountered over and over
agaln in partial wave expansions. One 1is that once one rises above a certain
low energy region (the extent of which is different fram reaction to reaction),
the number of partial waves one has to take into account is large, and hence
the determination of the expansion parameters becomes laborious. This problem
will be discussed in Chapter III.

The other problem is that, whether at high or low energies, and therefore
whether there are many or few significant terms in the expansion, the ex-
pansion sometimes does not converge as fast as one would desire it. Two
methods have been used to remedy this deficiency.

The first of these methods attempts to avoid truncation altogether by

adding to a finite number of low angular mamentum states an approximate ex-

- 16 -



180

pression for the remaining infinite nunber of higher angular momentum states.
This expression makes use of the short range nature of strong interaction
forces and of the relationship between range, the mass of exchanged particles,
ard angular momentum states: The high angular momentum states are approxi-
mated by the closed expression given by the exchange of the highest possible
particle compatible with constraints on intrinsic quantum numbers. This term
is indeed the dominant contribution to the high angular momentum states if
the next lightest particle that can be exchanged 1s much heavier than the
lightest. Thus this method of analysis, called the modified partial wave
expansion, works particularly well when the lightest particle that can be
exchanged is a boson, 1n which case generally the next lightest exchange is
two of the same bosons. This ratio of 2:1 in the masses assures overwhelming
dominance of the one-boson exchange ard hence the success of the modified
expansion. The most extensive use of this method has been in nucleon-nucleon
scattering, and has been responsible for much progress in that field during
the last decade. This method is by now well known and will not be discussed
here further.

The second method to circumvent the relatively slow convergence of the
partial wave expansion 1s to use another variable in which the convergerce
is faster. This is the topic of this chapter.

Although one can think of a number of ways to approach the problem of
finding better variables to expand in, the actual formalism has been that of
dispersion relations. In particular, the thrust has been in the direétion
of using the analyticity postulates for reaction amplitudes and therefore
making a conformal mapping to a different complex plane, the variable of
which would provide a faster converging parameter for an expansion.

The first published effort in this direction appears to be a arourd
1961. For some of the references of these early papers, see Reference 2.-

The systematic approach to this problem was, however, given much later by
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Cutkosky and Deo™, and Ciulliu. The topic is by no means closed, and many

important and intriguing possibilities remain on the horizon.

Intuitively, it is evident what one wants to do: The transformation
should move the singularities in the complex plane as far from the physical
region as possible. At the same time, the transformation should result in a
variable which also has a physical meaning, so that the terms in the new ex-
pansion could be readily interpreted.

The general solution of this problem has, as usual, been given by
mathematicians a long time ago. The particular reference used by Cutkosky is
a review book by Walsh, published in 1956. The solution in fact is elegant
and easily comprehensible to a physicist in terms of a different (and unre-
lated) physical problem. The prescription goes as follows:

a) Transform the physical region in the mamentum transfer (or reaction
angle) plane (henceforth called the "old plane") unto any shape in an
"intermediate plane".

b) Transform the cuts in the intermediate plane into the equipotential
surface in the new plane which would result from placing a uniformly distri-
buted charge on the physical region. The physical region in the new plane
is identical to that of the intermediate plane.

The expansion in the variable in such a new plane will be optimally
converging, that is, will converge as fast or faster than any other variable
ore could define by any other conformal mapping.

It should be noted that the above prescription defines an infinite
class of optimal transformations, since each of the infinite number of trans-
formations in a) has a corresponding transformation in b). In actuality,
two of these infinitely many transformations have been utilized in practice:
one by Cutkosky’ and one by Clulii.

Let me discuss now briefly Cutkosky's particular transformation. Let

us denote by X the cosine of the scattering angle, so the "old" plane will
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be the x plane. In this plane the cuts run from - « to some ~ x_ and from
X, to + ». We now use the transformation

X-Xo
W=

l—xxo

to go into the intermediate plane which here is the w plane. The cuts are

symmetrized by this transformation, now going from - « to - W, arnd from W to

o, where
x,X +xX
W = 4+ =4
x++x__
with
_ 2
Xt- xi-—.l

As far as the physical region is concerned, it runs from + 1 to - 1 in
the x plane as well as in the w plane.
Now we go from the intermediate w plane to the new 2z plane by the

transformation
wF(sin ™t w, k)
2K(k)

z = sin ¢(w, ko), k =~l~,

0= 7 ¢(w, k) =

_—

with F(y, k) and K(k) = F( —Jém s k) being the incomplete ard complete elliptic
integrals of the first kind.

The transformation we want maps the physical region into what it was
in the w plane, ard the cuts in the w plane into an ellipse in the z plane,
since ellipses are the equipotential surfaces for a uniformly charged finite
line from z = -1 to + 1. It can be ascertained that the above transformation
indeed satisfies these requirements.
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Now let us turn to Ciulli's transformation. He proceeds is three steps.
The first step 1s identical with that of Cutkosky and simply symmetrizes

the cuts. From this w plane, he then goes to a u plane by the transformation

) zj“ at
52

0 A1 - t9HQ - t24d)
which carries the complex w plane into a rectangle W
W —
A <
~

B = B

Finally, this rectangle 1s made into a pring by a transformation

viu) = { exp [ -

11111]
2UL

where'ULis au(l). Thus now we have in the v plane a figure like the following

ard the expansion is now between the two circles.
Cutkosky's and Ciulli's transformations are of course equivalent in the
sense that one can glve a transformation that can carry one into the other.

This in fact is

) or v=ziv’zz—l

< |-

(v +

o=

zZ =

One can now use any of these new variables to .expand the scattering
amplitudes in. In doing so, it is advantageous to incorporate explicitely

into this expansion the contribution of poles (i.e. one-particle exchanges)
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as discussed earlier in this lecture, because then the expansion itself will
converge faster, just as it does in the case of the conventional partial wave
expansion.

At this point a remark is in order. When the pole term is explicitely
included in a partial wave expansion, the low partial wave contributions of
the pole terms must be explicitely subtracted so as to avoid double counting
if the physical meaning of phase parameters and the constraints of unitarity
are to be preserved.

Such explicit subtfaction is not necessary 1f the expansion is done
in terms of any of the new variables, because the expansion can be said to
refer only to the difference between the whole amplitude and the pole con~
tribution (or pole contributions). This simplifies somewhat the mathematical
procedure, but at the same time it also demonstrates the basic defect of
present applications of the new expansion, namely that the terms in it have
no physical meaning, and therefore physical constraints like unitarity
cannot be applied to them directly.

The lack of direct physical meaning of the terms in the expansion 1is
not very bothersome if one aims at the reconstructions of the M-matrix am-
plitudes of the reaction. One the other hard, if the aim is to give avpartial
wave description of the reaction, (which is of interest particularly it re-
sonances can be expected), then the new expansion must be reconverted into
a partial wave expansion. In the case of the two specific expansions so far
explored, there are one-to-infinity type relations between the coefficlents
of the partial wave expansion ard those of the new expansion. This means,
in turn, that the reconversion can be made, in practice, only approximately
in as much as only an unknown portion of each partial wave amplitude will be
obtained, even though some portion of each of the infinitely many amplitudes

can be calculated.
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In practice, of course, only a finite number of them are actually cal-
culated, and the resulting amplitudes are non-unitary. One can of course
"unitarize" them just as one can unitarize Veneziano models and any of the
other non-unitary schemes recently proposed in particle theory. The process
of unitarization, however, is ambiguous. One can arbitrarily choose "minimal"
unitarization by shifting the partial wave amplitude to that point of the
unitarity circle which is the closest to the original amplitude. There is
no physical reason for thls choice. Furthermore, the correction thus made,
even if relatively small, might make a considerable difference, since the
difference between various expansions is small anyway. Finaliy, such correc-
tions are even more unjustified if the reaction is inelastic (which is almost
always the case when optimized expansions promise to be very advantageous in
the first place), because in that case the true amplitude is somewhere inside
the unitarity circle. All this points at the urgent necessity to find an
optimized type of expansion which at the same time has a physical meaning and
hence 1s subject to physical constraints and interpretation.

ILet me turn now to the actual applications to optimize expansions.

In doing so, I have to discuss briefly a modified goodness- of-fit criterion
introduced by CutkoskyB. His aim 1s to take into account not only the sta-
tistlcal error due to the experimental uncertainties, but also the uncer-
talnty caused by the neglect of the higher terms of the expansion, beyord
the truncation. These neglected terms are of course not known, but in
Cutkosky's schéme it is assumed that their coefficients decrease as an,
where R 1s roughly the distance to the nearest singularity from the physical
region. Since for the optimized expansion R is larger than for the usual
partial wave expansion, the taking into account of this uncertainty favors
the new expansion. In most cases investigated by~Cutkosky and coworkers,

this uncertainty is in fact larger than the usual statistical error.
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Qualitatively the new est.mate of uncertainty makes a good point by
calling attention to the effect of neglecting higher terms. Quantitatively,
however, it is somewhat debatable, as it will be seen presently. The new
estimate adds to the usual chi-square a term denoted by ¢. The calculation-
of ¢ assumes that the coefficients of the expansion converge as R where
R is the size of the region of convergence, and then calculates from this
assumption the effect of the terms neglected in the truncated expansion.

The point i1s, however, that especially in a fast converging expansion, the
actual truncation error will te contributed by the first very few of the
neglected terms, and the behavior of the individual terms depends on the
specific dynamics of the particular reaction, that is, not only on the lo-
cation of the singularities in the complex plane but also the discontinui-
ties at those singularities. These discontinuities are generally unknown.
Thus, while the new estimate might be able to give the order of magnitude
of the uncertaintles due to truncation, its actual quantitative prediétion
Is not likely to be reliable. Another way of stating this is to say that
it is not possible to gain physical insight from purely mathematical mani-
pulations which depend on no new physical ideas. For the optimized expansions,
the only physical idea used is the qualitative statement that strong in-
teraction forces have a short range, and this one fact, combined with some
general statements about analyticity, 1is not enough to supply quantitative
estimates for the limitations of such expansions.

On the other hard, somewhat related ideas can be used to glve same
guidance in the optimal placement of experimental points inside a domain of
analyticity if one is to acquire the maximum of information about the value
of that analytic function somewhere on the boundaryg. This very practical
problem is related to extrapolations which we wlll discuss below.

Iet me now discuss briefly some of the actual applications of optimized

expansions that have been carried out so far. There are four types of
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applications.
1) Determination of coupling constants by extrapolation.
2) Determination of partial wave parameters.
3) Determination of reaction amplitudes.
l}) Characterization of the energy dependence of partial wave amplitudes.
In determining coupling constants by extrapolation, one parametrizes
the reaction amplitude (or cross section) in the physical region and then
extrapolates the resulting function to the pole of the term which contains
the coupling constant. The method has been in use since the late 1950's,

The actual technique used may vary. One can, for example, extrapolate

2 do _ n .
(x - xp) i = xzx an(x - xp) to the pole X, (here x 1is the reaction

€xp
angle), in which case a, gives the coupling constant immedlately. In co-

nnection with the optimized expansions, 1t was suggestedl that one use instead

(x - 'xp)[( g% )exp - ( g% )Born] = 2:, Crrpn(x)’ where pn(x) are some suitably

chosen polynomials. The same form can also be used with a transformed
variable z. This expression will have no pole at xp if the Born term is
used with the right value of the coupling constant. The advantage of the
secord form is that one can use form factors and electromagnetic corrections
in the Born term since it appears explicitely, and this may further ease the
fitting.

Resul‘i:s:L for n-p scattering did not indicate much improvement over the
conventioral way, presumably because there the location of the pole is very
favorable anyway. For K+-p scattering, however, the new method ylelded a
rough value while a determination through the conventional method is claimed
to be impossible.

A different application for determination of coupling constants is to

use the forward amplitude dispersion relations in a conformally mapped energy
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variable.8 Apparently here the conformal mapping helps a great deal and
results in a quite well determined AK p and JK p coupling constant, while
the conventional method is plagued by some ambiguities.

Techniques for extrapolation of scattering amplitudes have been des-

cribed in a number of other papers a_‘Lsol}'16

, but no numerical applications
are given there.

Other mathematical techniques can also be constructed to get Informa-
tion about the value of a function where physical measurements are not carried
out. For example, one can f'indl7 the values of the Imaginary part of the
proton electromagnetic form factor for positive (timelike) values of by in-
verting the unsubtracted dispersion relation for the form factor and then
making a Taylor expansion about a point. To calculate the derlvatives in the
Taylor expansion one approximates the experimentally measured data by a
polynomial. Application to the form factors of this method as well as of the
optimized expansion method give falrly similar results.

Now let me describe the applications'of the optimized expansion for

partial wave amalyses. So far the method has been applied to K-p scatteringo’lo

ard to p-p scattering7.

For the latter, the following four results were found:

a) Phenomenologically determined phase shifts from the ILivermore ana-
lyses Nos. VII and X were used as input up to and including F waves, ard
an optimized expansion was then performed to predict the G ard H waves in the
200-400 MeV range where these high waves are known phenomenologically. It
was found that using the phases of the energy dependent solution of VII the
predicted high phases agreed with experiment but using either the energy
deperdent solution of X or the single energy analyses of either paper did
not produce agreement. The failure for single energy solutions, héwever,

could be remedied by using second-derivative matrices to alter the input
phases. In the latter case, as good a solution could be obtained with 10
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parameters as a conventional single-energy analysis with 14 parameters, but
whether this is due to the extra information supplied by the secord derivative
matrices or to the superiority of the optimized expansion is not quite clear.

b) The new criteria of convergence was applied to the conventional and
the optimized analyses, and the latter was found to have smaller uncertain-
ties, as one would expect for a faster converging expansion if the new cri-
terion is used. Particularly marked improvements are fourd for same of the
higher phases. Using the new criterion and the optimized expansion, the
plon-nucleon coupling constant is also determined from single-energy analyses
while the conventional expansion with conventional goodness—of-fit criterion
could not obtain the coupling constant with as good accuracy.

¢) When the new criterion is applied to n-p data, no improvement 1s
fourd at 210 MeV but the uncertainties decreased at 330 MeV.

d) 1In all these calculations form factors were used for the Born terms.
Studies showed that using instead a unitarized Born term without form factor
gave similar results. It is concluded from this that form factors serve to
mock up unitarity for the nén—unitary Born terms.

In summary, the results of the application of optimlized expansions to
the .two-nucleon problem has so far been somewhat ambiguous. If the new cri-
terion 1s accepted at face value, definite quantitative improvements in
| accuracy have been achieved in some cases, none in others. A full-fledged
energy-dependent optimized anal&sis with both the o0ld and new goodness—of-fit
criteria and with and without form factors would be helpful to make a decisive
evaluation of the optimized method.

For the K-p interaction the success of the optimized expansion has been
more evident6’10, probably because for that reaction the cuts in the ordinary
variables are closer to the physical region, and hence more is to be gained
from transforming them away. The advantages can be expected to be more pro-

rounced at higher energies when the conventional cuts are even closer to the
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physical region, and this is borne out by the actural results. Even by

the conventional goodness—of-fit tests, at the highest energy the conven-
tional partial wave expansion gives a chi-square which is 60% higher than

the chi-square for the optimized expansion‘with the same number of parameters.
Furthermore, apparently the ambiguity of solutions is also reduced.

Let me now turn to the third type of application of optimized expansions,
namely the determination of amplitudes. As mentioned earlier, the optimized
expansion should be particularly successful for this purpose, since it is
used here strictly as a most economical phenomenologlcal way of combing
information from various angles, and one does not have to worry about physical
meaning or re-expansion into partial waves. The actual application12 has
been to pion-nucleon interaction at 6 GeV/c in the angular range from 0° to
600. The amplitudes here were first divided by a phenomenological form factor
and then expanded in the optimized sense. The real arnd imaginary parts of
the amplitudes can then be determined in the angular region in which data
exist. In this application, the optimized expansion provided a way to uti-
lize data at different angles even though the angular range where data exist
is not large enough so that partial wave amplitudes could be determined.

It would in fact be interesting to compare this optimized analysis with a
direct determination of the amplitudes at fixed angles. The latter analysis
has not been performed yet, however.

Finally, the basic idea of conformal mapping to transform away nearby
singularities can also be used in the energy plane, for example to inter-
polate the energy deperdence of phase shifts. An application of this idea
has been madell to two of the phase shifts for np scattering below 400 MeV.

1 1

In particular, a parametrization of the SO ard Pl

making an extended effective range type expansion 1n the new varlable. The

phases is attempted by

truncated expansion 1s constrained by the actual values of the scattering

length amd effective range in the conventional effective range expansion.
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Two methods were tried, one approximating a modified D function in an N/D
scheme, the other directly approximating the phases. The two methods gave
similar results. Unitarity is taken into account by using these methods.

The claim is made that with this new approach the energy deperdences of these
two phases can be parametrized more economically than with the conventionzl
methods, but no numerical evidence 1s presented for such a comparison.

Since the parametrization of the energy dependence of partial wave anplitudes
has been a bothersome point for some time in phase shift analyses, a practical
arnd economical solution of this problem through optimized expansions would

be velcome. The aim 1s to carry out a full-fledged partial wave analysis of,
say, N-N scattering using energy deperdences which incorporate the ccnstraints
of the optimized expansion.

In summary, therefore, the optimized expansions used so far have produced
some good results, though there is room for further improvements. OCne can
expect them to yleld a more economical phenomenological description of particle
reactions, and in some cases this has been demonstrated. The main deficiencies
at the moment are the violation of unitarity and the lack of direct physical
meaning of the expansion coefficients. In some applications, such as the
determination of M-matrix amplitudes, these deficiencies do not count.

In conjunction with the optimized expansions but independently of it,

a new goodness-of-fit criterion was also developed. Since its quantitative
aspects have not been fully tested, it would be advisable for a while to
continue to use the standard chi-square criterion in conjunction with the

new test variable. Private communications have irdicated to me that additional

tests of the new goodness-of-fit criterion are in progress.
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