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II. PARI'IAL \'lAVE EXPl\NSIONS AND COHFOnMAL r~ppnJG 

Partial wave expansions in the description of particle reactions have 

constituted the single most po\t./erful phenanenological tool j.n micro-scop:lc 

physics. There are basically tl'10 main reasons for this. 

First, angular momentum, which is the parameter of these expansions, 

is a physical quantity, and is conserved, so that the terms in the expansion 

have physical meaning and the truncation of the expansion can be made using 

physical arguments in addition to mathematical ones. Furthermore, the 

omitted tenns can be sometimes estimated, using physical arguments. 

Second, empirical evidence has revealed to us that angular manentum is 

not ~erely one physical quantity of the many that characterize the structure 

of particle reactions, but is perhaps the most crucial one, in as much as 

resonances, which clearly daninate much of particle physics, have the one 

sing~e cannon feature of occurring in a given angular manentum state. 'fuus , 

partial wave expansions are ideally tailored to describe particle reactions 

in a highly relevant fashion. 

'!here are two difficulties that have been encountered over and over 

again in partial wave expansions. One is that once one rises above a certain 

low energy region (the extent of which is different from reaction to reaction), 

the number of partial waves one has to take into account is large, and hence 

the determination of the expansion parameters becanes laborious. 'Ihis problem 

will be discussed in Chapter III. 

The other problem is that, whether at high or lo\t./ energies, and therefore 

whether there are many or few significant terms in the expansion, the ex­

pansion sanetimes does not converge as fast as one would desire it. Two 

methods have been used to remedy this deficiency. 

'!he first of these methods attempts to avoid truncation altogether by 

adding to a finite number of low angular manentum states an approxlmate ex­
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pression for the rerreining infi.nite number of higher angular lIDmentwn states. 

'Ibis expression makes use of the short r8..n[Se nature of strong interaction 

forces an1 of the relationship between range, the mass of exchanged particles, 

an::l angular momentum states: The high angular momentum states are approxi­

mated by the closed expression given by the exchange of the highest possible 

particle compatible viith constraints on intrinsic quantwn numbers. 'Ihis term 

is indeed the dominant contribution to the high angular momenttun states if 

the next li~1test particle that can be exchanged is much heavier than the 

lightest. '!hus this method of analysis, called the modified partial wave 

expan<:>ion, works particularly well when the lightest particle that can be 

exchanged is a boson, in which case generally the next lightest exchange is 

two of the ,same bosons. This ratio of 2:1 in the masses assures overwhelm..i.ng 

donunance of the one-boson exchallge and hence the success of the modified 

expansion. The Jrost extensive use of this methcx1 has been in nucleon-nucleon 

scattering, and has been responsible for much progress in that field during 

the last decade. This method is by now well lmown and will not be discussed 

here further. 

The second methcx1 to circumvent the relatively slow convergence of the 

partial \-lave expansion is to use another variable in which the convergence 

1s faster. 'Ihis is the topiC of this chapter. 

Although one can think of a ntunber of "lCo/s to approach the problem of 

finding better variables to exparrl in, the actual forma.lism has been that of 

dispersion relations. In particular, the thrust has been in the direction 

of using the analyticity postulates for reaction amplitudes and therefore 

making accnfonTlr9.1 mapping to a different complex plane, the variable of 

which would provide a faster converging parameter for an expansion. 

'!he first published effort in this direction appears to be a around 

1961. For sane of the references of these early papers, see Reference 2." 

'!he systematic approach to this problem was, hovlever , given nuch later by 
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I 4
Cutkosky and ]):;0 , and Ciulli. The topic is by no means closed, and many 

important and intriguing possibilities remain on the horizon. 

Intuitively, it is evident what one wants to do: '!he transformation 

should move the singularities in the complex plane as far from the physical 

region as possible. At the same time, the transformation should result in a 

variable which also has a physical meaning, so that the terms in the new ex­

pansion could be readily interpreted. 

The general solution of this problem has, as usual, been given by 

mathematicians a long time ago. '!he particular reference used by Cutkosky is 

a review book by Walsh, published in 1956. The solution in fact is elegant 

and easily comprehensible to a physicist in terms of a different (and unre­

lated) physical problem. The prescription goes as follows: 

a) Transfonn the physical region in the manentum transfer (or reaction 

angle) plane (henceforth called the "old plane") tmto any shape in an 

"intcnne9.1ate plane". 

h) Transfonn the cuts in the intennediate plane into the equipotential 

surface in the new plane which would result from placing a unifonnly distri­

buted charge on the physical region. '!he physical region in the new plane 

1s identical to that of the intermediate plane. 

rrhe expansion in the variable in such a new plane will be optimally 

converging, that is, will converge as fast or faster than any other variable 

one could define by any other confonnal mapping. 

It should be noted that the above prescription defines an infinite 

class of optimal transfonnations, since each of the infinite number of trans­

fonnations in a) has a corresponding transformation in b). In actuality, 

two of these infinitely many transformations have been utilized in practice: 

one by Cutkoskyl and one by Ciulli4• 

Let Ire discuss now briefly Cutkosky' s particular transfonnation. Let 

us denote by x the cosine of the scattering angle, so the "old" plane will 
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be the x plane. In this plane the cuts run from - ~ to some - x_and from 

x+ to + co. We now use the transformation 

x - xo 
w= 

1 - XXo 

to go into the intermediate plane which here is the!!. plane. The cuts are 

syrrmetrized by this transfonnation, now going from - co to - W, ani from vi to 

~, where 

with 

x+ = / x~ -.1 
""­

As far as the physical region is concerned, it runs from + 1 to - 1 in 

the ~plane as well as in the ~plane. 

l\Tow we go from the intennediate !! plane to the new ~ plane by the 

tra.nsfonnation 
_ 1 ( -1 

t(w, k) = ~F sin w, k)
kO - vi ' 

2K(k) 

with F( tlJ, k) ani K(k) :: F( ~ , k) being the incomplete a.rd complete elliptic 

integrals of the first kim. 
'X 

itl$I­

c 
-7-~----~~~---­

\ 

'!he transformation we want maps the physical region into what it was 

in the w plane, ani the cuts in the w plane into an ellipse in the z plane, 

since ellipses are the equipotential surfaces for a uniformly charged finite 

line from z = -1 to + 1. It can be ascertained that the above transfo~tion 

indeed satisfies these requirements. 
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NOw let us turn'to Ciulli's t~ansformation. lIe proceeds is three steps. 

'!he first ,step is identical \dth ~hat of Oltkosky and simply synmetrizes 

the cuts. From this w plane, he then goes to a u plane by the transformation 

Which carries the complex ~ plane into a rectangle 

:w I
J IA 

,J 
c 

.... I 

--.-~---~~--~~~~.~~~--~~~-.~ 
A Jjt c 1 ~ 

Finally, this l~ectangle is nnde into a ring by a transfonn.~tion 

v(u) 1= 1 exp [ - i;~ J 

where 1118 .u(l). 'rhus now we have in the v plane a fj.gu:re like the fo+lowl1~ 

cA 


arrl the expansion 1s now between the two circles. 

Cutkosky's and Ciulli' s transforrrations are of course equivalent in the 

sense that one can give a transfonnation that can carry one into the other. 

'Ibis in fact is 

z = 1 (v + 1) or v = z ± I z2 - 1
2 v 

One can now use any of these new variables to .expand the scattering 

amplitudes in. In doing so, it is advantageous to incorporate e>"1'licitely 

into this expansion the contribution of poles (i.e. one-particle exchanges) 
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as discussed earlier in ttp.s lecture, because then the expansion itself will 

converge faster, just as it does in the case of the conventional partial wave 

expansion. 

At this point a remark is in order. When the pole tenn is explicitely 

included in a partial wave expansion, the low partial wave contributions of 

the pole tenus rust be explicitely subtracted so as to avoid double counting 

if the physical meaning of phase parruneters and the constraints of unitarity 

are to be preserved. 

Such explicit SUbtraction is not necessary if the expansion is done 

in terms of any of the new variables, because the expansion can be said to 

refer only to the difference between the whole amplitude and the pole con­

tribution (or pole contributions). 'Ibis simplifies sanewhat the matherratical 

procedure, but at the same time it also de.'I'JlOnstrates the basic defect of 

present applications of the new expansion, namely trat the terms in it have 

no physical meaning, and therefore physical constraints like unitarity' 

cannot be applied to them directly. 

'!he lack of direct physical meaning of the terms in the expansion is 

not very bothersome if one aims at the reconstructlons of the M-matrix §!!!:: 

plitudes of the reaction. One the other ha.rrl, if the a:im is to give a partial 

wave description of the reaction, (which is of interest particularly it re­

sonances can be expected), then the new expansion must be reconverted into 

a partial wave expansion. In the case of the two specific expansions so far 

explored, there are one-to-infinity type relations between the coefficients 

of the partial wave expansion and those of the new expansion. This means, 

in turn, that the reconversion can be rrade, in practice, only approximately 

in as much as only an unlmown portion of each partial wave amplitude will be 

obtained, even though some portion of each of the infinitely many amplitudes 

can be calculated. 
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In practice, of course, only a finite number of them are actually cal­

culated, ani the resulting amplitudes are non-unitary. One can of course 

"unitarize" them just as one can unitarize Veneziano n~dels and any of the 

other non-unitary schemes recently proposed in particle theory. The process 

of tu:rl-tarization, however, is ambiguous. One can arbitrarily choose "minimal" 

unitarization by shifting .the partial wave amplitude to that point of the 

unltarity circle which is the closest to the original amplitude. There is 

no physical reason for this choice. FUrtherroore, the correction thus made, 

even if relatively small, might make a considerable dlfference, since the 

difference between various expansions is small anyway. Finally, such correc­

tions are even more un0ustified if the reaction is inelastic (which is almost 

always the case when optimized expansions promise to be very advantageous in 

the first place), because in that case the true amplitude is sanewhere inside 

the unitarity circle. All this points at the urgent necessity to find. an 

optimized type of expansion which at the same time has a physical meaning ani 

hence is subject to physical constraints and interpretation. 

Let me turn now to the actual applications to optimize expansions. 

In doing so, I have to discuss briefly a modified goodness- of-fit criterion 

introduced by Cutkosky3. His aim is to take into account not only the sta­

tistical error due to the exper:1mental uncertainties, but also the uncer­

tainty caused by the neglect of the higher terms of the expansion, beyond. 

the truncation. '!hese neglected terms are of course not known, but in 

Cutkosky's scheme it is assumed that their coefficients decrease as R-n , 

where R is roughly the distance to the nearest singularity from the physical 

region. Since for the optimized expansion R is larger than for the usual 

partial wave expansion, the taking into account of this uncertainty favors 

the new expansion. In most cases investigated by CUtkosky and coworkers, 

this uncertainty is in fact larger than the usual statistical error. 
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Qualitatively the new est~ate cf uncertainty makes a good peint by 

calling attentien to. the effect ef neglecting higher terms. Quantitatively, 

however, it is somewhat debatable, as it will be seen presently. The new 

estimate adds to. the usual chi-square a term deno.ted by ~. '!he calculaticn 

of t assumes that the ccefficients ef the expansien cenverge as R-n where 

R is the size cf the regien cf cenvergence, arrl then calculates frem this 

assumptien the effect ef the terms neglected in the truncated expansien. 

The peint is, hewever, that especially in a fast cenverging expansien, the 

actual truncatien errer will be centributed by the first very few ef the 

neglected terms, arrl the behavier cf the individual tenTls deperxis,cn the 

specific dynamics cf the particular reactien, that is, net cnly en the 10.­

catien ef the singularities in the complex plane but alSo. the discentinui­

ties at these singularities. These discentinuities are generally unknewn. 

Thus, while the new estimate rrdght be able to. give the erder ef magnitude 

of the uncertainties due to. truncaticn, its actual quantitative predictien 

is net likely to. be reliable. Anether way ef stating this is to. say that 

it is net possible to. gain physical insight frem purely mathematical mani­

pulatiens which deperrl cn no new physical ideas. Fcr the cptimized expansiens, 

the cnly physical idea used is the qualitative statement that strcng in­

teractien fcrces have a shcrt range, and this cne fact, combined with some 

general statements abeut analyticity, is not eneugh to. supply quantitative 

estimates fer the limitatiens ef such expansiens. 

On the ether harrl, sanewhat related ideas can be used to. give sane 

guidance in the cptimal placement ef exper:1mental peints inside a demain cf 

analyticity if ene is to. acquire the maxirrn..un ef infcrm:lticn abcut the value 

cf that analytic fUnctien semewhere cn the beundary9. This very practical 

problem is related to. extrapelaticns which we will discuss belcw. 

Let me now discuss briefly some cf the actual applicaticns cf cptimized 

expansicns that have been carried cut so. far. There are four types cf 
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applications. 

1) Determination of coupling constants by extrapolation. 

2) Determination of partial wave parameters. 

3) Determination of reaction amplitudes. 

4) Characterization of the energy dependence of partial wave amplitudes. 

In determining coupling constants by extrapolation, one parametrizes 

the reaction amplitude (or cross section) in the physical region and then 

extrapolates the resulting function to the pole of the term which contains 

the coupling constant. 'Ihe methcxl has been in use since the late 1950' s . 

'!he actual teclmique used nay vary. One can, for example, extrapolate 

(x - x )2 ~~ I = l an(x - x)n to the pole x (here x is the reaction 
p ~ exp n p p 

angle), in which case aO gives the coupling constant :1nmediately. In co­

nnection with the optimized expansions, it \tJaS suggestedl that one use instead 

chosen polynomials. The same form can also be used with a transformed 

variable z. ThIs expression will have no pole at x if the Born term is 
p 

used with the right value of the coupling constant. fue advantage of the 

second form is that one can use form factors and electromagnetic corrections 

in the Born term since it appears explicitely, and this may further ease the 

fitting. 

1Results for n-p scattering did not indicate much improvement over the 

conventional way, presumably because there the location of the pole is very 

+favorable anyway. For K -p scattering, however, the new methcxl yielded a 

rough value while a determination through the conventional methcxl is claimed 

to be impossible. 

A different application for determination of coupling constants is to 

use the forward runplitude dispersion relations in a conformally mapped energy 
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variable.8 Apparently here the conformal mapping helps a great deal and 

results in a quite "lell determined AK-p· and IK-p coupling constant, while 

the conventional method is plagued by some ambiguities. 

Techniques for extrapol~tion of scattering amplitudes have been des­
16cribed in a number of other papers also13- , but no numerical applications 

are given there. 

Other mathematical techniques can also be constructed to get informa­

tion about the value of a function where physical measurements are not carried 

out. For example, one can findl7 the values of the :1.ms.ginary part of the 

proton electromagnetic form factor for positive (timelike) values of by in­

verting the unsubtracted dispersipn relation for the form factor and then 

making a 'fuylor expansion about a point. To calculate the derivatives in the 

Taylor expansion one approximates the experimentally measured data by a 

pol~omlal. Application to the form factors of this method as well as of the 

optimized expansion method give fairly similar results. 

Now let me describe the applications of the optimized expansion for 

partial wave analyses. So far the method has been applied to K-p scatter1ng°,lO 

and to p-p scattering7. 

For the latter, the following four results were found: 

a) Phenomenologically determined phase shifts from the Livermore ana­

lyses Nos. VII and X were used as input up to and including F waves, and 

an optimized expansion was then performed to predict the G and H waves in the 

200-400 MeV range where these high waves are !mown phenomenologically. It 

was found. that using the phases of the energy dependent solution of VII the 

predicted high phases agreed with experiment but using either the energy 

dependent solution of X or the single energy analys~s of either paper did 

not produce agreement. The failure for single energy solutions, however, 

could be remedied by using second-derivative natrices to alter the input 

phases. In the latter case, as gom a solution could be obtained with 10 
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parameters as a conventional single-energy analysis with 14 parameters, but 

whether this is due to the extra information supplied by the second derivative 

matrices or to the superiority of the optimized expansion is not quite clear. 

b) The new criteria of convergence was applied to the conventional an:! 

the optimized analyses, and the latter was found to have snaller uncertain­

ties, as one would CA~ect for a faster converging expansion if the new cri­

terion is used. Particularly m3rked improvements are fourrl for sane of the 

higher phases. Using the new criterion arrl the optimized expansion, the 

pion-nucleon coupling constant is also determined from single-energy analyses 

while the conventional expansion \'lith conventional goodness-of'"-fit criterion 

could not obtain the coupling constant with as good accuracy. 

c) When the new criterion is applied to n-p data, no improvement is 

founl at 210 MeV but the uncertainties decreased at 330 MeV. 

d) In all these calculations form factors were used for the Born terms. 

Studies showed that using instead a unitarized Born term without form factor 

gave similar re~ults . It is concluded from this that form factors serve to 

nx:>ek up unitarity for the non-unitary Born tenns. 

In sumnary, the results of the application of optimized expansions to 

the. two-nucleon problem has so far been sanevlhat ambiguous. If the new cri­

terion is accepted at face value, definite quantitative improvements in 

accuracy have been achieved in some cases, none in others. A full-fledged 

energy-dependent optL~Zed analysis with both the old and new goodness-of-fit 

criteria and with and without form factors would be helpful to make a decisive 

evaluation of the optimized method. 

Fbr the K-p interaction the success of the optimized expansion has been 

6 10 more evident' ,probably because for that reaction the cuts in the ordinary 

variables are closer to the physical region, anj hence rrore is to be gained 

from transforming them away. '!he advantages can be expected to be more pro­

rounced at higher energies when the conventional cuts are even closer to the 
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physical region, and this is borne out by the actural results. Even by 

the conventional goodness-of-fit tests, at the highest energy the conven­

tional partial wave expansion gives a chi-square which is 60% higher than 

the chi-square for the optinti. zed expansion with the same number of parameters. 

}i\1rthenoore, apparently the ambiguity of solutions is also reduced. 

Let me now turn to the third type of application of optimized expansions, 

namely the determination of amplitudes. As mentioned earlier, the opt:imized 

expansion should be particularly successful for this purpose, since it is 

used here strictly as a most econorrdcal phenomenological way of combing 

infOTm'ltion from various angles, and one does not have to worry about physical 

12meaning or re-expansion into partial waves. The actual application has 

been to pion-nucleon interaction at 6 GeV/c in the angular range from 0° to 
o 

60. JIlle amplitudes here were first divided by a phenomenological form factor 

and then expanded in the optirrdzed sense. The real arrl llna.gin:rry parts of 

the amplitudes can then be determined in the angular region in which data 

exist. In this application, the opt1m1zed expansion provided a way to uti­

lize data at different angles even though the angular range where data exist 

is not large enough so that partial wave amplitudes could be determined. 

It would in fac t be interesting to corrpare this optimized analysis with a 

direct determination of the arnplitudes at fixed angles. '!he latter analysis 

has not been perfonned yet, however. 

Finally, the basic idea of conformal mapping to transform away nearby 

singularities can also be used in the energy plane, for example to inter­

IX>late the energy deperrlence of phase shifts. An application of this idea 

ha.s been madell to two of the phase shifts for np scattering below lIoo MeV. 

In particular, a parametrization of the 1So arrl 
1PI phases is attempted by 

naking an exterrled effective range type expansion in the new variable. The 

truncated expansion is constrained by the actual values of the scattering 

length and effective range in the conventional effective range expansion. 
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'lWo methcx:ls were tried, one approxlmating a modif-led D function in an N/D 

scheme, the other directly approx.lina.ting the phases" rIlle two methcx:ls gave 

similar results. Unitarity 18 taken into account by usin;.; these methods. 

~ claim is made' that wIth this new approach the energy deperrlences of these 

two phases can be parametrized more economically than with the convention&l 

method.s, but no numerical evidence is presented for such a comparison. 

Since the parametrization of the energy dependence of partial wave rul~litudes 

has been a bothersome point for some time in phase shift analyses, a practical 

and economical solution of this problem through optimized expansions \'lould 

be l'Telcome. The aim is to carry out a full-fledged partial l'laVe ana..lysis of, 

say, N-N scattering using energy deperrlences which incorporate the ccnstraints 

of the optimized expansion. 

In sumnary, therefore, the optimize~ expansions used so far have produced 

some good results, though there is room for further' improvements. One can 

expect them to yield a more economical phenomenological description of particle 

reactions, and in some cases this has been demonstrated. rrhe rrain deficiencies 

at the moment are the violation of unitarity and the lack of direct physical 

meaning of the expansion coefficients. In some applications, such as the 

determination of IVl-matrix amplitudes, these deficiencies do not count. 

In conjunction with the optimized expansions but independently of it, 

a new goodness-of.-fit criterion was also developed. Since its quantitative 

aspects have not been fully tested, it would be advisable for a while to 

continue to use the standard chi-square criterion in COnjunction with the 

new test variable" Private conmmications have irrlicated to me that additional 

tests of the new goodness-of-fit criterion are in progress. 
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