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Abstract

Some recent developments are reviewed concerning those aspects of
particle reactions which are entirely or almost entirely independent of
dynamical models. Of the three sections, the first discusses the spin
structure of particle reactions, the second deals with the application of

conformal mapping to partial wave expansions, and the third outlines angular

momentum decomposition at high energies.
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I. THE SPIN STRUCTURE OF PARTICLE REACTIONS

The fact that some particles have spins gives us a more detailed insight
into the interaction of quantum mechanical particles, without having to have
knowledge about the nature of the forces acting between these particles.

This opportunity has not been fully realized in the past, partly because the
experimental requirements for measuring the spin dependence in reactions is

in some cases rather severe, partly because often theorists were not orient.ed
toward making predictions for anything but differential cross sections.

Lately, however, theoretical interest in polarization phenomena has increased,
and experimental techniques in terms of increased beam intensities, polarized
beams, and polarized targets have made giant strides. It is therefore im-
portant to discuss what information can be obtained from the study of the spin
structure of particles reactions (high energy, nuclear, or atomic) and how that
information can be acquired through experiments.

There are a number of different ways of describing the force-independent,
or non-dynamical structure of particle reactions. Which one we choose depends
on what purpose we want to use it for. We can have the following require-
ments:

a) The description should be Lorentz invariant.

b) The description should cover all reactions regardless of the values
of the spins of the particles.

¢) The description should be simple, that is, should exhibit in a
transparent way the relationship of experimental observables to scattering
amplitudes.

" d) The description should be able to take into account easily the
constraints of conservation laws.

e) The description should be easy vo compute and manipulate with.
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f) The description should be easily compatible with actual experimental
considerations.

g) The formalism should be compatible with past, present, ard future
theoretical dynamical models.

Not very surprizingly, it turns out that none of the existing formalisms
are ideal for all these purposes. Especially the last one is difficult to
fulfill. At the moment, it can be applied to S-matrix theory and thus, for
example, one can demand that the formalism should be as ﬁ'ée of kinematic
singularities as possible.

In this Section I want to discuss one such non-dynamical formalism which
stards quite high in terms of the above requirements, which has been worked
out in great detail, and which can therefore illustrate the type of results
one can obtain from these kinds of considerations. Other formalisms would
probably yield similar results, though detailled studies are generally not
available.

Since detailed results of the formalism are available in the published
literature 1—28, the purpo.se of this review 1s to give an overall picture of
the salient features. A summary up to that time was given in Reference 25.

I will supplement it hére with recent developments as well as some conceptual
clarifications. In some of the references3’u’6’8’10’11’12’13’16’17’18’23’25’26’28
a number of specific examples were worked out in great detail and these should

be consulted for illustrations.

Our aim is to describe the reaction matrix (here called the M-matrix) in
terms of its spin-momentum structure. For this purpose we will use3 irre-
ducible spin tensors S[ JJ(s, s') (for notation see below) as well as momentum
tensors T[ J]({p})r. Though these tensors look formidable, their explicit role
in the structure of the reactions can be eliminated by performing once amd

3,10

for all, the evaluation of the traces involving them. The resulting
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tabulated numbers>t

will then bear the only reminder that the S's and T's
ever entered the problem. Thus I will spend no time on the properties of
these tensors.

ILet us first consider the four-particle reaction
a+b +» c+d (1.1)

with arbitrary spins Sy Sps Sg and S4» and let 1ts M-matrix be Ml. From
the point of view of all properties independent of the detalls of the dynamics,

we can factorize this reaction in terms of the simpler reactions

a+0 » c+0 (1.2)

0O+b »> 0+4d (1.3)

where 0 describes a particle with spin 0. If the M-matrices of these reactions

are denoted by M2 ard M3, we have the factorization
MM, @ N (1.4)

where (=) denotes equality for all dynamics-indeperdent purposes, and (%) de~
notes the outer product in the spin space of the four particles. With this
result, we now have to consider only the simpler reaction given by Eq.(1.2),
since more complicated reactions can be composed from it.

The M-matrix for the reaction of Eq. (1.2) can be written as

r ' r
M= a. Sq.q(s, 8 ): Trq({p}) (1.5)
J?r J “[J] (7]

where the a§ 's are amplitudes containing all the dynamical information,
r
[ J]'s are the spin tensors already mentioned, the T ;

tensors also already mentioned, s and s' are the spins of particles a and ¢

the S ]'S are the momentum

respectively, and the : means total contraction over all tensorial indices.
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The sum is over the rank of the S ard T tensors (which is denoted by [J])
and over the index r distinguishing the various T tensors of the same rank.
The experimental observables, denoted by L((S: T)I, (S: T)F), are

obtained from the M-matrix by the operation
+ L
LI(S: T)q, (S: Tl = Tr{ M(S: T)y M (s: g } (1.6)

which, using Eq. (1.5), can be rewritten as

*
ry To NI

LI(S: T)¢, (S: T ] = a X Q.7
1 F JEJZ 3, 83, 33000y
o
where
1.
ol el e ) 1 Ta Tp
X =Tr{(S: T), (S: T).” (S: T) (s: T 1.8
JIT Ty T I Iy o Ig ] .8

is a dynamics-indeperdent quantity that, as mentioned earlier, has been

CE for various values of s ard s'.

tabulated
In the above formulae (S: T)I and (S: 'I‘)F are the spin-momentum tensors
describing the initial and final polarization states of the particles.
Thus each experiment corresponds to a different L (or a linear combination
of L's).
As an exanple, in pion-nucleon scattering (s = % ,8'= -12-) , with rota-
tion invariance only (i.e. no parity conservation)

-+ > >

M =Dl + bla’ - g+ bzé S dy xdy+ b33 - 4, (1.9)-

where 31 ard 32 are two momenta characterizing the kinematics of the reaction..

. r
To establish the correspondence with Eq. (1.5), the aj 's there are the

b « «, b, here, the s[gj 's there are the unit matrix 1 and the o

0° bl’ ¢ 3
r ) > > -+
here, (that is, [J] here is 0 or 1), the T[J] 's there are’l, q;, q; X Qy,



am32MN (that s, ris 1 for [J]=0amdr is 1, 2, 3 for [J] = 1), and
the : there is the dot product here.

Observables for pion-nucleon scattering are, for example
L(1, 1) = Te(M 1 M 1) (1.10)

which would have 16 terms (in principle), such as | b, |2‘IT 1, bob;'l‘r('c; . Eff'),
etc. In general, the X's here are the traces of 0, 1, 2, 3, or 4 Pauli
matrices.

The momenta used to span the tensors T can be chosen in an infinite num~
ber of different ways. In principle, no significant results should deperd on
the choice of the basis. In partice, however, the transparency of the results
- and the simplicity of the relationship between amplitudes and observables
wlll depend cruclally on the choice of the basis.

It is not known what choice of the basis is Optima.122 from the point of
view of simplicity or transparency, as well as from the other criteria emu-
merated at the beginning of the section. The one I will use ranks high but
has not been proven optimal.

Denoting by EI and 'q"' the center of mass momenta of particles a ard ¢

respectively, I will use the three orthonormal unit vectors

. a, _ 2 . >y x > . .
LE-—-—~—-—3-+1 = m = —9-——9-+l = nsgLxm (1.11)
la~ - ql la~ x ql
to span the momentum space. Therefore, for example, the pion-nucleon M-
matrix will be written as
-> A > ~ -> ~
M= b0 + blo - 2+ b2° m+ b3o n (1.12)

The ag 's in Eq. (1.5) are rank-zero tensors, which can depend on rank-
zero tensors formed of the momenta characterizing the reaction. Note that

in a four-particle reaction such rank-zero combinations of momentum tensors
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(qi, qg, and‘al . 32) are all scalar (and not pseudoscalar), while for a
reaction containing more than four particles, where at least three momenta
are needed to specify the kinematics, some of these combinations are scalar
(31, 32 . 63 etc. ) but one of them is pseudoscalar (31 . 32 x 33). Thus for
a four-particle reaction the amplitudes are always scalar, while for a reac-
tion with more than four particles the amplitudes do not in general have a
definite behavior under reflection. This has the consequence that a more-
than-four-particle reaction in general cannot be used to determine the
intrinsic parities of particlest»®*20,

The number of terms in Eq. (1.5), if one assumes only rotation invariance,

i

can be shown to be x = (2s + 1)(2s' + 1). 1In general, the number of amplitudes

il
in a four-particle reaction is X = 1 (2s, + 1), where s

i i
i=1
particle i. The number of different bilinear combinations of amplitudes 1s

is the spin of

therefore x2. It turns out that the number of different observables L is

also x2. Thus there are xh different X's, which can be thought of as elements

2 observables and the x2 bilinear products of

of a matrix comnecting the x
amplitudes.

Note that (if we consider only rotation invariance), the number of
observables is the same as the number of bilinear products, and hence the
observables are all linearly independent.

Even though the values of the xu different X's can be computed once and
for all, the existence of such large number of X's, connecting all of the
observables to all of the bilinear products creates a c¢clumsy situation.
After all, even for one of the simplest reactions (pion-nucleon scatterint),
x is U, so xu is 256. For something more complicated, but still very rea-
listic, such as rho-nucleon scattering, we have x = 36, and so xl4 =1, 679, 616.

Thus, unless this general structure can be sinplified, a systematic dis-

cussion of the observable structure of reactions appears to be impractical.



Actually, however, the situation is vastly better, since on account of
the judicious choice of basis vectors plus the properties of the irreducible
spin tensors, a very large fraction of the X's are actually zero. For the
pion-nucleon scattering case, only 40 of the 256 X's are non-zero. For a
multiply factorizable reaction like rho-nucleon scattering, the ratio is
even more favorable: over 99% of the X's in that case are zero.

Not only are most of the X's zero, but they vanish in such a way so as
to decompose the problem into many small problems. An unfactorizable reac-
tion breaks down into eight groups of observables, each of which is related
to only one of eight groups of bilinear products of amplitudes. In a once
factorizable reaction there are 32 such small groups, in a twlce factorized
one 128, and in a three-times factorized one 512. Furthermore, there is a
very simple recipe for determining which observables go with which bilinear
pmductslo’ 25. Thus the structure of the relationship between observables
ard amplitudes is actually enormously simpler than it appears at first sight.

This simplified structure is useful for a number of reasons. It points

out immediately which experiments furnish information about which amplitudes,

thus providing a dynamics-independent basis for planning new experiments to-
galn additional knowledge about the amplitudes. Unfortunately, the related
general problem of what sets of experiments give a unique determination of
the amplitudes has not been solved yet, though some partial results are
availablel?s2

The simplified structure is also helpful in finding tests of conser-.
vation laws and in determining the intrinsic quantum numbers of particles
participating in the reaction. I will therefore turn now to the discussion
of conservation laws.

Up till now we have assumed only rotation invariance. For example,
Eg. (1.5) was constructed by requiring only that M be rotaticn invariant.

As an example, let us now consider reflection 1nvariance10 also and see how

-8 -
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the structure of observables and amplitudes changes as a result of this add
additional assumption.

The changes are easy to I‘ollowzs. In the M-matrix given by Eq. (1.5),
all amplitudes, as I have sald, are scalar. Hence, if we want to demand
that the M-matrix be specifically scalar or specifically pseudoscalar, we
must see if the (S: T)'s are scalar or pseudoscalar. It turns out that
approximately half of the (S: T)'s are always scalar and half are pseudo-
scalar. Therefore, if parity 1is conserved and the product of the four
particles participating in the reaction is scalar (pseudoscalar), then the
M-matrix given by Eq. (1.5) must also be scalar (pseudoscalar), ard hence
the inappropriate terms in M must be zero (that is, the corresponding ampli-
tudes must vanish indentically).

We then have only x/2 amplitudes, and so x°/l bilinear products of these.
The number of observables 1s, of course, still x2, since the number of ways
one can set up polarization experiments certainly does not deperd on whether
certain conservation laws hold or not. In this case, therefore, we will have
x2 observables linearly depending on .x2/lt bilinear products of amplitudes

ard hence there must be 3x2/14 linear relationships among the x2

observables.
These relationshpis did not exist when we assumed only rotatlon invariance,
ard are the direct consequence of our additional imposition of parity con-
servation. Thus these linear relations among the observables are tests of
parity conservation, and in fact one can prove that they represent all the
parity tests which are dynamics-indeperdent.

These tests can be divided in two groups. About x2/2 of them test:
whether parity is 'Eartiallz violated or not. In other words, they give one
result if either parity is conserved or completely violated, and they glve
another result if parity is partially violated. These tests, however, can-
not distinguish between parity conservation and complete parity violation.

In the case of parity, complete parity violation in some cases can be
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eliminated by a judicious assigmment of intrinsic parities to the particles.
In fact, this is the justification of the concept of intrinsic parities.
Thus, we can also say that while these x2/2 tests can indicate (partial)
parity violation, they cannot serve to determine the intrinsic parities of
the participating particles. 1In the case of some other symmetries (such as
time reversal invariance13) the concept of a corresponding intrinsic quantum
number for particles is not appropriate, and hence in these two cases only
the first of the above two formulations is relevant.

In addition to these x2/2 tests, we have about xa/ﬂ other types of tests
which, in addition to testing partial parity violation, can also tell parity
conservation from total parity violation, that is, they can determine the
intrinsic parities of the participating particles.

Of these two types of tests, the first one is of a much simpler form.
They consist either of certain observables vanishing identically (such as in
the case of parity conservation) or of two observables (differing only in the
order of the polarization tensors in their arguments) being either equal to
each other or one belng equal to the negative of the other. This latter
type of relations is called mirror relation;7.

The tests of the secord type (which are the more versatile ones)
unfortunately are somewhat more elaborate in structure. They state that
certain linear combinations of observables must vanish identically (i.e. at
all angles ard energies). Experimentally these are more difficult to carry
out, since one has to measure a number of different observables, and in
forming the linear combinations experimental errors might add up into a large
uncertainty. For relatively low spin values, however, these linear combi-
nations are relatively simple, and hence the tests are not unfeasible.

One can discuss this way not only parity conservation 5’7’10’15’(P),

or time reversal invariance13 (T), but also P + T, PTl6, and CPT 16, 27.

- 10 -~
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Furthermore, one can treat in a fonmally similar fashion detailed balancing (B),
which, though not a conservation law, is likely to hold in certain types of
reactions and hence can be a useful tool. One can then also discuss BP, .BT,
BPT, CPIB, etc.

Furthermore, one can also discuss in a similar way the constraints of

23,21 ard the case of collinear 1"eac‘c:tons26 , both of which

identical particles
are of practical importance.

In the discussion of all of these symmetries arnd constraints, one follows
the same procedure. This procedure consists of two main parts.

First, one wants to determine the type of reaction that goes into itself
urder the particular symmetry or constraint under consideration. Such re-

25

action is called a self-transforming reaction™ under that particular symmetry
or constraint. For exanple, under time reversal, the reactiona + b +c¢ + d
goes into itself if a = ¢ and b = d, that is, if we have elastic scattering.

‘The reason for concentrating on self-transforming reactions is two-fold.
First, it is experimentally often easier if, when performing a test of a
conservation law, one can concentrate on observables of one particular re-
action instead of having to compare observables of two reactions, as in the
case of non-self-transforming reactions. (For example, one can test time
reversal invariance also on reactions other than elastic scattering, but such
tests would involve corparing the reactions a + b +c +dwithe +d +2a + b.)

The secord reason for concentrating on self-transforming reactions is
that they are the only ones capable of supplying the type of tests which can
distinguish conservation from complete violation. It turns out that non--
self-transforming reactions can provide only mirror rela‘cions17 which, as I
have said, cannot tell conservation from complete violation (and hence can-
not determine intrinsic quantum numbers).

The secord main part of the procedure to dilscuss symmetrles or const-

raints is to detenmine what such constraints do to the spin vector $ and to

- 11 -
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the basic momentum vectors £, m, and n. These four vectors transform
differently urnder the various constraining transformations, and correspondingly
different terms in the original M-matrix (Eq. 1.5) will have the 'wrong'
behavior from the pcint of view of the additional constraint. It turms out

that one can define a characteristic quantity10’25

for each symmetry which
quickly tells whether a term in Eq. (1.5) is eliminated or not by the im-
position of that symmetry. Tor example, for a term to survive in Eg. (1.5)
under parity conservationC (with the product of all intrinsic parities being
positive) the number of &'s plus the number of n's in that term (i.e. in the
argument of the momentum tensor T[gl ) must be even.

The same characteristic quantity can also be used to sort out the ex-~
perimental observables. For example, if parity conservation is imposed, all
observables L in the argument of which the total number of &'s plus the total
number of n's is odd must be identically zero at all energies ard angles.
This requirement, in fact, supplies the x2/2 relations discussed earlier.

This completes the very brief summary of the spin structure of particle
reactions. We have seen that by an appropriate choice of a basls for the spins
and the momenta the relationship between amplitudes and observables can be
made fairly simple and quite transparent. As a consequence, the effects of
symnetries and other constraints on the observables can be easily determined,
ard thus tests of the existence of such constraints can be devised. Also,
the transparent relationship between observables and amplitudes allows one
to plan experiments better, since it is relatively easy to ascertain what
experiments will supply what type of information about the amplitudes.

Since it is my guess that the greatest advances in particle physics in the

next decade will be made by careful and detailed measurements of various types

of observables in the medium energy range (up to 20 GeV), I also believe that
the urderstanding of the spin structure of particle reactions is likely to

play a significant role in the coming years.
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